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Partial solutions to problems: Part 3D

Exercise 3D.1

1. Full range given in following answer

2. Full range given in following answer

3. Using the HR-diagram (figure 1 in the lecture notes), the luminosity
of a G0 star ranges between 0.8 and 60 Lsun, but these numbers are
all approximate. In the same range, the absolute magnitude M would
be between 2 and 6.

4. Recall that it is possible to decide the distance r to a star from the
difference between apparent (m) and absolute (M) magnitude:

M −m = −5 log10(
r

10pc
)

solving for r gives
r = 10pc · 10

m−M
5

With an apparent magnitude m = 1, we find that the range of distance
for a G0 star becomes

rmin = 10pc · 10
1−6
5 = 1pc

rmax = 10pc · 10
1−2
5 = 6pc

which isn’t very accurate.

Exercise 3D.2

1. The volume V of a sphere as function of radius r is given as V (r) =
4
3πr

3. The total mass is the mass density times the volume, so

M(r) =
4

3
πr3ρ

if we assume ρ to be constant.
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2. The hydrostatic equation reads

dP

dr
= −ρGM(r)

r2
= −4

3
πGρ2r

where the M(r) from 13.3.1 was inserted. We start by fluffing around
with differentials:

dP

dr
=
dP

dr

dT

dT
=
dT

dr

dP

dT
The pressure is given as P = ρkT/(µmH). Then

dP

dr
=
dT

dr

dP

dT
=
dT

dr

d

dT

( ρkT
µmH

)
=
dT

dr

ρk

µmH

Insert this expression into the hydrostatic equation and obtain

dT

dr
= −4

3
πGρr

µmH

k
(0.1)

3. We now integrate this solution from 0 to r. Letting

C = πG
µmH

k

equation 0.1 becomes
dT

dr
= −4

3
Cρ · r

integrating with regards to r from 0 to R gives

T (R)− TC = −4

3
Cρ ·

∫ R

0
r = −2

3
CρR2

such that
TC =

2

3
CρR2 + T (R)

4. Assuming the Sun to be spherical with a homogeneous (homogeneous
means that ρ(~x) ≡ ρ0 is constant) density, the total mass is expressed
as

M = V · ρ =
4

3
πr3 · ρ

solving for ρ

ρ =M
3

4πR3
≈ 1.4 · 103kg/m3

We now use this ρ for estimating the core temperature of the sun:

TC = T (R) +
2

3
R2πGρ

µmH

k
≈ 11.5millionK

where R = 700 000km, k the Boltzmann-constant, µ = 1 (assuming
only protons populate the sun), T (R) ≈ 0 as the surface temperature
is way lower than the core temperature, mH is the proton mass and
G the gravitational constant. The “real” temperature when accounting
for varying density ρ is ∼ 15 million K. Pretty hot, that is.
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5. The pp-chain dominates as the core temperature TC < 20 million K.

6. We already saw that

ρ =M
3

4πR3

inserting into

TC =
2

3
CρR2 + T (R)

we find
TC =

2

3
CR2M

3

4πR3
∝ M

R

7. The temperature in the core TC is proportional to

TC ∝
M

R

so if the temperature increases by a factor of 10, then for a constant
mass M the radius has to be decreased by a factor 10.

8. This is a nice exercise, as one has to utilize all previous knowledge from
this exercise. It is basically just a repetition of things already done,
but with a different pressure P. Return to the fact that

dP

dr
= −ρGM

r2
=
dP

dT

dT

dr
(0.2)

where now P = 1
3aT

4 is pure good old relativistic radiation pressure.
Then

dP

dT
=

4

3
aT 3

inserting this back into 0.2 to obtain

dT

dr
= −ρGM

r2

(
dP

dT

)−1
= −ρGM

r2
3

4aT 3

Separating the r and T on each side, we obtain a separable differential
equation:

T 3dT = −ρGM 3

4a

1

r2
= −πG

a
rρ2dr

where we used that the mass M = 4
3πr

3ρ. Integrating both sides gives∫ T (R)

TC

T 3dT = −ρ2πG
a

∫ R

0
rdr

such that
1

4

(
T 4
C − T (R)4

)
= ρ2

πG

2a
R2

Solving for TC alone gives

T 4
C = T (R)4 + ρ2

2πG

a
R2

Take the 4th root on both sides, and Voilà! We’re done.
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Exercise 3D.3

1. We are now given a variable (and much more realistic) mass density of
a star which is dependent on r and the radius R:

ρ(r) =
ρC

1 +
(
r
R

)2
The mass inside a spherical shell of radius r is given as M =

∫
ρ · dV ,

where the volume element dV = 4πr2dr. Then

M(r) =

∫ r

0
ρ(r)4πr2dr = 4π

∫ r

0

ρCr
2

1 +
(
r
R

)2dr
Substituting x = r/R gives r = xR and dr = Rdx, such that

M(r) = 4π

∫ r

0

ρCx
2R2

1 + x2
Rdx = 4πρCR

3

∫ x

0

x2

1 + x2
dx

Using the fact that ∫ x

0

x2

1 + x2
dx = x− arctanx

the mass is expressed as

M(r) = 4πρCR
3
( r
R
− arctan

r

R

)
2. The hydrostatic equilibrium is expressed as

dP

dr
= −ρ(r)GM

r2
= −4π ρC

1 +
(
r
R

)2 ρCR3
( r
R
− arctan

r

R

)G
r2

(0.3)

We use the ideal gas law P = ρ(r)kT (r)/(µmH), and take the deriva-
tive with respect to r. Then

dP

dr
=

d

dr

(T (r)ρ(r)k
µmh

)
Inserting this expression into 0.3 and move the constants µ,mH and k
to the right hand side yields

d

dr

(
ρ(r)T (r)

)
= −µmH

k
4π

ρ2C

1 +
(
r
R

)2R3
( r
R
− arctan

r

R

)G
r2

*puh*.

4



3. This is again a separable differential equation, so we separate the r′s
and the T ′s on each side:

ρ(r)T (r)− ρCTC = −
∫ r

0

µmH

k
4π

ρ2C

1 +
(
r
R

)2R3
( r
R
− arctan

r

R

)G
r2
dr

Ni-ice. Now move the constants outside the integral:

ρ(r)T (r)−ρCTC = −
(µmH

k
ρ2C4πR

3G
)∫ r

0

1

1 +
(
r
R

)2( rR−arctan r

R

) 1

r2
dr

and use the same substitution as in exercise 13.4.1:

ρ(r)T (r)−ρCTC = −
(µmH

k
ρ2C4πR

2G
)∫ x

0

1

1 + x2

(
x−arctanx

) 1

x2
dx

where one of the R’s in the denominator disappeared due to the change
of variable. Including the 1/x2, we split the integral into two parts:

ρ(r)T (r)−ρCTC = −
(µmH

k
ρ2C4πR

2G
)∫ x

0

( 1

(1 + x2)x
− arctanx

(1 + x2)x2

)
dx

(0.4)

4. We magically use that∫ x

0

1

x(x2 + 1)
dx = lnx− 1

2
ln (x2 + 1)

and∫ x

0

arctanx

x2(x2 + 1)
dx = −1

2
(arctanx)2 − 1

x
arctanx+ lnx− 1

2
ln (x2 + 1)

Inserting these two fellows into equation 0.4, the logarithmic parts
luckily cancel (as lnx→0 x = −∞!). Then:

ρ(r)T (r)−ρCTC = −
(µmH

k
ρ2C4πR

2G
)(1

2

(
arctan(

r

R
)
)2
+
R

r
arctan

r

R
−1
)

The extra −1 has a curious origin: in the limit when x → ∞, then
by L’hôpital’s rule, limx→0 arctan(x)/x = 1. Rearranging terms and
dividing by ρC results in

TC =
ρ(r)

ρC
T (r)+

(µmH

k
ρC4πR

2G
)(1

2

(
arctan(

r

R
)
)2
+
R

r
arctan

r

R
−1
)
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inserting for ρ(r) gives

TC =
1

1 +
(
r
R

)2T (r)+(µmH

k
ρC4πR

2G
)(1

2

(
arctan(

r

R
)
)2
+
R

r
arctan

r

R
−1
)

(0.5)

which is the end result.

5. What happens when the arctan’s r ∝ x→∞? From basic arithmetic’s,
we know that limx→π/2 tan(x) = ∞, so limx→∞ arctanx = π/2. In-
serting this into equation (0.5) one obtains

TC =
(µmH

k
ρC4πR

2G
)(1

2

(π
2
)2 − 1

)
where the 1st and 3rd terms disappear as limx→∞ 1/(1 + x2) = 0.

6. From
ρ(r) =

ρC

1 +
(
r
R

)2
it is easy to see that the density ρ(r) = 1

2ρC when r = R. We now
need to decide what this R is. The core stops where r = 0.2Rsun, and
at this point ρ(r) = 1

10ρC . Then

1

10
ρC =

ρC

1 +
(
0.2Rsun

R

)2
where R is the point that the density is halved. Inverting both sides
and removing ρC yields

10 = 1 +
(0.2Rsun

R

)2
such that √

9 =
0.2Rsun
R

or
R =

0.2Rsun
3

≈ 0.067Rsun

7. We now use the approximation in the core:

TC =
(µmH

k
ρC4πR

2G
)(1

2

(π
2
)2 − 1

)
where R was given in 13.4.6. Solve for ρC :

ρC =
TCk

µmHGR24π(π2/8− 1)
≈ 2.9 · 105kg

or 200 times the mean density (assuming 1400kg/m3), about a factor
two wrong. Not bad!
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Exercise 3D.4

1. We use that M ∝ T 2, that is,

M = CT 2

where we obtain C by using what we know about the sun: C =
M/T 2 ≈ 6 · 1022. The small star with M = 0.5Msun has tempera-
ture

T =
√
0.5 ∗M/C ≈ 4000K

while the larger star M = 5Msun

T =
√
5 ∗M/C ≈ 13000K

and the largest star M = 40Msun

T =
√
40 ∗M/C ≈ 36000K

2. We use Wien’s displacement law T = 2.9·106nmK/λ = 14400K. From
this, M = CT 2 = 6.2Msun.

Exercise 3D.5

We use that the radiation pressure is given as P ∼ T 4 such that the hydro-
static equation reads

dP

dR
=
dP

dT

dT

dR
∝ T 3 T

R
∝ gρ ∝ M2

R5

in other words,

T 4 ∝ M2

R4
(0.6)

using the fact (equation 2 in the lecture notes) that

L ∝ R4T 4

M
=M

when equation (0.6) inserted

Exercise 3D.8

1. The hydrostatic equation says that

dP

dr
∝ gρ ∝ M2

R5
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but assuming that P ∝ rn for any n, we find that

dP

dr
∝ Rn−1 = Rn

R
∝ P

R

such that

P ∝ M2

R4

2. For an ideal gas,

P ∝ ρT =
M

R3
T =

M2

R4

such that
T ∝ M

R

3. The efficiency of the pp-chain is

εpp = ε0,ppX
2
HρT

2
6 ≈ 0.005

while
εCNO = ε0,CNOXHXCNOρT

20
6 ≈ 0.009

so the CNO-cycle dominated this star

4. For the triple-α process to occur, we need a helium-abundant core,
that is, Xhe = 1. In this case, we find

ε03αρ
2
( T6
100

)41
= ε0CNOXHXCNOρ18

20

where we used that T8 = T6/100. Solving for T6 yields

T6 =
(ε0CNOXHXCNO

ε03αρ
· 10041 · 1820

)1/41
≈ 131millionK (0.7)

5. We use that
R ∝ M

T
= C · 1

T

for M constant when the core is contracting and C is a constant.
We determine C by using what we know about the star on the main
sequence (R = 0.2Rsun, Tsun = 18MK), so C = RT . For a core
temperature to reach 131 million K, the radius of the core needs to be

R =
C

T
= 0.2Rsun18

1

131
= 0.0275Rsun
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6. A more suitable density can be found as such

ρbefore(0.2Rsun)
3 = ρafter(0.0275Rsun)

3

such that
ρafter = ρbefore(

0.2

0.0275
)3 = 384ρbefore

Using equation (0.7) we obtain a new core temperature of T ≈ 114
million K.
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