# Solutions part 2E

## Exercise 2E.2

Plotting the time differences should result in something similarly to figure 1 and 2. You should see a trend where the difference in time interval time increases.



Figur 1: The differences between true light speed and false for the shell observer.



Figur 2: The differences between true light speed and false for the infalling spaceship.

#### Exercise 2E.3

1. The tangential velocity is given by

$$v_{\phi} = r \frac{d\phi}{dt}.\tag{0.1}$$

2.

$$(L/E)^{2} = \frac{r^{2}}{\left(1 - \frac{2M}{r}\right)}.$$
(0.2)

4. Light moves faster tangentially than radially.

## Exercise 2E.6

2. At a distance r = R and the velocity is only tangential to the radial vector and the radial velocity is therefore 0.

#### Exercise 2E.7

2.  $\alpha$ 

3.  $\Delta\phi$ 

4. 
$$\gamma \to \pi/2$$
  
6.  $\Delta \phi = 4 \cdot \frac{1.4849 \text{km}}{695508 \text{km}} \cdot 206264.806 = 1.76 \text{arc seconds}$  (0.3)  
7.  $5.485 \cdot 10^{-8} \text{km}$ 

$$\Delta \phi = 4 \cdot \frac{5.485 \cdot 10^{-8} \text{km}}{1737.1 \text{km}} \cdot 206264.806 = 2.61 \cdot 10^{-5} \text{arc seconds.}$$
(0.4)

### Exercise 2E.8

- 3. It must be located to the left.
- 4. See figure 3.





5. Try adjusting the start radius in the program closer to the black hole. You will then see clearly that the symmetry vector points to the left.

#### Exercise 2E.9

6.

$$M = 1.35 \cdot 10^{15} M_{\odot} \tag{0.5}$$