The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know

Partial solutions to problems: Part 3C

Exercise 3C.1

1. We use supplied formula for pp-chain:

$$\epsilon_{pp} \approx \epsilon_{0,pp} X_H^2 \rho T_6^4 \approx 0.001$$

where $\epsilon_{0,pp} = 1.08 \cdot 10^{-12}, \ X_H = 0.33, \ \rho = 1.5 \cdot 10^5$ and T = 15.7. Similarly,a

$$\epsilon_{cno} \approx 3.4 \cdot 10^{-4}$$

and

$$\epsilon_{3\alpha} \approx 0$$

as $0.157^{41} \approx 0$.

- 2. We see that $\epsilon_{pp}/\epsilon_{cno} \approx 3$, which is way off the 1% expectation. This answer is wrong because we assumed that the temperature is constant in the core, which is not true: the high temperatures are only evident in the center of the core. This means that most of the energy is created at lower temperatures, where the pp chain dominates. The 3α is practically non-existing.
- 3. With $T=13\cdot 10^6 K$, we obtain a ratio $\epsilon_{pp}/\epsilon_{cno}\approx 65$, which is more closer to reality (that is, pp dominates CNO by approx 1.5%).
- 4. At what temperature T is $\epsilon_{pp} = \epsilon_{CNO}$? We equate:

$$\epsilon_{0,pp} X_H^2 \rho T_6^4 = \epsilon_{0,CNO} X_H X_{CNO} \rho T_6^{20}$$

Solving for T_6 :

$$T = \left(\frac{\epsilon_{0,pp} X_H}{\epsilon_{0,CNO} X_{CNO}}\right)^{\frac{1}{16}} \approx 17$$

such that CNO dominates from 17 million K (assuming the temperature in the core is homogeneous).

5. The total energy L_{sun} emmitted from the sun must equal the total mass inside the core of the sun multiplied with the reaction rate:

$$L_{sun} = \frac{4}{3}\pi R^3 \cdot \rho \cdot \epsilon$$

Solving for R:

$$R = \left(\frac{3L_{sun}}{4\pi\rho\epsilon}\right)^{1/3} \approx 0.15R_{sun}$$

when the values have been inserted.

6. Using the same equation as in the previous question, we obtain that $R \approx 0.6R_{sun}$.