The following people have participated in creating these solutions:
Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger
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Partial solutions to problems: Part 3D

Exercise 3D.1

1. Full range given in following answer
2. Full range given in following answer

3. Using the HR-diagram (figure 1 in the lecture notes), the luminosity
of a GO star ranges between 0.8 and 60 Lg,,, but these numbers are
all approximate. In the same range, the absolute magnitude M would
be between 2 and 6.

4. Recall that it is possible to decide the distance r to a star from the
difference between apparent (m) and absolute (M) magnitude:

)

M—-—m= —510g10(ﬁpc

solving for r gives
m—M

r=10pc-10" 5

With an apparent magnitude m = 1, we find that the range of distance
for a GO star becomes

Fonin = 10pc - 105" = 1pe

Fmaw = 10pc - 1075 = 6pe

which isn’t very accurate.

Exercise 3D.2

1. The volume V of a sphere as function of radius r is given as V(r) =

%777’3. The total mass is the mass density times the volume, so

4
M(r) = gﬂ"l“sp

if we assume p to be constant.



2. The hydrostatic equation reads

dpP M(r) 4 9
dr =G r2 SWG’OT

where the M (r) from 13.3.1 was inserted. We start by fluffing around
with differentials:

AP _dPdr _dr dp
dr — dr dT  dr dT
The pressure is given as P = pkT'/(umy). Then
4P _dTdP _d0d (0T dT ok
dr  drdl  drdT \pmg

Insert this expression into the hydrostatic equation and obtain

_%/Lm[{

ar 4 UM

pr —ngpr 2 (0.1)
3. We now integrate this solution from 0 to 7. Letting

C = oM

k
equation 0.1 becomes

drT 4 .

- = -r

T

integrating with regards to r from 0 to R gives

4 R 2,
T(R)—Tc:—g(}p' ; r:—ngR

such that 5
To = gCPR2 + T(R)

4. Assuming the Sun to be spherical with a homogeneous (homogeneous
means that p(&) = po is constant) density, the total mass is expressed
as

4
M:V'p:§777"3‘p

solving for p

p=M ~1.4-10%kg/m?

47 R3
We now use this p for estimating the core temperature of the sun:

Te =T(R) + §R27erlmTH ~ 11.5 million K
where R = 700000km, &k the Boltzmann-constant, 4 = 1 (assuming
only protons populate the sun), T(R) = 0 as the surface temperature
is way lower than the core temperature, mg is the proton mass and
G the gravitational constant. The “real” temperature when accounting
for varying density p is ~ 15 million K. Pretty hot, that is.



5. The pp-chain dominates as the core temperature T < 20 million K.

6. We already saw that
3

AT R3

p=M
inserting into
2
To = g(J,)RQ + T(R)

we find 5 5 M
Tc = CR*M —
=3 R "R
7. The temperature in the core T¢ is proportional to
M
T il
c X R

so if the temperature increases by a factor of 10, then for a constant
mass M the radius has to be decreased by a factor 10.

8. This is a nice exercise, as one has to utilize all previous knowledge from
this exercise. It is basically just a repetition of things already done,
but with a different pressure P. Return to the fact that

ap GM  dPdT

ar - P T AT ar
where now P = %aT4 is pure good old relativistic radiation pressure.
Then

(0.2)

dP 4
= 73
dr ~ 3"
inserting this back into 0.2 to obtain
dar  GM (dP\™'  GM 3
ar — P2 \ar = TP  ars

Separating the r and T" on each side, we obtain a separable differential
equation:

31 G
T3dT = —/)G]\44——2 = —Lrder
ar a
4
3

T(R) R
/ T3dT = —p2ﬁ rdr

where we used that the mass M = %7r3p. Integrating both sides gives

Tc a Jo
such that . o
(14 —T(R 4) _ 27G 5o
(T T(R)Y) = 227
Solving for T alone gives
2rG
T4 = T(R)* + p* "= R?

Take the 4th root on both sides, and Voila! We’re done.



Exercise 3D.3

1. We are now given a variable (and much more realistic) mass density of
a star which is dependent on r and the radius R:

Pc
2
1+ (%)
The mass inside a spherical shell of radius r is given as M = [ p-dV,
where the volume element dV' = 4mr2dr. Then

p(r) =

T r 2
M(r) :/0 p(r)47rr2dr:47r/0 LS A—

2
1+ (%)
Substituting = r/R gives r = xR and dr = Rdz, such that

T prZRQ 2

M(r) = 477/0 2 Rdx = 47TpcR3/0 dx

1+ a2
Using the fact that

x 332
/ 2al:c =y — arctanzx
0 1"‘.’13

the mass is expressed as

M (r) = 4npc R? (% — arctan %)

2. The hydrostatic equilibrium is expressed as

P M
=) S = —n—LE

T

We use the ideal gas law P = p(r)kT(r)/(wmy), and take the deriva-
tive with respect to r. Then

o)

r r\ G
2pcR3 (E — arctan E) 2 (0.3)

Inserting this expression into 0.3 and move the constants p, mgy and k
to the right hand side yields

o) =)
R

*puh*.



3. This is again a separable differential equation, so we separate the r’s
and the T"s on each side:

T 2
p(r)T(r) — pclc = / 'WZH a7 e 2R3 (% — arctan %) %dr
0 14+ T r
(%)

Ni-ice. Now move the constants outside the integral:

p(r)T(r)—pclc = — (:“ kH 2 dm R3G) /Or 11(>2 (%—arctan %) %dr
+ (3

and use the same substitution as in exercise 13.4.1:

1
(ac —arctan m) —2dac
T

m xX
p(r)T(r)—pcTc = —(MTH,OQCALWRQG) /0 52

where one of the R’s in the denominator disappeared due to the change
of variable. Including the 1/x2, we split the integral into two parts:

o) =pcTe = (M7 ptaniG) [ (e o
(0.4)

4. We magically use that

/x L ot 11(2+1)
————dr=lnz—-In
0 x(xQ—i-l):U T

and
r t 1 1 1
/0 %dm = —i(arctan z)? — - arctanz + Inx — 5 In (2% 4+ 1)

Inserting these two fellows into equation 0.4, the logarithmic parts
luckily cancel (as Ing_,ox = —oo!). Then:

1 R
p(r)T(r)—pclc = — ('MZH s RQG) <§(arctan(%))2+? arctan %—1)

The extra —1 has a curious origin: in the limit when z — oo, then
by L’hopital’s rule, lim,_,o arctan(z)/x = 1. Rearranging terms and
dividing by pc results in

T = @T(T)—i- <WTHPC47TR2G) <% ( arctan(i

2 R r
s R)) —i—? arctan §_1>



inserting for p(r) gives

Tc = ¥T(T)+ (WTH,OCZLWRQG) (% ( arctan(i))Q—i—g arctan %—1)

14 (5) R

which is the end result.

(0.5)

. What happens when the arctan’s r o« £ — 00? From basic arithmetic’s,
we know that lim,_, /s tan(z) = oo, so lim, o arctanz = 7/2. In-
serting this into equation (0.5) one obtains

to- (2 eteri) (35 1)

where the 1st and 3rd terms disappear as lim, o 1/(1 + 22) = 0.

. From

plr) = —L4

1+ (%)
it is easy to see that the density p(r) = %pc when 7 = R. We now
need to decide what this R is. The core stops where r = 0.2Rg,,, and

at this point p(r) = {5pc. Then

where R is the point that the density is halved. Inverting both sides
and removing pc yields

O-QRsun 2
10=1
i (22heam)
such that 0.9
9 — . sSUN

Vo R
or

0.2Rsun

R=

~ 0.067Rsyn

. We now use the approximation in the core:
HIMH 2 L/mo
o= (o) ({57 1)
c i PoAn BTG 2(2)
where R was given in 13.4.6. Solve for pc:
Tck

— ~29.-10°k
pmpgGR247m(72/8 — 1) 9

pc

or 200 times the mean density (assuming 1400kg/m?), about a factor
two wrong. Not bad!



Exercise 3D.4
1. We use that M o T2, that is,
M = CT?

where we obtain C' by using what we know about the sun: C =
M/T2 ~ 6 -10%?. The small star with M = 0.5M,, has tempera-

ture
T = /0.5 % M/C’ ~ 4000K

while the larger star M = 5Mg,,

T = /5% M/C ~ 13000K

and the largest star M = 40Myn
T = /40« M /C =~ 36000K

2. We use Wien’s displacement law T' = 2.9-10pm K /\ = 14400K . From
this, M = CT? = 6.2Myy,.

Exercise 3D.5

We use that the radiation pressure is given as P ~ T such that the hydro-
static equation reads

dp _dpdT ;T M?
— = ——xT°= xgp X —=
drR —dTdrR ™" R ™TI %R
in other words,
M2
using the fact (equation 2 in the lecture notes) that
R4T4
L =M
S TM
when equation (0.6) inserted
Exercise 3D.8
1. The hydrostatic equation says that
dp M?
dar TP RS



but assuming that P o 7™ for any n, we find that

such that 2
P x R
. For an ideal gas, ,
P pl' = R3T = %
such that ",
T x b

. The efficiency of the pp-chain is

epp = €0ppXpTe = 0.005

while
econo = co.onoXuXonopTe® ~ 0.009

so the CNO-cycle dominated this star

. For the triple-a process to occur, we need a helium-abundant core,
that is, X, = 1. In this case, we find

Ts

€03ap” | — . XX, 18%0
03aP 100 = €EQCNOXHACNOP

where we used that Ty = T/100. Solving for Tg yields

T — (GOCNOXHXCNO
6 prm—

1/41
-10041-1820) ~ 131 million K (0.7)
€03a P

. We use that M .

Rx —=C-—

T T
for M constant when the core is contracting and C is a constant.
We determine C' by using what we know about the star on the main
sequence (R = 0.2Rgun, Tsun = 18MK), so C = RT. For a core

temperature to reach 131 million K, the radius of the core needs to be

o 1



6. A more suitable density can be found as such

pbefore(0-2Rsun)3 = Pafter (00275Rsun)3

such that
0.2

Pafter = pbefore(m)3 = 384pbefore

Using equation (0.7) we obtain a new core temperature of T' ~ 114
million K.



