The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know

## Partial solutions to problems: Part 1G

## Problem 1G. 1

In this exercise, we're asked to derive the expression for the mean kinetic energy of a particle in a degenerate gas. This gas no longer follows the normal M.Bdistribution, which we have used in earlier exercises.

1. Let's summarize: We have a relation between $n(\vec{p})$ (the number density per volume per momentum space volume for particles with momentum $\vec{p}$ ) and $n(p)$ (the number density per real space volume for particles with absolute momentum $p$ ). This relation is given by $n(p) d p=4 \pi p^{2} n(\vec{p}) d p$, where we obtain the real-space volume element by integrating a sphere over the momentum-space for a fixed absolute momentum. We're now asked to find a relation between $n(p)$ and $n(E)$. We know that

$$
E=\frac{p^{2}}{2 m}
$$

such that

$$
p=\sqrt{2 m E}
$$

and

$$
\begin{gathered}
d p=\frac{1}{2 \sqrt{2 m E}} \cdot 2 m d E=\sqrt{\frac{m}{2 E}} d E \\
\frac{d p}{d E}=\sqrt{\frac{m}{2 E}}
\end{gathered}
$$

Now, we switch from $n(p)$ to $n(E)$ using the chain rule:

$$
n(E)=n(p) \frac{d p}{d E}=n(p) \sqrt{\frac{m}{2 E}}
$$

and insert for $n(p)=4 \pi p^{2} n(\vec{p})$ :

$$
n(E)=4 \pi p^{2} n(\vec{p}) \sqrt{\frac{m}{2 E}}=4 \sqrt{2} \pi m^{3 / 2} \sqrt{E} n(\vec{p})
$$

where we substituted $p^{2}=(2 m E)$. We now insert for

$$
\begin{gathered}
n(\vec{p})=\frac{2}{h^{3}} \frac{1}{e^{\left(p^{2}-p_{F}^{2}\right) /(2 m k T)}+1} \\
n(E)=\frac{8 \sqrt{2} \pi m^{3 / 2}}{h^{3}} \sqrt{E} \frac{1}{e^{\left(p^{2}-p_{F}^{2}\right) /(2 m k T)}+1}
\end{gathered}
$$

Rewriting, we find

$$
n(E)=4 \pi\left(\frac{2 m}{h^{2}}\right)^{3 / 2} \sqrt{E} \frac{1}{e^{\left(p^{2}-p_{F}^{2}\right) /(2 m k T)}+1}=\frac{g(E)}{e^{\left(p^{2}-p_{F}^{2}\right) /(2 m k T)}+1}
$$

2. We continue by finding the mean kinetic energy of a particle in a degenerate gas:

$$
\langle E\rangle=\int_{0}^{\infty} P(E) E d E
$$

First, remember that the probability distribution is given by $n(E)$, but a probability distribution needs to be normalized such that

$$
P(E)=N n(E)
$$

where $N$ is found by

$$
\int_{0}^{\infty} P(E) d E=N \int_{0}^{E_{f}} n(E) d E=1
$$

where the $E_{f}$-limit is because $n(E)=0$ for $E>E_{F}$. The next thing we do is an approximation: in this energy range, the $e^{\left(p^{2}-p_{F}^{2}\right) /(2 m k T)}$ in $n(E)$ is much less than 1 . We can then approximate $n(E) \approx g(E)$, and the integral becomes surprisingly simple. But first we need to normalize the distribution. For simplicity we define $K=4 \pi\left(\frac{2 m}{h^{2}}\right)^{3 / 2}$. Then

$$
1=N \int_{0}^{E_{f}} g(E) d E=N K \int_{0}^{E_{f}} E^{1 / 2} d E=N K \frac{2}{3} E_{F}^{3 / 2}=1
$$

such that $N=3 / 2\left(K E_{F}^{3 / 2}\right)$. The expectation value is thus

$$
\begin{gathered}
\langle E\rangle=N \int_{0}^{E_{f}} g(E) E d E=\frac{3}{2} E_{F}^{-3 / 2} \int_{0}^{E_{f}} E^{3 / 2} d E \\
\langle E\rangle=\frac{3}{2} E^{-3 / 2} \frac{2}{5} E_{F}^{5 / 2}=\frac{3}{5} E_{F}
\end{gathered}
$$

