The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know.

Partial solutions to problems: Part 3A

Problem 1

Naturally, a parsec is defined as the parallax angle (which in this case is $0.5^{\prime \prime}$, check the definition!) of an arc second, so $d=1 / 0.5^{\prime \prime}=2$ parsec.

Problem 2

As in 7.1, $\theta=r / d=2 a u / 4.22 l y=7.5 \cdot 10^{-6}$ radians. The parallax angle half of this, or or $\theta \approx 0.77^{\prime \prime}$.

Problem 3

We use that

$$
m-M=5 \log _{10}\left(\frac{r}{10 p c}\right)
$$

and solve for the radius r :

$$
r=10 p c \cdot 10^{\frac{m-M}{5}}
$$

When "plotting" (that is, manually inserting) the observed apparent magnitudes of the stars in the cluster into the Hertzsprung-Russel diagram, we note that the difference between the two magnitudes (absolute and apparent) are about $\delta m=5$. Thus,

$$
r=10 p c \cdot 10^{\frac{5}{5}}=100 p c
$$

Problem 4

Supernovae type Ia always has an absolute magnitude of $M=-19.3 \pm 0.3$. If we observe a supernovae type Ia with apparent magnitude $m=20$, we can use

$$
r=10 p c \cdot 10^{\frac{m-M}{5}}
$$

to give an upper and lower estimate:

$$
\begin{aligned}
& r_{\text {min }}=10 p c \cdot 10^{\frac{20+19.0}{5}} \approx 630 \mathrm{Mpc} \\
& r_{\text {max }}=10 p c \cdot 10^{\frac{20+19.6}{5}} \approx 832 \mathrm{Mpc}
\end{aligned}
$$

Problem 5

Hubble's law states that the velocity of a distant object is proportional to its distance: $v=H_{0} r$. The velocity can be measured from the shift of wavelength : $v=c \cdot\left(\lambda-\lambda_{0}\right) / \lambda_{0}$. Inserting and solving for r, we obtain

$$
r=c \frac{\lambda-\lambda_{0}}{\lambda_{0}} \cdot \frac{1}{H_{0}}
$$

Using that $H_{0} \approx 71 \mathrm{~km} / \mathrm{s} / M p c$, we find

$$
r=3 \cdot 10^{8} \frac{29.7-21.2}{21.2} \cdot \frac{1}{71 \cdot 10^{3}} 1 \cdot 10^{6} p c \approx 1.7 G p c
$$

