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Partial solutions to problems: Part 1G

Problem 1G.1
In this exercise, we’re asked to derive the expression for the mean kinetic energy
of a particle in a degenerate gas. This gas no longer follows the normal M.B-
distribution, which we have used in earlier exercises.

1. Let’s summarize: We have a relation between n(~p)(the number density
per volume per momentum space volume for particles with momentum
~p) and n(p) (the number density per real space volume for particles with
absolute momentum p). This relation is given by n(p)dp = 4πp2n(~p)dp,
where we obtain the real-space volume element by integrating a sphere
over the momentum-space for a fixed absolute momentum. We’re now
asked to find a relation between n(p) and n(E). We know that
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Now, we switch from n(p) to n(E) using the chain rule:
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and insert for n(p) = 4πp2n(~p):
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where we substituted p2 = (2mE). We now insert for
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Rewriting, we find
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2. We continue by finding the mean kinetic energy of a particle in a degen-
erate gas:

〈E〉 =
∫ ∞
0

P (E)EdE

First, remember that the probability distribution is given by n(E), but a
probability distribution needs to be normalized such that

P (E) = Nn(E)

where N is found by∫ ∞
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where the Ef -limit is because n(E) = 0 for E > EF . The next thing we
do is an approximation: in this energy range, the e(p
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is much less than 1. We can then approximate n(E) ≈ g(E), and the
integral becomes surprisingly simple. But first we need to normalize the

distribution. For simplicity we define K = 4π
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. Then
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such that N = 3/2(KE
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F ). The expectation value is thus

〈E〉 = N

∫ Ef

0

g(E)EdE =
3

2
E
−3/2
F

∫ Ef

0

E3/2dE

〈E〉 = 3

2
E−3/2

2

5
E

5/2
F =

3

5
EF

2


