The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know.

Partial solutions to problems: Part 3D

Exercise 3D. 1

1. Full range given in following answer
2. Full range given in following answer
3. Using the HR-diagram (figure 1 in the lecture notes), the luminosity of a $G 0$ star ranges between 0.8 and $60 L_{\text {sun }}$, but these numbers are all approximate. In the same range, the absolute magnitude M would be between 2 and 6 .
4. Recall that it is possible to decide the distance r to a star from the difference between apparent (m) and absolute (M) magnitude:

$$
M-m=-5 \log _{10}\left(\frac{r}{10 p c}\right)
$$

solving for r gives

$$
r=10 p c \cdot 10^{\frac{m-M}{5}}
$$

With an apparent magnitude $m=1$, we find that the range of distance for a $G 0$ star becomes

$$
\begin{aligned}
& r_{\text {min }}=10 p c \cdot 10^{\frac{1-6}{5}}=1 p c \\
& r_{\text {max }}=10 p c \cdot 10^{\frac{1-2}{5}}=6 p c
\end{aligned}
$$

which isn't very accurate.

Exercise 3D. 2

1. The volume V of a sphere as function of radius r is given as $V(r)=$ $\frac{4}{3} \pi r^{3}$. The total mass is the mass density times the volume, so

$$
M(r)=\frac{4}{3} \pi r^{3} \rho
$$

if we assume ρ to be constant.
2. The hydrostatic equation reads

$$
\frac{d P}{d r}=-\rho G \frac{M(r)}{r^{2}}=-\frac{4}{3} \pi G \rho^{2} r
$$

where the $M(r)$ from 13.3 .1 was inserted. We start by fluffing around with differentials:

$$
\frac{d P}{d r}=\frac{d P}{d r} \frac{d T}{d T}=\frac{d T}{d r} \frac{d P}{d T}
$$

The pressure is given as $P=\rho k T /\left(\mu m_{H}\right)$. Then

$$
\frac{d P}{d r}=\frac{d T}{d r} \frac{d P}{d T}=\frac{d T}{d r} \frac{d}{d T}\left(\frac{\rho k T}{\mu m_{H}}\right)=\frac{d T}{d r} \frac{\rho k}{\mu m_{H}}
$$

Insert this expression into the hydrostatic equation and obtain

$$
\begin{equation*}
\frac{d T}{d r}=-\frac{4}{3} \pi G \rho r \frac{\mu m_{H}}{k} \tag{0.1}
\end{equation*}
$$

3. We now integrate this solution from 0 to r. Letting

$$
C=\pi G \frac{\mu m_{H}}{k}
$$

equation 0.1 becomes

$$
\frac{d T}{d r}=-\frac{4}{3} C \rho \cdot r
$$

integrating with regards to r from 0 to R gives

$$
T(R)-T_{C}=-\frac{4}{3} C \rho \cdot \int_{0}^{R} r=-\frac{2}{3} C \rho R^{2}
$$

such that

$$
T_{C}=\frac{2}{3} C \rho R^{2}+T(R)
$$

4. Assuming the Sun to be spherical with a homogeneous (homogeneous means that $\rho(\vec{x}) \equiv \rho_{0}$ is constant) density, the total mass is expressed as

$$
M=V \cdot \rho=\frac{4}{3} \pi r^{3} \cdot \rho
$$

solving for ρ

$$
\rho=M \frac{3}{4 \pi R^{3}} \approx 1.4 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
$$

We now use this ρ for estimating the core temperature of the sun:

$$
T_{C}=T(R)+\frac{2}{3} R^{2} \pi G \rho \frac{\mu m_{H}}{k} \approx 11.5 \text { million } \mathrm{K}
$$

where $R=700000 \mathrm{~km}, k$ the Boltzmann-constant, $\mu=1$ (assuming only protons populate the sun), $T(R) \approx 0$ as the surface temperature is way lower than the core temperature, m_{H} is the proton mass and G the gravitational constant. The "real" temperature when accounting for varying density ρ is ~ 15 million K. Pretty hot, that is.
5. The $p p$-chain dominates as the core temperature $T_{C}<20$ million K.
6. We already saw that

$$
\rho=M \frac{3}{4 \pi R^{3}}
$$

inserting into

$$
T_{C}=\frac{2}{3} C \rho R^{2}+T(R)
$$

we find

$$
T_{C}=\frac{2}{3} C R^{2} M \frac{3}{4 \pi R^{3}} \propto \frac{M}{R}
$$

7. The temperature in the core T_{C} is proportional to

$$
T_{C} \propto \frac{M}{R}
$$

so if the temperature increases by a factor of 10 , then for a constant mass M the radius has to be decreased by a factor 10 .
8. This is a nice exercise, as one has to utilize all previous knowledge from this exercise. It is basically just a repetition of things already done, but with a different pressure P . Return to the fact that

$$
\begin{equation*}
\frac{d P}{d r}=-\rho \frac{G M}{r^{2}}=\frac{d P}{d T} \frac{d T}{d r} \tag{0.2}
\end{equation*}
$$

where now $P=\frac{1}{3} a T^{4}$ is pure good old relativistic radiation pressure. Then

$$
\frac{d P}{d T}=\frac{4}{3} a T^{3}
$$

inserting this back into 0.2 to obtain

$$
\frac{d T}{d r}=-\rho \frac{G M}{r^{2}}\left(\frac{d P}{d T}\right)^{-1}=-\rho \frac{G M}{r^{2}} \frac{3}{4 a T^{3}}
$$

Separating the r and T on each side, we obtain a separable differential equation:

$$
T^{3} d T=-\rho G M \frac{3}{4 a} \frac{1}{r^{2}}=-\frac{\pi G}{a} r \rho^{2} d r
$$

where we used that the mass $M=\frac{4}{3} \pi r^{3} \rho$. Integrating both sides gives

$$
\int_{T_{C}}^{T(R)} T^{3} d T=-\rho^{2} \frac{\pi G}{a} \int_{0}^{R} r d r
$$

such that

$$
\frac{1}{4}\left(T_{C}^{4}-T(R)^{4}\right)=\rho^{2} \frac{\pi G}{2 a} R^{2}
$$

Solving for T_{C} alone gives

$$
T_{C}^{4}=T(R)^{4}+\rho^{2} \frac{2 \pi G}{a} R^{2}
$$

Take the 4th root on both sides, and Voilà! We're done.

Exercise 3D. 3

1. We are now given a variable (and much more realistic) mass density of a star which is dependent on r and the radius R :

$$
\rho(r)=\frac{\rho_{C}}{1+\left(\frac{r}{R}\right)^{2}}
$$

The mass inside a spherical shell of radius r is given as $M=\int \rho \cdot d V$, where the volume element $d V=4 \pi r^{2} d r$. Then

$$
M(r)=\int_{0}^{r} \rho(r) 4 \pi r^{2} d r=4 \pi \int_{0}^{r} \frac{\rho_{C} r^{2}}{1+\left(\frac{r}{R}\right)^{2}} d r
$$

Substituting $x=r / R$ gives $r=x R$ and $d r=R d x$, such that

$$
M(r)=4 \pi \int_{0}^{r} \frac{\rho_{C} x^{2} R^{2}}{1+x^{2}} R d x=4 \pi \rho_{C} R^{3} \int_{0}^{x} \frac{x^{2}}{1+x^{2}} d x
$$

Using the fact that

$$
\int_{0}^{x} \frac{x^{2}}{1+x^{2}} d x=x-\arctan x
$$

the mass is expressed as

$$
M(r)=4 \pi \rho_{C} R^{3}\left(\frac{r}{R}-\arctan \frac{r}{R}\right)
$$

2. The hydrostatic equilibrium is expressed as

$$
\begin{equation*}
\frac{d P}{d r}=-\rho(r) \frac{G M}{r^{2}}=-4 \pi \frac{\rho_{C}}{1+\left(\frac{r}{R}\right)^{2}} \rho_{C} R^{3}\left(\frac{r}{R}-\arctan \frac{r}{R}\right) \frac{G}{r^{2}} \tag{0.3}
\end{equation*}
$$

We use the ideal gas law $P=\rho(r) k T(r) /\left(\mu m_{H}\right)$, and take the derivative with respect to r. Then

$$
\frac{d P}{d r}=\frac{d}{d r}\left(\frac{T(r) \rho(r) k}{\mu m_{h}}\right)
$$

Inserting this expression into 0.3 and move the constants μ, m_{H} and k to the right hand side yields

$$
\frac{d}{d r}(\rho(r) T(r))=-\frac{\mu m_{H}}{k} 4 \pi \frac{\rho_{C}^{2}}{1+\left(\frac{r}{R}\right)^{2}} R^{3}\left(\frac{r}{R}-\arctan \frac{r}{R}\right) \frac{G}{r^{2}}
$$

puh.
3. This is again a separable differential equation, so we separate the $r^{\prime} s$ and the $T^{\prime} s$ on each side:

$$
\rho(r) T(r)-\rho_{C} T_{C}=-\int_{0}^{r} \frac{\mu m_{H}}{k} 4 \pi \frac{\rho_{C}^{2}}{1+\left(\frac{r}{R}\right)^{2}} R^{3}\left(\frac{r}{R}-\arctan \frac{r}{R}\right) \frac{G}{r^{2}} d r
$$

Ni-ice. Now move the constants outside the integral:
$\rho(r) T(r)-\rho_{C} T_{C}=-\left(\frac{\mu m_{H}}{k} \rho_{C}^{2} 4 \pi R^{3} G\right) \int_{0}^{r} \frac{1}{1+\left(\frac{r}{R}\right)^{2}}\left(\frac{r}{R}-\arctan \frac{r}{R}\right) \frac{1}{r^{2}} d r$
and use the same substitution as in exercise 13.4.1:
$\rho(r) T(r)-\rho_{C} T_{C}=-\left(\frac{\mu m_{H}}{k} \rho_{C}^{2} 4 \pi R^{2} G\right) \int_{0}^{x} \frac{1}{1+x^{2}}(x-\arctan x) \frac{1}{x^{2}} d x$
where one of the R 's in the denominator disappeared due to the change of variable. Including the $1 / x^{2}$, we split the integral into two parts:
$\rho(r) T(r)-\rho_{C} T_{C}=-\left(\frac{\mu m_{H}}{k} \rho_{C}^{2} 4 \pi R^{2} G\right) \int_{0}^{x}\left(\frac{1}{\left(1+x^{2}\right) x}-\frac{\arctan x}{\left(1+x^{2}\right) x^{2}}\right) d x$
4. We magically use that

$$
\int_{0}^{x} \frac{1}{x\left(x^{2}+1\right)} d x=\ln x-\frac{1}{2} \ln \left(x^{2}+1\right)
$$

and

$$
\int_{0}^{x} \frac{\arctan x}{x^{2}\left(x^{2}+1\right)} d x=-\frac{1}{2}(\arctan x)^{2}-\frac{1}{x} \arctan x+\ln x-\frac{1}{2} \ln \left(x^{2}+1\right)
$$

Inserting these two fellows into equation 0.4, the logarithmic parts luckily cancel (as $\ln _{x \rightarrow 0} x=-\infty!$). Then:

$$
\rho(r) T(r)-\rho_{C} T_{C}=-\left(\frac{\mu m_{H}}{k} \rho_{C}^{2} 4 \pi R^{2} G\right)\left(\frac{1}{2}\left(\arctan \left(\frac{r}{R}\right)\right)^{2}+\frac{R}{r} \arctan \frac{r}{R}-1\right)
$$

The extra -1 has a curious origin: in the limit when $x \rightarrow \infty$, then by L'hôpital's rule, $\lim _{x \rightarrow 0} \arctan (x) / x=1$. Rearranging terms and dividing by ρ_{C} results in
$T_{C}=\frac{\rho(r)}{\rho_{C}} T(r)+\left(\frac{\mu m_{H}}{k} \rho_{C} 4 \pi R^{2} G\right)\left(\frac{1}{2}\left(\arctan \left(\frac{r}{R}\right)\right)^{2}+\frac{R}{r} \arctan \frac{r}{R}-1\right)$
inserting for $\rho(r)$ gives
$T_{C}=\frac{1}{1+\left(\frac{r}{R}\right)^{2}} T(r)+\left(\frac{\mu m_{H}}{k} \rho_{C} 4 \pi R^{2} G\right)\left(\frac{1}{2}\left(\arctan \left(\frac{r}{R}\right)\right)^{2}+\frac{R}{r} \arctan \frac{r}{R}-1\right)$
which is the end result.
5. What happens when the arctan's $r \propto x \rightarrow \infty$? From basic arithmetic's, we know that $\lim _{x \rightarrow \pi / 2} \tan (x)=\infty$, so $\lim _{x \rightarrow \infty} \arctan x=\pi / 2$. Inserting this into equation (0.5) one obtains

$$
T_{C}=\left(\frac{\mu m_{H}}{k} \rho_{C} 4 \pi R^{2} G\right)\left(\frac{1}{2}\left(\frac{\pi}{2}\right)^{2}-1\right)
$$

where the 1st and 3rd terms disappear as $\lim _{x \rightarrow \infty} 1 /\left(1+x^{2}\right)=0$.
6. From

$$
\rho(r)=\frac{\rho_{C}}{1+\left(\frac{r}{R}\right)^{2}}
$$

it is easy to see that the density $\rho(r)=\frac{1}{2} \rho_{C}$ when $r=R$. We now need to decide what this R is. The core stops where $r=0.2 R_{\text {sun }}$, and at this point $\rho(r)=\frac{1}{10} \rho_{C}$. Then

$$
\frac{1}{10} \rho_{C}=\frac{\rho_{C}}{1+\left(\frac{0.2 R_{\text {sun }}}{R}\right)^{2}}
$$

where R is the point that the density is halved. Inverting both sides and removing ρ_{C} yields

$$
10=1+\left(\frac{0.2 R_{\text {sun }}}{R}\right)^{2}
$$

such that

$$
\sqrt{9}=\frac{0.2 R_{\text {sun }}}{R}
$$

or

$$
R=\frac{0.2 R_{\text {sun }}}{3} \approx 0.067 R_{\text {sun }}
$$

7. We now use the approximation in the core:

$$
T_{C}=\left(\frac{\mu m_{H}}{k} \rho_{C} 4 \pi R^{2} G\right)\left(\frac{1}{2}\left(\frac{\pi}{2}\right)^{2}-1\right)
$$

where R was given in 13.4.6. Solve for ρ_{C} :

$$
\rho_{C}=\frac{T_{C} k}{\mu m_{H} G R^{2} 4 \pi\left(\pi^{2} / 8-1\right)} \approx 2.9 \cdot 10^{5} \mathrm{~kg}
$$

or 200 times the mean density (assuming $1400 \mathrm{~kg} / \mathrm{m}^{3}$), about a factor two wrong. Not bad!

Exercise 3D. 4

1. We use that $M \propto T^{2}$, that is,

$$
M=C T^{2}
$$

where we obtain C by using what we know about the sun: $C=$ $M / T^{2} \approx 6 \cdot 10^{22}$. The small star with $M=0.5 M_{\text {sun }}$ has temperature

$$
T=\sqrt{0.5 * M / C} \approx 4000 K
$$

while the larger star $M=5 M_{\text {sun }}$

$$
T=\sqrt{5 * M / C} \approx 13000 K
$$

and the largest star $M=40 M_{\text {sun }}$

$$
T=\sqrt{40 * M / C} \approx 36000 K
$$

2. We use Wien's displacement law $T=2.9 \cdot 10^{6} n m K / \lambda=14400 K$. From this, $M=C T^{2}=6.2 M_{\text {sun }}$.

Exercise 3D. 5

We use that the radiation pressure is given as $P \sim T^{4}$ such that the hydrostatic equation reads

$$
\frac{d P}{d R}=\frac{d P}{d T} \frac{d T}{d R} \propto T^{3} \frac{T}{R} \propto g \rho \propto \frac{M^{2}}{R^{5}}
$$

in other words,

$$
\begin{equation*}
T^{4} \propto \frac{M^{2}}{R^{4}} \tag{0.6}
\end{equation*}
$$

using the fact (equation 2 in the lecture notes) that

$$
L \propto \frac{R^{4} T^{4}}{M}=M
$$

when equation (0.6) inserted

Exercise 3D. 8

1. The hydrostatic equation says that

$$
\frac{d P}{d r} \propto g \rho \propto \frac{M^{2}}{R^{5}}
$$

but assuming that $P \propto r^{n}$ for any n, we find that

$$
\frac{d P}{d r} \propto R^{n-1}=\frac{R^{n}}{R} \propto \frac{P}{R}
$$

such that

$$
P \propto \frac{M^{2}}{R^{4}}
$$

2. For an ideal gas,

$$
P \propto \rho T=\frac{M}{R^{3}} T=\frac{M^{2}}{R^{4}}
$$

such that

$$
T \propto \frac{M}{R}
$$

3. The efficiency of the $p p$-chain is

$$
\epsilon_{p p}=\epsilon_{0, p p} X_{H}^{2} \rho T_{6}^{2} \approx 0.005
$$

while

$$
\epsilon_{C N O}=\epsilon_{0, C N O} X_{H} X_{C N O} \rho T_{6}^{20} \approx 0.009
$$

so the CNO-cycle dominated this star
4. For the triple- α process to occur, we need a helium-abundant core, that is, $X_{h e}=1$. In this case, we find

$$
\epsilon_{03 \alpha} \rho^{2}\left(\frac{T_{6}}{100}\right)^{41}=\epsilon_{0 C N O} X_{H} X_{C N O} \rho 18^{20}
$$

where we used that $T_{8}=T_{6} / 100$. Solving for T_{6} yields

$$
\begin{equation*}
T_{6}=\left(\frac{\epsilon_{0 C N O} X_{H} X_{C N O}}{\epsilon_{03 \alpha} \rho} \cdot 100^{41} \cdot 18^{20}\right)^{1 / 41} \approx 131 \text { million } \mathrm{K} \tag{0.7}
\end{equation*}
$$

5. We use that

$$
R \propto \frac{M}{T}=C \cdot \frac{1}{T}
$$

for M constant when the core is contracting and C is a constant. We determine C by using what we know about the star on the main sequence $\left(R=0.2 R_{\text {sun }}, T_{\text {sun }}=18 M K\right)$, so $C=R T$. For a core temperature to reach 131 million K , the radius of the core needs to be

$$
R=\frac{C}{T}=0.2 R_{\text {sun }} 18 \frac{1}{131}=0.0275 R_{\text {sun }}
$$

6. A more suitable density can be found as such

$$
\rho_{\text {before }}\left(0.2 R_{\text {sun }}\right)^{3}=\rho_{\text {after }}\left(0.0275 R_{\text {sun }}\right)^{3}
$$

such that

$$
\rho_{a f t e r}=\rho_{\text {before }}\left(\frac{0.2}{0.0275}\right)^{3}=384 \rho_{\text {before }}
$$

Using equation (0.7) we obtain a new core temperature of $T \approx 114$ million K .

