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Chapter 1

The Robertson-Walker line

element

1.1 What is cosmology and why should you care?

Congratulations on choosing to study cosmology! You probably had some
ideas about what cosmology is when you signed up, perhaps you even read
the course description. But before we dive into the subject, I want to say a
few words about what I think cosmology is, and why it is worth studying.

In one way ore another, astronomers have been doing cosmology through-
out all ages. For example, Ptolemy’s system of circles and epicycles was a
model for the whole Universe, because at the time the known universe con-
sisted of the Sun, the planets, Moon, and the fixed stars. When the Coper-
nican system, perfected by Kepler, replaced Ptolemy’s, this could be seen
as a change in model for the Universe. But after Galileo’s observational dis-
coveries with his telescope and Newton’s laws of motion and gravity, it was
clear that the fixed stars were not so fixed after all. Newton worried about
the stability of a system of stars under their own mutually attractive gravi-
tational forces. Would it collapse? He argued (erroneously) that it could be
stable if the distribution of stars extended to infinity in all directions.

Eventually astronomers came to understand that our solar system is part
of a large structure: our Galaxy, the Milky Way system. One of the first to
try to map out its structure was the great observer William Herschel. Since
he was trying to work out a picture of what was then believed to be the
whole universe, his work was in essence cosmology.

Less than a century has passed since we first began to understand the
true enormity of the Universe. In 1924, Edwin Hubble was able to esti-
mate the distance to the mysterious Andromeda nebula. Astronomers had
been aware of the existence of several nebulae for some time, and had been
discussing whether they were part of the Milky Way or not. The size and
structure of the Milky Way had been roughly worked out by Harlow Shapley
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2 CHAPTER 1. THE ROBERTSON-WALKER LINE ELEMENT

in the early 1900-s, so if the nebulae were external to the Milky Way, as-
tronomers realized that they would have to be gigantic systems of stars like
the Milky Way, galaxies in their own right, to be so clearly visible to us. So
when Hubble estimated the distance to the Andromeda nebula and found
it to be far outside our Galaxy, he transformed our perceptions of what the
Universe is, and therefore what cosmology is about.

With Einstein’s new theory of gravity, general relativity, it became clear
that space, matter and time are tied together. The general belief was that
the Universe was static and eternal, and Einstein constructed a cosmolog-
ical model consistent with this belief. Alexander Friedmann and Georges
Lemaitre were more excited by solutions of Einstein’s equation which de-
scribed dynamic universes. A new discovery by Hubble in 1929 proved them
right: The galaxies are moving a way from us in the way you would expect
if space is expanding.

Today we know that the Universe started expanding about 14 billion
years ago. It is possibly spatially infinite, but it is at any rate much larger
than the part we can see, the observable universe. Inside the observable
universe we estimate that there are about 1000 billion galaxies. They are
not distributed randomly in space, but seem to form a sponge-like structure
with walls and voids.

In one sense, cosmology is what cosmologists do. And cosmologists do
many different things. But in general, what we want to do is to find out
what the universe consists of, and how it came to be the way it looks today.
Since it has a history, we know that the Universe was once very different
from how we see it now. Some of us are mostly concerned with studying
the very earliest phases of the history, and this area has strong connections
with particle physics. Others are interested in understanding how the first
galaxies formed, and others again try to figure out how the galaxies came
to be distributed in the way we see them. And others yet struggle to un-
derstand why, contrary to earlier expectations, the Universe now seems to
be expanding at an accelerating rate. Since we are all trying to understand
the same Universe and the same history, there are, of course, connections
between all these areas.

What will we study in this course? We will mostly be dealing with
building models for the Universe on scales large enough for the details of
the galaxy distribution to be insignificant. We will also be interested in
combining these models with particle, nuclear, and atomic physics to under-
stand the evolution of the Universe during its first 400 000 years or so. You
will learn some basic theoretical concepts and tools, and how to relate them
to observable quantities. In the final parts of the course, we will study the
first stages of structure formation in the Universe, and consider the most
popular idea for the origin of these structures: the inflationary universe.

For students who want to specialise in astronomy, this course is compul-
sory. But I guess if you are the type who likes astronomy, cosmology does
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anyway sound somewhat interesting to you. For the rest of you, you have
decided freely to follow a course that you don’t really need. So, again, I can
assume that you chose it because it sounded interesting. However, I think
it is still worthwhile to ask the question of why we should bother. It is too
rarely asked about most things, in my opinion.

Let me be clear on one thing: The emphasis in this course is not on giv-
ing you skills and knowledge which will be of immediate use in a career in
industry. Model building, solving equations, testing theories against obser-
vations, these are all transferable skills, so I am not saying that this course
won’t give you anything that you can use if you decide to leave academia at
some point in the future. But this is not why I teach this course, and if this
is your main goal, you could spend your time more wisely on other courses.
I teach this course because I love cosmology. I think it is remarkable and
beautiful how we can use basic principles of physics to deduce the history
of the Universe. We will reach some stunning conclusions, for example that
we and everything we see around us are probably the result of tiny quantum
fluctuations that arose some 10−35 seconds after the Universe started to ex-
pand. We will see how we need to understand the smallest constituents of
matter if we want to understand the biggest structures in the Universe. We
will see how cosmology has provided physics with some of its biggest puzzles
today, like the nature of dark matter, and the energy of empty space. In my
mind, no physicist, in fact no person, can call him/herself truly educated
without at least an aquintance with the questions, ideas and methods of cos-
mology. You should study cosmology because it is fun, exciting and good
for your soul. I enjoy teaching it for the same reasons. While my excitement
may not always shine through in my lectures and in these notes, I am after
all an old, cynical curmudgeon, I am passionate about the subject, and I
want you to be so, too. We are about to see some of the highlights of the
intellectual achievements of the human species. Let’s get started.

1.2 Making a principle out of a necessity

The Universe is by definition everything that (physically) exists. It is nec-
essarily a fairly complicated system to study as a whole. If cosmologists
had to care about every tiny detail, the project could not even get off the
ground. Fortunately, simplifications can be made. For example, the shenani-
gans of the human species have so far not had any consequences on a cosmic
scale. Therefore, we decide to not care about humans and leave them to
the sociologists, psychologists, and historians. The solar system arose late
in the history of the Universe, and it seems to have no special significance
on a larger scale, so we leave its study to the solar physicists and the plane-
tary scientists. The smallest structures of interest in cosmology, are in fact
galaxies. Anything smaller than that, we will in general not care about.
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The distribution of galaxies is complicated, but it shows some patterns
and regularities, and as cosmologists we want to understand them. But
we need an even simpler point to start from. Fortunately, if you look at
the distribution of galaxies with a very course filter that blurs structures
smaller than a few hundred Mpc (megaparsecs), it looks very uniform. The
distribution of matter, averaged over distances of this order, is to a high
degree homogeneous. It also looks isotropic, i.e., the same in all directions.
This is fortunate, because if it were otherwise, it would be very difficult set
up mathematical models. We now have some pretty good evidence that the
matter distribution is homogeneous and isotropic on large scales. But this
assumption was being made already at the start of modern cosmology, when
the evidence for it was much weaker. As is often the case, when the evidence
for your claim is weak, you make it sound more convincing by elevating it
to a principle. Thus, we have:

• The Cosmological Principle: Averaged over sufficiently large scales,
the matter distribution in the Universe is homogeneous and isotropic.

Mathematically, this means that if we describe the matter density by a func-
tion ρ, it can not be a function of position: It must be the same everywhere.
It can at most be a function of time alone. The density may vary in time,
but at any given time (we will return to what we mean by ‘time’ here), it is
the same everywhere in the Universe. So the Cosmological Principle can be
formulated more simply as ρ = ρ(t) (on sufficiently large scales.)

It is not totally inaccurate to say that modern cosmology started with
Einstein’s theory of general relativity (from now on called GR for short).
GR is the overarching framework for modern cosmology, and we cannot
avoid starting this course with at least a brief account of some of one of the
important features of this theory.

1.3 Special relativity: space and time as a unity

Special relativity, as you may recall, deals with inertial frames and how
physical quantities measured by observers moving with constant velocity
relative to each other are related. The two basic principles are:

1. The speed of light in empty space, c, is the same for all observers.

2. The laws of physics are the same in all inertial frames.

From these principles the strange, but by now familiar, results of special
relativity can be derived: the Lorentz transformations, length contraction,
time dilation etc. The most common textbook approach is to start from
the Lorentz transformations relating the position and time for an event as
observed in two different inertial frames. However, all the familiar results can
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be obtained by focusing instead on the invariance of the spacetime interval
(here given in Cartesian coordinates)

ds2 = c2dt2 − dx2 − dy2 − dz2 (1.1)

for two events separated by the time interval dt and by coordinate distances
dx, dy, and dz. The invariance of this quantity for all inertial observers
follows directly from the principles of relativity.

To see how familiar results can be derived from this viewpoint, consider
the phenomenon of length contraction: Imagine a long rod of length L
as measured by an observer at rest in the frame S. Another observer is
travelling at speed v relative to the frame S, at rest in the origin of his
frame S′. When the observer in S′ passes the first end point of the rod,
both observers start their clocks, and they both stop them when they see
the observer in S′ pass the second end point of the rod. To the observer in
S, this happens after a time dt = L/v. Since the observer in S′ is at rest in
the origin of his frame, he measures no spatial coordinate difference between
the two events, but a time difference dt′ = τ . Thus, from the invariance of
the interval we have

ds2 = c2
(

L

v

)2

− L2 = c2τ2 − 02

from which we find

τ =
L

v

√

1− v2

c2
.

Since the observer in S′ sees the first end point of the rod receding at a
speed v, he therefore calculates that the length of the rod is

L′ = vτ = L

√

1− v2

c2
≡ γL < L. (1.2)

Similarly, we can derive the usual time dilation result: moving clocks run at
a slower rate (i.e. record a shorter time interval between two given events)
than clocks at rest. Consider once again our two observers in S and S′

whose clocks are synchronized as the origin of S′ passes the origin of S at
t = t′ = 0. This is the first event. A second event, happening at the origin
of S′ is recorded by both observers after a time ∆t in S, ∆t′ in S′. From
the invariance of the interval, we then have

c2∆t2 − v2∆t2 = c2∆t′2

which gives

∆t =
∆t′

√

1− v2/c2
=

∆t′

γ
> ∆t′.
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This approach to special relativity emphasizes the unity of space and
time: in relating events as seen by observers in relative motion, both the
time and the coordinate separation of the events enter. Also, the geometrical
aspect of special relativity is emphasized: spacetime ‘distances’ (intervals)
play the fundamental role in that they are the same for all observers. These
features carry over into general relativity. General relativity is essential for
describing physics in accelerated reference frames and gravitation. A novel
feature is that acceleration and gravitation lead us to introduce the concept
of curved spacetime. In the following section we will explore why this is so.

1.4 Curved spacetime

In introductory mechanics we learned that in the Earth’s gravitational field
all bodies fall with the same acceleration, which near the surface of the Earth
is the familiar g = 9.81 m/s2. This result rests on the fact that the mass
which appears in Newton’s law of gravitation is the same as that appearing
in Newton’s second law F = ma. This equality of gravitational and inertial
mass is called the equivalence principle of Newtonian physics. We will use
this as a starting point for motivating the notion of curved spacetime and
the equivalence of uniform acceleration and uniform gravitational fields.

Consider a situation where you are situated on the floor of an elevator,
resting on the Earth’s surface. The elevator has no windows and is in every
way imaginable sealed off from its surroundings. Near the roof of the elevator
there is a mechanism which can drop objects of various masses towards the
floor. You carry out experiments and notice the usual things like, e.g. that
two objects dropped at the same time also reach the floor at the same time,
and that they all accelerate with the same acceleration g. Next we move the
elevator into space, far away from the gravitational influence of the Earth
and other massive objects, and provide it with an engine which keeps it
moving with constant acceleration g. You carry out the same experiments.
There is now no gravitational force on the objects, but since the floor of
the elevator is accelerating towards the objects, you will see exactly the
same things happen as you did when situated on the surface of the Earth:
all objects accelerate towards the floor with constant acceleration g. There
is no way you can distinguish between the two situations based on these
experiments, and so they are completely equivalent: you cannot distinguish
uniform acceleration from a uniform gravitational field!

Einstein took this result one step further and formulated his version
of the equivalence principle: You cannot make any experiment which will
distinguish between a uniform gravitational field and being in a uniformly
accelerated reference frame!

This has the further effect that a light ray will be bent in a gravitational
field. To understand this, consider the situation with the elevator acceler-
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ating in outer space. A light ray travels in a direction perpendicular to the
direction of motion of the elevator, and eventually enters through a small
hole in one of the sides. For an outside observer the light ray travels in a
straight line, but to an observer inside the elevator it is clear that the light
ray will hit the opposite side at a point which is lower than the point of
entry because the elevator is all the time accelerating upwards. Thus, the
light ray will by the observer in the elevator be seen to travel in a curved
path. But if we are to take the equivalence principle seriously, this must
also mean that a stationary observer in a uniform gravitational field must
see the same thing: light will follow a curved path. Since the trajectory of
light rays are what we use to define what is meant by a ‘straight line’, this
must mean that space itself is curved. We can interpret the effect of the
gravitational field as spacetime curvature.

1.5 Curved spaces: the surface of a sphere

You already have some experience with curved spaces, since we actually
live on one! The Earth’s surface is spherical, and the surface of a sphere
is a two-dimensional curved space. But how can we tell that it is curved?
One way is by looking at straight lines. If we define a straight line as the
shortest path (lying completely within the surface) between two points on
the surface, then in a plane this will be what we normally think of as a
straight line. However, it is easy to see that on the surface of a sphere, a
straight line defined in this manner will actually be an arc of a circle.

Another, more quantitative way of detecting curvature is to consider the
ratio of the circumference and the radius of a circle on the surface. By a
circle we mean the set of points on the surface which all lie at a given distance
s (measured on the surface!) from a given point P (the center of the circle).
In a plane the relationship between the radius and the circumference is the
usual c = 2πs we all know and love. However, consider a circle on a spherical
surface (see fig. 1.1). The circumference of this circle is clearly c = 2πr.
However, the radius, as measured on the surface, is not r but s, and these
two quantities are related by

r = a sin θ (1.3)

θ =
s

a
, (1.4)

where a is the radius of the sphere. We therefore find

c = 2πa sin θ = 2π sin

(

s

a

)

= 2πa

(

s

a
− s3

6a3
+ · · ·

)
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θ

r

s

a

Figure 1.1: Symbols used in the discussion of the curvature of a spherical
surface. Note that the circumference of the circle is 2πr, but the radius
(the distance from the center to the perimeter) as measured by a creature
confined to walk along the surface of the sphere is s.

= 2πs

(

1− s2

6a2
+ . . .

)

, (1.5)

which is smaller than 2πs. This is characteristic of curved spaces: the
circumference of a circle does not obey the usual ‘2π times the radius’-
relationship.

We can go a bit further and define a quantitative measure of curvature
(for two-dimensional spaces), the so-called Gaussian curvature, K:

K ≡ 3

π
lim
s→0

(

2πs− C

s3

)

. (1.6)

For the spherical, two-dimensional space we find

K =
3

π
lim
s→0

1

s3

(

2πs− 2πs+
2πs3

6a2
− . . .

)

=
1

a2
. (1.7)

The Gaussian curvature of the surface of a sphere is thus positive. It is
a general feature of positively curved spaces that the circumference of a
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circle of radius s is smaller than 2πs. One can also show that there exists
negatively curved spaces in two dimensions, one example being the surface
of a hyperboloid. For negatively curved surfaces, the circumference of a
circle is greater than 2πs.

1.6 The Robertson-Walker line element

In this section we will try to make plausible the form of the line element
for a homogeneous and isotropic space. Homogeneous means that, from a
given observation point, the density is independent of the distance from the
observer. Isotropic means that the observer sees the same density in all
directions. Such a space is an excellent approximation to our Universe, so
the result in this section is one of the most important in these lectures. It
forms the foundation for almost everything we will do later on.

We start by, once again, looking at the two-dimensional surface of a
sphere in three dimensions. Let us introduce coordinates (r′, φ) on this
surface in such a way that the circumference of a circle centered at one of
the poles is given by 2πr′. We see that r′ = a sin θ, θ = s/a, so

s = a sin−1
(

r′

a

)

.

If we keep r′ fixed (dr′ = 0) and vary φ, we have ds = r′dφ. Keeping
constant φ and changing r′ by dr′, we get

ds =
ds

dr′
dr′ = a

1
√

1−
(

r′

a

)2

1

a
dr′

=
dr′

√

1−
(

r′

a

)2
.

Since the two coordinate directions are orthogonal and independent, we can
then write the line element for this surface as

ds2 =
dr′2

1−
(

r′

a

)2 + r′2dφ2.

We saw that the Gaussian curvature K for this surface is K = 1/a2, so we
can write

ds2 =
dr′2

1−Kr′2
+ r′2dφ2,

and introducing a dimensionless coordinate r = r′/a, we find

ds2 = a2
(

dr2

1− kr2
+ r2dφ2

)

, (1.8)
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where k ≡ Ka2 = +1. We now note that we can describe other spaces by
allowing k to be a parameter taking on different values for different spaces.
For example, taking k = 0, we get

ds2 = a2(dr2 + r2dφ2),

which is the line element of the two-dimensional Euclidean plane expressed
in polar coordinates. Furthermore, one can show that the negatively curved
two-dimensional space (e.g. the surface of a hyperboloid) has a line element
on the same form with k = −1. So flat, as well as both positively and
negatively curved two-dimensional surfaces can be described by the line
element (5.15) with k = −1, 0,+1. Note that the physical size a enters just
as an overall scale factor in the expression.

Let us calculate the path length s in going from r = 0 to a finite value
of r along a meridian with dφ = 0:

s = a

∫ r

0

dr′√
1− kr′2

,

which is equal to a sin−1(r) for k = +1, ar for k = 0, and a sinh−1 r for
k = −1.

Note that in the case k = +1 the circumference of a circle c = 2πa sin(s/a)
increases until s = πa/2, then decreases and finally reaches zero for s = πa.
By drawing a sequence of circles from the north to the south pole of a sphere
you should be able to see why this is so. This feature is typical of a positively
curved space. For k = −1, 0 the circumference of a circle in the surface will
increase without bounds as s increases. The surface of the sphere is also an
example of a closed space. Note that it has a finite surface area equal to
4πa2, but no boundaries.

So far we have looked at two-dimensional surfaces since they have the
advantage of being possible to visualize. Three dimensional surfaces (i.e.
the surface of a four-dimensional object) are harder once we go beyond the
flat, Euclidean case. But in the flat case we know that we can write the line
element in spherical coordinates as

ds2 = a2(dr2 + r2dθ2 + r2 sin2 θdφ2) = a2(dr2 + r2dΩ2),

where dΩ2 ≡ dθ2 + sin2 θdφ2. This space is homogeneous and isotropic. It
looks the same at any point and in any direction, and the local curvature is
the same at all points, i.e., it satisfies the Cosmological Principle. However,
flat Euclidean space is not the only space satisfying this principle. There are
both positively and negatively curved homogeneous and isotropic spaces.

For a positively curved space, we can carry out a 3D version of the
analysis we went through for the surface of a sphere. We define angular
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variables θ and φ and a dimensionless radial coordinate r so that a surface
through the point with coordinate r has area 4π(ar)2. We then have

ds2 = a2(grrdr
2 + r2dΩ2).

For the surface of a three-sphere

x2 + y2 + z2 +w2 = a2,

we can repeat the two-dimensional analysis and obtain

grr =
a2

1− r2
.

More generally, it can be shown that any isotropic and homogeneous three
dimensional space can be described by coordinates of this type and with a
line element

ds2 = a2
(

dr2

1− kr2
+ r2dΩ2

)

(1.9)

where the curvature parameter k again can take on the values −1, 0 and
+1. This line element describes the spatial structure of our Universe, so at
a given time t the spatial part of the line element will be of this form. The
factor a will in general be a function of the time (cosmic time) t, so we write
a = a(t). It is this feature which will allow us to describe an expanding
universe. The time part of the line element is just c2dt2, so we can finally
write

ds2 = c2dt2 − a2(t)

(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)

. (1.10)

This is the Robertson-Walker (RW) line element, and it is the only line
element we will ever use. The coordinates r, θ, φ are such that the cir-
cumference of a circle corresponding to t, r, θ all being constant is given by
2πa(t)r, the area of a sphere corresponding to t and r constant is given by
4πa2(t)r2, but the physical radius of the circle and sphere is given by

Rphys = a(t)

∫ r

0

dr′√
1− kr′2

.

I emphasize that the coordinates (r, θ, φ) are comoving coordinates: if an
object follows the expansion or contraction of space it has fixed coordinates
with respect to the chosen origin. The expansion or contraction of space is
described entirely by the scale factor a(t). For k = +1 the Universe is finite
(but without boundaries), and a(t) may be interpreted as the ‘radius’ of the
Universe at time t. If k = 0,−1, the Universe is flat/open and infinite in
extent.
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The time coordinate t appearing in the RW line element is the so-called
cosmic time. It is the time measured on the clock of an observer moving
along with the expansion of the universe. The isotropy of the universe makes
it possible to introduce such a global time coordinate. We can imagine that
observers at different points exchange light signals and agree to set their
clocks to a common time t when, e.g., their local matter density reaches
a certain value. Because of the isotropy of the universe, this density will
evolve in the same way in the different locations, and thus once the clocks
are synchronized they will stay so.

1.7 Redshifts and cosmological distances

The RW metric contains two unknown quantities: the scale factor a(t) and
the spatial curvature parameter k. In order to determine them, we need an
equation relating the geometry of the universe to its matter-energy content.
This is the subject of the next section. In the present section we will use the
RW line element to introduce the notions of cosmic redshift and distances.
When doing so, we will consider how light rays propagate in a universe
described by the RW line element. Light rays in special relativity move
along lines of constant proper time, ds2 = 0. This is easily seen by noting
that ds2 = 0 implies

√

dx2 + dy2 + dz2

dt
= ±c

and thus describes motion at the speed of light. This carries over to general
relativity since it is always possible locally, at a given point, to find a frame
where the line element reduces to that of flat space. And since ds2 is a
scalar, which means that it is the same evaluated in any frame, this means
that ds2 = 0 is valid in all reference frames for a light ray.

1.7.1 The cosmic redshift

The redshift of a cosmological object has the advantage of being quite easily
measurable: it just requires comparing the wavelengths of spectral lines.
In mechanics we are used to interpreting redshift as a consequence of the
Doppler effect, an effect of the source of the waves moving through space.
However, the cosmological redshift is of a different nature: it can in a certain
sense be intepreted as a result of space itself stretching! More conservatively,
one can say that it is a result of light propagating in curved spacetime.

Let us consider a train of electromagnetic waves emitted from a point P ,
as shown in fig. 1.2, and moving towards us at the origin O. The first peak of
the wave is emitted at a cosmic time te, and the second at an infinitesimally
later time te + δte. We receive them at times to and to + δto, respectively.
The light wave travels along a line of constant θ and φ and follows a path
defined by ds2 = 0. Inserting this in the RW line element gives
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Figure 1.2: An electromagnetic wave travelling through the expanding uni-
verse is stretched.

ds2 = 0 = c2dt2 − a2(t)
dr2

1− kr2
,

and since dr < 0 for dt > 0 (the light wave moves towards lower values of r
since it is moving towards us at the origin), we have

cdt

a(t)
= − dr√

1− kr2
.

For the first peak we then have
∫ to

te

cdt

a(t)
= −

∫ 0

r

dr√
1− kr2

=

∫ r

0

dr√
1− kr2

,

and for the second peak we have similarly

∫ to+δto

te+δte

cdt

a(t)
=

∫ r

0

dr√
1− kr2

.

We then see that we must have
∫ to

te

cdt

a(t)
=

∫ to+δto

te+δte

cdt

a(t)
.

We can split the integrals on each side into two parts:

∫ te+δte

te

cdt

a(t)
+

∫ to

te+δte

cdt

a(t)
=

∫ to

te+δte

cdt

a(t)
+

∫ to+δto

to

cdt

a(t)
,

and hence
∫ te+δte

te

cdt

a(t)
=

∫ to+δto

to

cdt

a(t)
.

Since both integrals now are taken over an infinitesimally short time, we can
take the integrand to be constant and get

cδte
a(te)

=
cδto
a(to)

.
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Note that this implies that

δte =
a(te)

a(to)
δto < δto.

This means that pulses recieved with a separation in time δto were emitted
with a shorter separation in time δte by the object.

Since cδte = λe and cδto = λo, we can rewrite the relation above as

λo
λe

=
a(to)

a(te)
.

This means that in an expanding universe, the wavelength of a light wave
upon reception will be longer than at the time of emission by a factor equal
to the ratio of the scale factors of the universe at the two times. The cosmic
redshift is usually measured by the parameter z defined by

1 + z =
λo
λe

=
a(to)

a(te)
, (1.11)

and measures how much the universe has expanded between the times of
emission and reception of the signal.

1.7.2 Proper distance

You may already have thought about one issue that arises when we want
to specify distances in cosmology, namely that space is expanding. One
way of handling this when calculating distances is to compute them at a
given time t. This is the content of the so-called proper distance, it is the
length of the spatial geodesic (shortest path in space) between two points
at a specified time t, so that the scale factor describing the expansion of the
universe is held fixed at a(t). Another way of saying this is that the proper
distance between two points is the distance as read off on a set of rulers
connecting the two points at the time t. It is denoted by dP(t), and can be
obtained as follows. Without loss of generality, we can place one point at
the origin (0, 0, 0) and let the other point have coordinates (r, θ, φ). Along
the spatial geodesic (the ‘straight line’) between the two points, only the
coordinate r varies (think of the surface of a sphere!) The time t is fixed,
and we are to compute the spatial distance, so the RW line element gives
for an infinitesimal displacement along the geodesic

|ds| = a(t)
dr′

√

1− kr′2
.

The proper distance is found by summing up all contributions along the
geodesic, hence

dP(t) = a(t)

∫ r

0

dr′
√

1− kr′2
= a(t)S−1

k (r),
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where S
−1
k (r) = sin−1 r for k = +1, S−1

k (r) = r for k = 0 and S
−1
k (r) =

sinh−1 r for k = −1. We see that this results agrees with our intuition
for the spatially flat case, k = 0: dP(t) = a(t)r, which means that the
proper distance is then just the comoving coordinate r of the point, which
is a constant in time, times the scale factor which describes how much the
universe has expanded since a given reference time.

Since dP is a function of t, the relative distance between the two points
is increasing as the Universe expands. The rate of increase of this distance
is

vr =
d

dt
dP(t) = ȧS−1(r) =

ȧ

a
dP(t),

where dots denote time derivatives. If we introduce the Hubble parameter
H(t) ≡ ȧ/a, we find that

vr(t) = H(t)dP(t), (1.12)

which is Hubble’s law: at a given time, points in the Universe are moving
apart with a speed proportional to their distance. Note that the Hubble
parameter is in general a function of time: the Universe does not in general
expand at the same rate at all times.

It is worthwhile to note that Hubble’s expansion law is a direct conse-
quence of the homogeneity of the universe. Consider, e.g., three galaxies
A, B, and C, lying along the same straight line. Let B be at a distance d
from A, and let C be at distance d from B, and hence 2d from A. Now, let
the velocity of B relative to A be v. Assuming homogeneity, then C has to
move with speed v relative to B, since it has the same distance from B as
B has from A. But then C moves at a velocity 2v relative to A, and hence
its speed is proportional to its distance from A. We can add more galaxies
to the chain, and the result will be the same: the speed of recession of one
galaxy with respect to another is proportional to its distance from it. Note
that we used the non-relativistic law of addition of velocities in this argu-
ment, so for galaxies moving at the speed of light, this kind of reasoning is no
good. However, as we probe greater distances, we also probe more distant
epochs in the history of the universe. As can be seen from equation (1.12),
the Hubble parameter actually varies in time, so we do not expect a strict
linear relationship between distance and speed as we probe the universe at
great distances.

If we denote the present time by t0, the best measurements of the cur-
rent value of the Hubble parameter indicate that H0 ≡ H(t0) = (67.8 ±
0.9) km s−1 Mpc−1.1 Note that it is common to introduce the dimensionless

1This is the value given in the astrophysical constants table compiled by the Parti-
cle Data Group (pdg.lbl.gov), and it is derived from the temperature fluctuations in the
cosmoic microwave background. There is a slight tension between this result and more tra-
ditional measurements based on observations of the distance-redshift relationship, which
tend to give larger values.
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Hubble constant by writing

H0 = 100h km s−1 Mpc−1, (1.13)

where we have h ≈ 0.68 today.

1.7.3 The luminosity distance

All measured distances to cosmological objects are derived from the proper-
ties of the light we receive from them. Since light travels at a finite speed, it
is clear that the universe may have expanded by a significant amount during
the time the light has travelled towards us. We need to establish relations
between distances deduced from the properties of the light we receive and
the quantities in the RW metric.

A common measure of distance is the so-called luminosity distance dL.
Consider a source P at a distance d from an observer O. If the source emits
an energy per unit time L, and l is the flux (energy per unit time and area)
received by the observer, then in a static, Euclidean geometry we would
have l = L/(4πd2), and so the distance d would be related to luminosity L
and flux l by

d =

√

L

4πl
.

Motivated by this, we define the luminosity distance in general to be given
by

dL ≡
√

L

4πl
. (1.14)

The received flux l is relatively easy to measure, and if we know L, we
can then compute dL. But how is it related to a(t) and k? Consider a
spherical shell centered at P going through O at the time of observation to.
Its area is given by definition of the coordinate r as 4πa2(to)r

2. The photons
emitted at P at the time t have had their wavelengths stretched by a factor
a(to)/a(t) when they reach O. Furthermore, as illustrated in our discussion
of the redshift, wave peaks emitted in a time interval δt at P are received at
O in the slightly longer interval δto = a(to)/a(t)δt, hence reducing further
the energy received per unit time at O as compared with the situation at P.
The received flux at O therefore becomes

l =
L

4πa2(to)r2

(

a(t)

a(to)

)2

, (1.15)

and using the definition (1.14) we get

dL =

√

L

4πl
= a(to)r

a(to)

a(t)
,
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and using finally the definition of redshift (1.11) we find

dL = a(to)r(1 + z). (1.16)

Not that this definition assumes that we know the intrinsic luminosity
L of the source. Sources with this property are called ‘standard candles’,
and they have been crucial in determining the cosmological distance ladder.
Historically, Cepheid variables have been important, and more recently su-
pernovae of type Ia have been used to determine distances out to very large
redshifts z and have led to the discovery of accelerated cosmic expansion.

1.7.4 The angular diameter distance

Another common measure of distance is the angular diameter distance, dA.
Recall that a source of known, fixed size D observed at a large distance
d (‘large’ means d ≫ D) covers an angle ∆θ = D/d (in radians) in a
static, Euclidean geometry. We define the angular diameter distance so as
to preserve this relation in the general case, thus

dA ≡ D

∆θ
. (1.17)

We now have to relate the quantities in this definition to the RW line ele-
ment. We place the observer at the origin and a source at a radial comoving
coordinate r. The proper diameter DP of the source is measured at time t,
and we measure that the source has an angular extent ∆θ now. Using the
RW line element, we find

ds2 = −r2a2(t)(∆θ)2 = −D2
P,

so that
DP = a(t)r∆θ.

We therefore find

dA =
DP

∆θ
= a(t)r =

a(t)

a(to)
a(to)r =

a(to)r

1 + z
, (1.18)

where to is the time at which the observer O receives the light emitted
at time t by the source P. Note that, as with the luminosity distance, an
intrinsic property of the source must be known in order to determine the
angular diameter distance observationally, in this case the intrinsic size of
the source.

Comparing equation (1.18) to equation (1.16) we see that there is a
simple relation between dL and dA:

dL
dA

= (1 + z)2, (1.19)

and hence this ratio is model-independent.
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1.7.5 The comoving coordinate r

The expressions for the luminosity distance and the angular diameter dis-
tance of a source P observed at time to both involve its comoving radial
coordinate r at the time of emission t. We want to relate this to the scale
factor a(t) and the spatial curvature parameter k. In order to do this we
consider a light ray propagating from the source towards the observer at
the origin. The light ray travels at constant θ and φ along a null geodesic
ds2 = 0, and thus the RW line element gives

0 = c2dt2 − a2(t)dr2

1− kr2

⇒ dr√
1− kr2

= − cdt

a(t)
, (1.20)

where the − sign is chosen because r decreases (dr < 0) as time increases
(dt > 0) along the path of the light ray. Integrating equation (1.20) we
therefore have

S
−1
k (r) ≡

∫ r

0

dr′
√

1− kr′2
=

∫ to

t

cdt′

a(t′)
. (1.21)

where S
−1
k (r) is the inverse of the function Sk(r), the latter being equal to

sin r for k = +1, r for k = 0 and sinh r for k = −1. Thus we find that

r = Sk

[∫ to

t

cdt′

a(t′)

]

. (1.22)



Chapter 2

Newtonian cosmology

2.1 The Friedmann equations

We have now seen how we can use the RW metric for an isotropic and homo-
geneous universe to compute distances and obtain redshifts for astrophysical
objects. We have also seen that these expressions depend on the scale factor
a(t) and the spatial curvature parameter k. So far we have assumed that
these are given, but now we turn to the question of how they can be deter-
mined. The key is Einstein’s theory of general relativity which is the most
fundamental description of gravity we know of. In this theory, gravity is no
longer considered a force, but an effect of matter and energy causing space-
time to curve. Thus, free particles are always travelling in straight lines, but
what a ‘straight line’ is, is determined by the geometry of spacetime. And
the geometry of spacetime is determined by the matter and energy which
is present through the so-called Einstein field equation. To develop the full
machinery of GR would take us too far afield here, and we do not really
need it. Suffice it to say that the field equation says that the spacetime
curvature is proportional to the so-called energy-momentum tensor. Given
the RW line element, the field equation is reduced to two differential equa-
tions for the scale factor where the spatial curvature enters as a parameter.
The form of these equations can be derived from a Newtonian argument,
and you may already have seen how this can be done in earlier courses. In
case you haven’t, here it is: We assume a homogeneous and isotropic mass
distribution of density ρ. Consider a spherical region of radius R centered
on the origin of our coordinate system. We allow the sphere to expand or
contract under its own gravity and write the radius as R = ra(t), where
r is a constant, and represents a comoving coordinate. Next, we place a
test mass m on the surface of the sphere. From Newtonian theory we know
that only the mass M contained within the sphere of radius R will exert
a gravitational force on m: if one divides the region outside into spherical
shells, one finds that the force from each shell on m vanishes. Thus, the

19
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motion of the test mass can be analyzed by considering the mass within R
only. The first thing to note is that gravity is a conservative force field so
that the mechanical energy is conserved during the motion of the test mass:

1

2
mṘ2 − GMm

R
= constant ≡ C ′,

where G is the Newtonian gravitational constant and Ṙ = dR/dt. This we
can rewrite as

Ṙ2 =
2GM

R
+ C,

with C = 2C ′/m. Since R(t) = ra(t), where r is constant, and M =
4πR3ρ/3, we find

r2ȧ2 =
2G

ra(t)

4π

3
ρa3(t)r3 + C,

or,

ȧ2 =
8πG

3
ρa2 +

C

r2

Since both C and r are constants, we can define C/r2 ≡ −kc2, and get

ȧ2 + kc2 =
8πG

3
ρa2, (2.1)

and if we, although totally unmotivated, postulate that k is the curvature
parameter in the RW line element, then equation (7.41) is of the same form
as the result of a full treatment in general relativity.

Instead of using energy conservation, we could have started from New-
ton’s second law applied to the test particle:

mR̈ = −GMm

R2
,

which upon inserting R = ra(t) and the expression for M can be rewritten
as

ä

a
= −4πG

3
ρ.

Again, this is similar to what a relativistic analysis of the problem gives.
However, in the correct treatment it turns out that ρ must include all con-
tributions to the energy density, and in addition there is a contribution from
the pressure p of the matter of the form 3p/c2. Thus, the correct form of
the equation is

ä

a
= −4πG

3

(

ρ+
3p

c2

)

. (2.2)

These equations are often called the Friedmann equations.
There are several problems with these ‘derivations’. We have assumed

that space is Euclidean, and then it is not really consistent to interpret k
as spatial curvature. Second, in the correct treatment it turns out that ρ
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is not simply the mass density but also includes the energy density. These
important points are missing in the Newtonian approach. Furthermore, the
derivation using conservation of energy assumes that the potential energy
can be normalized to zero at infinity, and this is not true if the total mass of
the universe diverges as (ar)3, as required by a constant density. If we try to
rescue the situation by making the density approach zero at large distances,
then the universe is no longer homogeneous, and we can no longer argue that
we can center our sphere at any point we wish. The difficulty with the second
derivation, based on Newton’s gravitational force law, is that we assume
that the mass outside the spherical shell we consider does not contribute
to the gravitational force. The proof for this assumes that the total mass
of the system is finite, and hence breaks down for an infinite universe of
constant density. For a careful discussion of Newtonian cosmology the reader
is referred to a paper by F. J. Tipler (Americal Journal of Physics 64 (1996)
1311).

We can also go some way towards deriving the first Friedmann equation
(7.41) by first establishing a very useful equation describing the evolution
of the energy density with the expansion of the universe. This is done by
bringing thermodynamics into the picture. Thermodynamics is a universal
theory which also applies in the context of GR. Consider the First Law of
thermodynamics:

TdS = dE + pdV

where T is temperature, S is entropy, E is energy and V is volume. Applying
this law to the expansion of the Universe, we have E = ρc2V ∝ ρc2a3,
because the energy density is ρc2 and the volume is proportional to a3 since
a measures the linear expansion of the homogeneous and isotropic universe.
Homogeneity and isotropy also means that ρ and a are functions of time
only, so if we insert these expressions on the right-hand side of the First
Law, we get

dE + pdV ∝ d(ρc2a3) + pd(a3)

= 3a2ȧρc2 + a3ρ̇c2 + 3pa2ȧ

= a3c2
[

ρ̇+ 3
ȧ

a

(

ρ+
p

c2

)]

.

The universe expands adiabatically, dS = 0. When you think about it, this
is not really surprising, since non-adiabaticity would imply that heat flows
into or out of a given infinitesimal volume, which would violate homogeneity
and isotropy. But from the equation above we must then have

ρ̇ = −3
ȧ

a

(

ρ+
p

c2

)

. (2.3)

This is a very useful and important equation which will allow us to determine
how the energy density of the universe evolves with the expansion. But first
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of all, let us use it to express the pressure in terms of the energy density and
its time derivative:

p

c2
= − a

3ȧ
ρ̇− ρ.

Using this relation to eliminate the pressure term from the second Friedmann
equation (7.42) we find

ä =
8πG

3
ρa+

4πG

3

a2

ȧ
ρ̇,

and multiplying through by ȧ we get

ȧä =
8πG

3
ρaȧ+

4πG

3
ρ̇a2,

and we see that both sides of the equation can be expressed as total deriva-
tives:

1

2

d

dt
(ȧ)2 =

4πG

3

d

dt
(ρa2).

and so

ȧ2 =
8πG

3
ρa2 + constant.

This is how far we can go with rigor. We cannot easily relate the constant of
integration to the curvature parameter appearing in the RW metric in this
approach, but if we postulate that it is equal to −kc2, we see that we get

ȧ2 + kc2 =
8πG

3
ρa2, (2.4)

which is identical to equation (7.41).
Note that we derived equation (7.41) using equations (7.42) and (7.43).

This means that these three equations are not all independent, any two
of them taken together will be sufficient to describe the kinematics of the
expanding universe.

2.1.1 Time to memorize!

We have now collected some of the most important equations in cosmology.
This is therefore a good place for me to summarize them and for you to
memorize them. Here they are:

• The Robertson-Walker line element:

ds2 = c2dt2 − a2(t)

[

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]

.

• Redshift

1 + z =
a(to)

a(te)
.
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• The first Friedmann equation:

ȧ2 + kc2 =
8πG

3
ρa2.

• The second Friedmann equation:

ä = −4πG

3

(

ρ+
3p

c2

)

a.

• Adiabatic expansion:

ρ̇ = −3
ȧ

a

(

ρ+
p

c2

)

.
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Chapter 3

Models of the Universe

In this chapter we will build models of the Universe by making assumptions
about it contents, plugging them into the Friedmann equations, and see
what happens.

3.1 Equations of state

The Friedmann equations seem to involve four unknowns: the scale factor
a, the spatial curvature parameter k, the matter/energy density ρ, and the
pressure p. Since only two of the Friedmann equations are independent,
we have only two equations for four unknowns. A little thinking shows,
however, that the spatial curvature parameter is not a big problem. From
equation (7.41) we can write

kc2 =
8πG

3
ρ(t)a2(t)− ȧ2(t),

where I display the time argument explicitly. Now, in solving the differen-
tial equations we must always supply some boundary or initial conditions
on the solutions. We are free to choose when to impose these boundary
conditions, and the most convenient choice is to use the present time, which
we will denote by t0. The present value of the Hubble parameter is given by
H0 = H(t0) = ȧ(t0)/a(t0), and if we furthermore define ρ(t0) ≡ ρ0, we can
therefore write

kc2

a20
=

8πG

3
ρ0 −H2

0 .

We thus see that if we specify initial conditions by choosing values for H0

and ρ0, e.g. by using measurements of them, then the spatial curvature is
determined for all times. Therefore,k is not a problem. Since it can only take
on the three discrete values −1, 0, or +1, we can just solve the equations
separately for each of the three values.

However, there still remains three unknown functions a(t), ρ(t), and
p(t), and we have only two independent equations for them. Clearly, we
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need one more equation to close the system. The common way of doing this
is by specifying an equation of state, that is, a relation between pressure p
and matter/energy density ρ. The most important cases for cosmology can
fortunately be described by the simplest equation of state imaginable:

p = wρc2 (3.1)

where w is a constant. We will introduce two important cases here and a
third case (the cosmological constant) in section 3.3.

3.1.1 Dust: non-relativistic matter

The matter in the universe (e.g. the matter in galaxies) is mostly moving
at non-relativistic speeds. Non-relativistic matter in the context of cosmol-
ogy is often called dust, and we will use this term in the following. From
thermodynamics we know that the equation of state of an ideal gas of N
non-relativistic particles of mass m at temperature T in a volume V at low
densities is

p =
NkBT

V
,

where kB is Boltzmann’s constant. We rewrite this slightly:

p =
Nmc2

V mc2
kBT =

kBT

mc2
ρc2,

where ρ = Nm/V is the mass density of the gas. Now, we also recall that
for an ideal gas the mean-square speed of the particles is related to the
temperature as

m〈v2〉 = 3kBT,

and hence

p =
〈v2〉
3c2

ρc2.

Thus, we see that w = 〈v2〉/3c2 for this gas. However, since the particles
are non-relativistic we have v ≪ c, and it is an excellent approximation to
take w ≈ 0 for non-relativistic particles. We will therefore in the following
assume that a dust-filled universe has equation of state

p = 0, (3.2)

that is, dust is pressureless.

3.1.2 Radiation: relativistic matter

For a gas of massless particles, for example photons, the equation of state
is also simple:

p =
1

3
ρc2, (3.3)
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and hence w = 1/3 in this case. You have probably seen this already in
thermodynamics in the discussion of blackbody radiation.

Why do we need to think about radiation? As you may know, the uni-
verse is filled with a relic radiation, the cosmic microwave background, with
a temperature of around 3 K. Although it gives a negligible contribution to
the present energy density of the universe, we will see that it was actually
the dominant component in the distant past, so we need to take it into con-
sideration when we discuss the early universe. There is also a background
radiation of neutrinos. Neutrinos were long considered to be massless, but
we now know that at least one of the three types of neutrino has a small
mass. However, they are so light that it is an excellent approximation to
treat neutrinos as massless in the early universe, and hence they obey the
equation of state (3.3).

3.2 The evolution of the energy density

Equipped with the equation of state, we can now proceed to solve equation
(7.43) to obtain ρ as a function of the scale factor a. Having done this,
we can then proceed to rewrite equations (7.41) and (7.42) as differential
equations for a only.

We start from the general equation of state p = wρc2, where w is a
constant. Inserting this into equation (7.43) gives

ρ̇ = −3
ȧ

a

(

ρ+
wρc2

c2

)

= −3
ȧ

a
(1 + w)ρ.

Now, recall that ρ̇ = dρ/dt and ȧ = da/dt, so that we can rewrite this as
the differential equation

dρ

dt
= −3(1 + w)

ρ

a

da

dt
,

or
dρ

ρ
= −3(1 + w)

da

a
.

This equation is easily integrated. Since we have agreed to specify boundary
conditions at the present time t0, and chosen ρ(t0) = ρ0 and a(t0) = a0, we
find

∫ ρ

ρ0

dρ′

ρ′
= −3(1 + w)

∫ a

a0

da′

a′
,

which gives

ln

(

ρ

ρ0

)

= −3(1 + w) ln

(

a

a0

)

,

or

ρ = ρ0

(

a0
a

)3(1+w)

. (3.4)
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For the case of dust, w = 0, this gives

ρ = ρ0

(

a0
a

)3

, (3.5)

which is easy to understand: since the energy density is proportional to the
matter density and no matter disappears, the density decreases inversely
proportional to the volume, which in turn is proportional to a3.

For radiation, w = 1/3, we find

ρ = ρ0

(

a0
a

)4

, (3.6)

which also has a simple physical interpretation: again there is a factor of
1/a3 from the fact that the energy density decreases with the volume, but in
addition, since the energy of relativistic particles is inversely proportional to
their wavelenghts, which increase in proportion to a, there is an additional
factor of 1/a.

3.3 The cosmological constant

When Einstein had formulated his theory of general relativity, he rapidly
recognized the possibility of applying it to the Universe as a whole. He made
the simplest assumptions possible consistent with the knowledge at his time:
a static, homogeneous and isotropic universe, filled with dust. Bear in mind
that Einstein did this in 1917, and at that time it was not even clear that
galaxies outside our own Milky Way existed, let alone universal expansion!
Following in Einstein’s footsteps we look for static solutions of equations
(2.1,2.2) with p = 0. Then:

ȧ2 + kc2 =
8πG

3
ρa2

ä = −4πG

3
ρa

If the universe is static, then a(t) = a0 = constant, and ȧ = ä = 0. From the
second equation this gives a = a0 = 0 or ρ = 0. The first case corresponds
to having no universe, and the second possibility is an empty universe. In-
serting this in the first equation gives kc2 = 0, hence k = 0. So, a static,
dust-filled universe must necessarily be empty or of zero size. Both options
are in violent disagreement with our existence.

Faced with this dilemma, Einstein could in principle have made the bold
step and concluded that since no static solution is possible, the universe must
be expanding. However, one should bear in mind that when he made his
first cosmological calculations, all observations indicated that the universe
is static. Therefore, Einstein chose to modify his theory so as to allow static
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solutions. How can this be done? The key lies in the so-called cosmological
constant. When Einstein wrote down his field equations, he assumed that
they had the simplest form possible. However, it turns out that they can be
modified slightly by adding a constant which, in Einstein’s way of thinking,
corresponds to assigning a curvature to empty spacetime. In fact, there is no
a priori reason why this term should be equal to zero. When this so-called
cosmological constant term is added, the Friedmann equations turn out to
be (for pressureless matter):

ȧ2 + kc2 =
8πG

3
ρa2 +

Λ

3
a2 (3.7)

ä = −4πG

3
ρa+

Λ

3
a, (3.8)

where Λ is the cosmological constant. Now, a static solution is possible.
Take a = a0 = constant. Then, equation (3.8) gives

Λ = 4πGρ0,

and inserting this in equation (3.7) we get

kc2 =
8πG

3
ρ0a

2
0 +

4πG

3
ρ0a

2
0 = 4πGρ0a

2
0.

Since the right-hand side is positive, we must have k = +1. The static
universe is therefore closed with the scale factor (which in this case gives
the radius of curvature) given by

a0 =
c√

4πGρo
=

c√
Λ
.

This model is called the Einstein universe. Einstein himself was never
pleased with the fact that he had to introduce the cosmological constant.
And it is worth noting that even though the model is static, it is unstable: if
perturbed away from the equilibrium radius, the universe will either expand
to infinity or collapse. If we increase a from a0, then the Λ-term will dom-
inate the equations, causing a runaway expansion, whereas if we decrease
a from a0, the dust term will dominate, causing collapse. Therefore, this
model is also physically unsound, and this is a far worse problem than the
(to Einstein) unattractive presence of Λ.

As I said, Einstein originally introduced the cosmological constant as a
contribution to the curvature of spacetime. Physicists later realized that
empty space, the vacuum, has both energy and pressure, and that this gives
rise to a term of exactly the same form as the cosmological constant on
the right-hand side of the Friedmann equations. To save labour, I move
Einstein’s cosmological constant over to this side of the equations and lump
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them together in an effective cosmological constant, which I will still call Λ,
and write the Friedmann equations with dust and cosmological constant as

ȧ2 + kc2 =
8πG

3
(ρ+ ρΛ)a

2

ä = −4πG

3

(

ρ+ ρΛ +
3pΛ
c2

)

a,

and if we compare the first equation with (3.7) we see that

ρΛ =
Λ

8πG
. (3.9)

Inserting this in the second equation and comparing with equation (3.8) we
find

−4πG

3

(

Λ

8πG
+

3pΛ
c2

)

=
Λ

3
,

which gives

pΛ = − Λ

8πG
c2 = −ρΛc2, (3.10)

and his means w = −1, so for Λ > 0, the pressure is negative! If we consider
how the energy density associated with the cosmological constant evolves
with time, we can insert this equation of state in equation (7.43). This gives

ρ̇Λ = −3
ȧ

a
(ρΛ − ρΛ) = 0,

so that ρΛ = constant = Λ/8πG. The vacuum energy density remains
constant as space expands! The concept of negative pressure may seem odd,
but such things do occur elsewhere in nature. The pressure in e.g. an ideal
gas is positive because we have to do work to compress it. Negative pressure
corresponds to the opposite situation when we have to supply work in order
to make the system expand. A situation like that occurs with a stretched
string: we have to do work in order to stretch if further. It can thus be
considered a ‘negative pressure’ system.

If we insist on a Newtonian interpretation in terms of gravitational forces
instead of spacetime geometry, then a positive cosmological constant is seen
to give rise to a repulsive contribution to the gravitational force. This is,
of course, necessary in order to have a static universe, since a homogeneous
matter distribution starting at rest will collapse. Once Hubble discovered the
expansion of the Universe in 1929, the cosmological constant rapidly dropped
out of fashion since expanding solutions were possible without it. However,
it has come back into fashion from time to time, and now the consensus
is that is should be included. Since it can be associated with the vacuum
energy, and no one yet knows how to calculate that consistently, the most
honest thing to do is to keep Λ in the equations and try to constrain it with
observations. In fact, observations made over the last few years have shown
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that not only is the cosmological constant present, it actually dominates the
dynamics of our universe. We will therefore study both models with and
without a cosmological constant.

3.4 Some classic cosmological models

We will now make a brief survey of the simplest cosmological models. As a
prelude, we consider equation (7.41) rewritten as

(

ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ.

This equation is valid at all times, and so it must also apply at the present
time t0. Since ȧ(t0)/a(t0) = H0, the present value of the Hubble parameter,
we have

1 +
kc2

a20H
2
0

=
8πG

3H2
0

ρ0.

We see that the combination 3H2
0/8πG must have the units of a density.

It is called the present value of the critical density, and denoted by ρc0.
Inserting values for the constants, we have

ρc0 = 1.879 × 10−29h2 g cm−3.

Its importance derives from the fact that for a spatially flat universe, k = 0,
we see from the equation above that

1 =
8πG

3H2
0

ρ0 =
ρ0
ρc0

,

so that for a spatially flat universe, the density equals the critical density.
It is common to measure densities in units of the critical density and define

Ωi0 ≡
ρ0
ρc0

, (3.11)

where the subscript 0 denotes that we are considering the density at the
present time, and the subscript i is for the component in question, for ex-
ample dust i = m, radiation i = r, or a cosmological constant i = Λ.
Furthermore, one also introduces a ‘curvature density parameter’,

Ωk0 = − kc2

a20H
2
0

, (3.12)

and hence we can write

Ωi0 +Ωk0 = 1. (3.13)
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3.4.1 Spatially flat, dust- or radiation-only models

Let us consider the simplest case first: a flat universe (k = 0) filled with
dust (w = 0) or radiation (w = 1/3), and with a vanishing cosmological
constant (Λ = 0). In this case the Friedmann equations become

(

ȧ

a

)2

=
8πG

3
ρ0

(

a

a0

)−3(1+w)

ä

a
= −4πG

3
(1 + 3w)ρ0

(

a

a0

)−3(1+w)

.

Taking the square root of the first equation, we see that it allows both
positive and negative ȧ. However, we know that the universe is expanding
now, so we will consider ȧ/a > 0. The second equation implies that ä < 0
for w > −1/3 which is what we assume in the present discussion. Thus,
the second derivative of the scale factor is always negative. Since we know
that its first derivative is positive now, this must mean that the scale factor
within these models must have been vanishing at some time in the past.
This is useful to know when we want to normalize our solution. Let us start
with the first equation:

(

ȧ

a

)2

= H2
0

8πG

3H2
0

ρ0

(

a

a0

)−3(1+w)

,

where we see that the first factor on the right-hand side is 1/ρc0, and since
k = 0, we have ρ0/ρc0 = 1. Taking the square root of the equation, we
therefore have

ȧ

a
= H0

(

a

a0

)−3(1+w)/2

,

which we rearrange to

a
−3(1+w)/2
0 a

1
2
+ 3

2
wda = H0dt,

which means that

a
−3(1+w)/2
0

∫ a

a0
a′

1
2
+ 3

2
w
da′ =

∫ t

t0
H0dt

′,

or
2

3(1 + w)

(

a

a0

) 3
2
(1+w)

− 2

3(1 + w)
= H0(t− t0).

As it stands, this equation is perfectly fine and can be solved for a as a
function of t. However, we can simplify it further by using the fact noted
earlier that the scale factor must have been equal to zero at some time t < t0.
We see that the solution for a will depend on t − t0 only, so we are free to
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choose the time where the scale factor vanished to be t = 0. Imposing a = 0
at t = 0, we get

2

3(1 +w)
= H0t0,

and we can therefore write

H0t0

(

a

a0

) 3
2
(1+w)

= H0t,

which gives

a(t) = a0

(

t

t0

) 2
3(1+w)

, (3.14)

with

t0 =
2

3(1 + w)H0
. (3.15)

We see that the universe expands according to a power law, and that t0
denotes the current age of the universe (more precisely: the expansion age),
since it is the time elapsed from t = 0 to the present time t0. Note that at
everything breaks down at t = 0: since a = 0 there, the density, scaling as
a negative power of a, is formally infinite, so we have a zero-size universe
with infinite density. Our theory cannot describe such a singular state, so
we must regard our extension of our model to t = 0 as purely mathematical.
As the energy density skyrockets, we must take into account new physical
effects which current theories cannot describe. Quantum gravity, must enter
the stage and modify the picture in a way we can only guess at in our present
state of knowledge.

Note that the expansion age t0 is less than 1/H0, the value it would have
if the universe were expanding at the same rate all the time. Since ä < 0, the
universe is constantly decelerating. We have fixed the scale factor to unity
at the present time t0, and furthermore we have fixed the present expansion
rate to be H0. This explains why the age of the universe in this model is
lower than in the case of expansion at a constant rate: since the universe is
constantly decelerating, in order to expand at a given rate H0 now, it must
have been expanding for a shorter time.

We know that the Universe is not radiation-dominated now, but in its
early stages it was, and so the radiation-dominated model is of interest. For
w = 1/3, we get

a(t) = a0

(

t

t0

) 1
2

(3.16)

t0 =
1

2H0
.

The case of a dust-filled, flat universe is called the Einstein-de Sitter
(EdS) model and was long a favourite among cosmologists. In this case
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w = 0 and we find

a(t) = a0

(

t

t0

) 2
3

(3.17)

t0 =
2

3H0
. (3.18)

If we use H0 = 100h km s−1Mpc−1, and the current best value h ≈ 0.7, we
find that

t0 = 9.3× 109 yrs.

This is a problem for this model, since e.g. the ages of stars in old globu-
lar clusters indicate that the universe must be at least 12 billion years old.
However, as far as we know the universe was dominated by dust until ‘re-
cently’, so that this model is still a useful description of a large part of the
history of the universe. Also, because of its simplicity, one can calculate
a lot of quantities analytically in this model, and this makes it a valuable
pedagogical tool.

3.4.2 Spatially flat, empty universe with a cosmological con-

stant

Let us go back to the Friedmann equations and look at the case where
there is no matter or radiation, but the universe is made spatially flat by a
cosmological constant Λ. In this case we have

ρ = ρΛ =
Λ

8πG
= constant,

and the Friedmann equations for k = 0 become

ȧ2 =
Λ

3
a2

ä =
Λ

3
a

From the first equation we see that

ȧ

a
= ±

√

Λ

3
= constant,

and since H(t) = ȧ/a and we seek a solution which is expanding at the rate
H0 > 0 at the present time t0, we have

√

Λ/3 = H0. We easily see that the
equation

ȧ

a
= H0
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has a(t) = AeH0t as general solution, where A is a constant. We also see
that this solution satisfies the second Friedmann equation. Furthermore,
a(t0) = a0 gives A = a0e

−H0t0 , and hence

a(t) = a0e
H0(t−t0).

We notice two peculiar features of this solution. First of all, it describes a
universe expanding at an accelerating rate, since ä > 0, in contrast to the
dust- and radiation-filled universes of the previous subsection which were
always decelerating. This is because of the negative pressure of the vacuum
energy density (recall that pΛ = −ρΛc2). Secondly, note that there is no sin-
gularity in this case: there is nothing particular happening at t = 0, and in
fact the scale factor is finite and well-behaved at any finite time in the past
and in the future. Since this is a model of a universe with no matter or radi-
ation in it, it obviously does not correspond to the one we live in. However,
observations suggest very strongly that at the present epoch in the history
of the universe, the cosmological constant gives the largest contribution to
the energy density, and makes the universe expand at an accelerating rate.
As matter and radiation are diluted away by the expansion, our universe
will approach the model considered in this subsection asymptotically.

The model we have found is called the de Sitter model, after the Dutch
astronomer Willem de Sitter who first discovered it. He found this solution
shortly after Einstein had derived his static universe model in 1917, and
interestingly, de Sitter actually thought he had discovered another static
solution of Einstein’s equations! By a transformation of the coordinates r
and t to new coordinates r′ and t′ one can actually bring the line element
to the static form

ds2 = (1− r2/R2)dt′2 − dr′2

1− r′2/R2
− r′2dθ2 − r′2 sin θdφ2,

where 1/R2 = Λ/3. It attracted some interest after the discovery of Hubble’s
law, since even from this form of the line element one can show that light
will be redshifted when travelling along geodesics in this universe. Even
though this model describes a universe completely void of matter, it was
thought that the matter density might be low enough for the de Sitter line
element to be a good approximation to the present universe. Note, however,
that the new time coordinate does not have the same significance as the
cosmic time t. It was not until the work of Robertson1 on the geometry of
homogeneous and isotropic universe models that the expanding nature of
the de Sitter solution was clarified.

1H. P. Robertson, ‘On the Foundations of Relativistic Cosmology’, Proceedings of the
National Academy of Science, 15, 822-829, 1929



36 CHAPTER 3. MODELS OF THE UNIVERSE

3.4.3 Open and closed dust models with no cosmological con-

stant

We next turn to another class of models where analytic solutions for the
scale factor a can be obtained: models with dust (non-relativistic matter,
p = 0) and curvature. In terms of the density parameter Ωm0 for matter,
recalling that Ωm0 + Ωk0 = 1, we can write the Friedmann equation for ȧ2

as
H2(t)

H2
0

= Ωm0

(

a0
a

)3

+ (1− Ωm0)

(

a0
a

)2

,

where H(t) = ȧ/a. We now have to distinguish between two cases, corre-
sponding to models which expand forever and models which cease to expand
at some point and then start to contract. If a model stops expanding, this
must mean that ȧ = 0 for some finite value of a, and hence H = 0 at that
point. This gives the condition

Ωm0

(

a0
a

)3

+ (1−Ωm0)

(

a0
a

)2

= 0.

The first term in this equation is always positive, and so for this equation
to be fulfilled the second term must be negative, corresponding to

Ωm0 > 1.

This again gives Ωk0 = −kc2/(a0H0)
2 < 0, and therefore k = +1. It is, of

course, possible that the model will continue to expand after this, but if we
consider the Friedmann equation for ä, we see that in this case ä < 0 always,
which means that the universe will start to contract. Thus we have obtained
the interesting result that dust universes with positive curvature (closed dust
models) will stop expanding at some point and begin to contract, ultimately
ending in a Big Crunch. Models with dust and negative spatial curvature
(open dust models), on the other hand, will continue to expand forever
since H 6= 0 always in that case. This close connection between the energy
content and the ultimate fate of the universe only holds in models where
all components have w > −1/3. We will later see that the addition of a
cosmological constant spoils this nice correspondence.

In the closed case the scale factor a has a maximum value amax given by

Ωm0

(

a0
amax

)3

= (Ωm0 − 1)

(

a0
amax

)2

,

and so

amax = a0
Ωm0

Ωm0 − 1
.

Recall that we have defined the present value of the scale factor a(t0) = a0,
so this means that, for example, if the density parameter is Ωm0 = 2, the
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universe will expand to a maximum linear size of twice its present size.
Note also that H enters the equations only as H2, which means that the
contraction phase H < 0 will proceed exactly as the expansion phase.

Now for the solution of the Friedmann equation. We start with the closed
case and note that we can write the equation for H2 above as

1

H0

da

dt
= a0

√

Ωm0
a0
a

− (Ωm0 − 1),

or

H0dt =
da/a0

√

Ωm0
a0
a − (Ωm0 − 1)

.

The simple substitution x = a/a0 simplifies this equation to

H0dt =
dx

√

Ωm0
x − (Ωm0 − 1)

.

Since we start out with ȧ > 0 and ä < 0 always, there must have been some
point in the past where a = 0. We choose this point to be the zero for our
cosmic time variable t. Then we can integrate both sides of this equation
and find

H0t =

∫ a/a0

0

√
xdx

√

Ωm0 − (Ωm0 − 1)x

=
1√

Ωm0 − 1

∫ a/a0

0

√
xdx√
α− x

,

where we have defined α = Ωm0
Ωm0−1 . We now introduce a change of variables:

x = α sin2
ψ

2
=

1

2
α(1− cosψ),

which gives dx = α sin(ψ/2) cos(ψ/2)dψ and
√
α− x =

√
α cos(ψ/2). Then

the integral can be carried out easily:

H0t =
α√

Ωm0 − 1

∫ ψ

0
sin2

ψ

2
dψ

=
Ωm0

(Ωm0 − 1)3/2
1

2

∫ ψ

0
(1− cosψ)dψ

=
1

2

Ωm0

(Ωm0 − 1)3/2
(ψ − sinψ).

Thus we have obtained a parametric solution of the Friedmann equation:

a(ψ) =
a0
2

Ωm0

Ωm0 − 1
(1− cosψ) (3.19)

t(ψ) =
1

2H0

Ωm0

(Ωm0 − 1)3/2
(ψ − sinψ), (3.20)
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where the parameter ψ varies from 0 to 2π, and the scale factor varies from
0 at ψ = 0 to the maximum value amax at ψ = π, and back to zero for
ψ = 2π. It is easy to show that the age of the universe in this model is given
by

t0 =
1

2H0

Ωm0

(Ωm0 − 1)3/2

[

cos−1
(

2

Ωm0
− 1

)

− 2

Ωm0

√

Ωm0 − 1

]

, (3.21)

and that the lifetime of the universe is

tcrunch = t(2π) =
πΩm0

H0(Ωm0 − 1)3/2
. (3.22)

The solution in the open case (Ωm0 < 1) proceeds along similar lines. In
this case we can manipulate the Friedmann equation for ȧ into the form

H0t =
1√

1− Ωm0

∫ a/a0

0

√
xdx√
x+ β

,

where β = Ωm0/(1 − Ωm0), and then substitute

x =
1

2
β(cosh u− 1) = β sinh2

u

2
.

Using standard identities for hyperbolic functions the integral can be carried
out with the result

H0t =
Ωm0

2(1− Ωm0)3/2
(sinhu− u),

and thus we have the parametric solution

a(u) =
a0
2

Ωm0

1− Ωm0
(cosh u− 1) (3.23)

t(u) =
Ωm0

2H0(1− Ωm0)3/2
(sinhu− u), (3.24)

where the parameter u varies from 0 to ∞. This model is always expanding,
and hence there is no Big Crunch here. The present age of the universe is
found to be

t0 =
1

2H0

Ωm0

(1− Ωm0)3/2

[

2

Ωm0

√

1− Ωm0 − cosh−1
(

2

Ωm0
− 1

)]

. (3.25)

3.4.4 Models with more than one component

We will frequently consider models where more than one component con-
tributes to the energy density of the universe. For example, in the next sub-
section we will consider a model with matter and radiation. Let us look at
the general situation where we have several contributions ρi and pi = pi(ρi)
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to the energy density and pressure, so that, e.g., the first Friedmann equa-
tion becomes

H2 =
8πG

3
ρ =

8πG

3

∑

i

ρi.

The evolution of ρ is found by solving

ρ̇ = −3H

(

ρ+
p

c2

)

,

but this equation can now be written as

∑

i

ρ̇i = −3H
∑

i

(

ρi +
pi
c2

)

,

or
∑

i

[ρ̇i + 3H

(

ρi +
pi
c2

)

] = 0.

As long as pi = pi(ρi) and does not depend on any of the other contributions
to the energy density, the terms in the sum on the left-hand side of the
equation are in general independent, and the only way to guarantee that
the sum vanishes is for the individual terms to be equal to zero, i.e.,

ρ̇i + 3H

(

ρi +
pi
c2

)

= 0.

We have thus shown that when we consider models with more than one
component, we can solve for the evolution of the energy density with the
scale factor for each component separately, and then plug the results into
the Friedmann equations.

3.4.5 Models with matter and radiation

Two components we are quite certain exist in our universe are radiation and
matter. To our present best knowledge, the density parameters for these
two components are Ωr0 ≈ 8.4 × 10−5 and Ωm0 ≈ 0.3. Since the densities
vary as

ρm = ρc0Ωm0

(

a0
a

)3

ρr = ρc0Ωr0

(

a0
a

)4

,

we see that there is a value of a for which the energy densities in the two
components are equal. At this value, aeq, we have

ρc0Ωm0

(

a0
a

)3

= ρc0Ωr0

(

a0
a

)4

,
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which gives

aeq = a0
Ωr0

Ωm0
,

or in terms of redshift 1 + zeq = a0/aeq = Ωm0/Ωr0 ≈ 3570. We see that
aeq ≪ a0, so that this corresponds to an early epoch in the history of
the universe. For a < aeq radiation dominates the energy density of the
universe, whereas for a > aeq the universe is matter dominated. Thus, the
early universe was radiation dominated. I will refer to zeq as the redshift of
matter-radiation equality.

The Friedmann equation for a universe with matter, radiation, and spa-
tial curvature can be written as

H2(t)

H2
0

= Ωm0

(

a0
a

)3

+Ωr0

(

a0
a

)4

+Ωk0

(

a0
a

)2

.

How important is the curvature term? Since it drops off with a as 1/a2

whereas the matter and radiation terms fall as 1/a3 and 1/a4 respectively,
we would expect the curvature term to be negligible for sufficiently small
values of a. Let us see what this means in practice. The curvature term
is negligible compared to the matter term if Ωk0a

2
0/a

2 ≪ Ωm0a
3
0/a

3. This
gives the condition

a

a0
≪ Ωm0

Ωk0
.

To the best of our knowledge, Ωk0 is small, perhaps less than 0.005. In this
case, with Ωm0 = 0.3, we get

a

a0
≪ 60

as the condition for neglecting curvature. This result means that the curva-
ture term will only be important in the distant future. But note that this
argument only applies to the expansion rate. Curvature can still be impor-
tant when we calculate geometrical quantities like distances, even though it
plays a negligible role for the expansion rate.

The condition for neglecting curvature term compared to the radiation
term is easily shown to be

a

a0
≪
√

Ωr0

Ωk0
=

√

Ωm0

Ωk0

Ωr0

Ωm0
∼ 4

√

aeq
a0

≈ 0.52.

In combination, this means that we can ignore the curvature term in the
radiation-dominated phase, and well into the matter-dominated phase. This
simplifies the Friedmann equation to

H2(t)

H2
0

= Ωm0

(

a0
a

)3

+Ωr0

(

a0
a

)4

,
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which can be rewritten as

H0dt =
ada

a20
√
Ωr0

(

1 +
a

aeq

)−1/2

.

Carrying out the integration is left as an exercise. The result is

H0t =
4(aeq/a0)

2

3
√
Ωr0



1−
(

1− a

2aeq

)(

1 +
a

aeq

)1/2


 . (3.26)

From this we can find the age of the universe at matter-radiation equality.
Inserting a = aeq in (3.26), we get

teq =
4

3H0

(

1− 1√
2

)

Ω
3/2
r0

Ω2
m0

,

which for h = 0.7, Ωm0 = 0.3, Ωr0 = 8.4 × 10−5 gives teq ≈ 47000 yr.
Compared to the total age of the universe, which is more than 10 Gyr, the
epoch of radiation domination is thus of negligible duration. But we will see
later in the course that many of the important events in the history of the
Universe took place in the radiation-dominated era.

Equation (3.26) cannot be solved analytically for a in terms of t, but
one can at least show that it reduces to the appropriate solutions in the
radiation- and matter-dominated phases. For a≪ aeq one finds

a(t) ≈ a0(2
√

Ωr0H0t)
1/2,

which has the same t1/2-behaviour as our earlier solution for a flat, radiation-
dominated universe. In the opposite limit, a≫ aeq one finds

a(t) ≈ a0

(

3

2

√

Ωm0H0t

)2/3

,

which corresponds to the behaviour of the flat, matter-dominated Einstein-
de Sitter model discussed earlier.

3.4.6 The flat ΛCDM model

Although the models we have considered in the previous subsections are
important both historically and as approximations to the actual universe in
the radiation dominated era and in the matter dominated era, a combination
of cosmological data now seems to point in the direction of a different model:
a model where the Universe is dominated by dust (mostly in the form of so-
called cold dark matter with the acronym CDM) and a positive cosmological
constant. More specifically, the observations seem to prefer a flat model with
Ωm0 ≈ 0.3 and ΩΛ0 = 1− Ωm0 ≈ 0.7. Hence we should spend some time on
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spatially flat models with matter and a cosmological constant. As we will
see, the Friedmann equation can be solved analytically in this case.

Let us write the Friedmann equation as

H2(t)

H2
0

= Ωm0

(

a0
a

)3

+ (1− Ωm0).

As in the case of dust+curvature, we have to distinguish between two cases.
For Ωm0 > 1, corresponding to ΩΛ < 0, the right hand side of the equa-
tion changes sign at a value amax, and after that the universe will enter a
contracting phase. The value of amax is given by

Ωm0

(

a0
amax

)3

= Ωm0 − 1,

i.e.,
amax

a0
=

(

Ωm0

Ωm0 − 1

)1/3

.

In this case the Friedmann equation can be rewritten as

H0dt =
1√

Ωm0 − 1

√
ada√
α− a3

,

where we have defined α = Ωm0/(Ωm0 − 1) = (amax/a0)
3. Since a = 0 for

t = 0, we now have to calculate the integral

H0t =
1√

Ωm0 − 1

∫ a

0

√
ada√
α− a3

.

The expression in the square root in the denominator suggests that we should
try the substitution a = α1/3(sin θ)2/3. This gives da = 2

3α
1/3(sin θ)−1/3 cos θdθ,

and
√
α− a3 = α1/2 cos θ. When we insert all this in the integral, by a mir-

acle everything except the constant factor 2/3 cancels out, and we are left
with

H0t =
2

3
√
Ωm0 − 1

∫ sin−1[(a/amax)3/2]

0
dθ =

2

3
√
Ωm0 − 1

sin−1

[

(

a

amax

)3/2
]

.

Because of the inverse sine, we see that the universe will collapse in a Big
Crunch after at time

tcrunch =
2π

3H0

1√
Ωm0 − 1

.

We can also solve for the scale factor a as a function of time and find

a(t) = a0

(

Ωm0

Ωm0 − 1

)1/3 [

sin

(

3

2

√

Ωm0 − 1H0t

)]2/3

.
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Note that at early times, a≪ amax, we have

a(t) ≈ amax

(

3

2

√

Ωm0 − 1H0t

)2/3

,

and hence a ∝ t2/3, as expected for a matter-dominated universe.
Although there is no physical reason why the cosmological constant can-

not be negative, observations indicate that we live in a universe where it
is positive. In this case, corresponding to Ωm0 < 1, the right hand side of
the Friedmann equation is always positive, and hence the universe is always
expanding. In this case there is a value of the scale factor where the contri-
bution to the energy density from matter becomes equal to the contribution
from the cosmological constant. This value of the scale factor is given by

Ωm0

(

a0
amΛ

)3

= ΩΛ0 = 1− Ωm0,

which gives

amΛ = a0

(

Ωm0

1− Ωm0

)1/3

.

For a < amΛ matter dominates, and for a > amΛ the cosmological constant
dominates. We can write the Friedmann equation as

H0dt =
1√

1− Ωm0

√
ada

√

β + a3
,

where β = (amΛ/a0)
3. Then,

H0t =
1√

1− Ωm0

∫ a

0

√
ada

√

β + a3
,

and by substituting a = β1/3(sinhu)2/3 and using the properties of the
hyperbolic functions we find that

H0t =
2

3
√
1−Ωm0

sinh−1

[

(

a

amΛ

)3/2
]

. (3.27)

This equation can also be solved for a in terms of t, and this gives

a(t) = a0

(

Ωm0

1− Ωm0

)1/3 [

sinh

(

3

2

√

1− Ωm0H0t

)]2/3

. (3.28)

The present age of the universe in this model is found by inserting a = a0
in equation (3.27):

t0 =
2

3H0

√
1− Ωm0

sinh−1

(
√

1− Ωm0

Ωm0

)

,
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and for Ωm0 = 0.3, h = 0.7 this gives t0 = 13.5 Gyr. Thus the ΛCDM model
is consistent with the age of the oldest observed objects in the universe. At
the value of the scale factor amΛ where the cosmological constant starts to
dominate the energy density of the universe, the age of the universe is

tmΛ =
2

3H0

√
1−Ωm0

sinh−1(1),

which for Ωm0 = 0.3, h = 0.7 gives tmΛ = 9.8 Gyr. Hence, in this model the
universe has been dominated by the cosmological constant for the last 3.7
billion years.

The most peculiar feature of the ΛCDM model is that the universe at
some point starts expanding at an accelerating rate. To see this, we rewrite
the Friedmann equation for ä as

ä

a
= = −4πG

3

(

ρm0
a30
a3

+ ρΛ0 − 3
pΛ
c2

)

= −H
2
0

2

8πG

3H2
0

(

ρm0
a30
a3

− 2ρΛ0

)

= −H
2
0

2

(

Ωm0
a30
a3

− 2ΩΛ0

)

,

and we see that we get ä > 0 (which means accelerating expansion) when
Ωm0a

3
0/a

3 − 2ΩΛ0 < 0. Intuitively, we would think that the universe should
decelerate since we are used to thinking of gravity as an attractive force.
However, a positive cosmological constant corresponds to an effective grav-
itational repulsion, and this then can give rise to an accelerating universe.
The crossover from deceleration to acceleration occurs at the value aacc of
the scale factor given by

aacc = a0

(

1

2

Ωm0

1− Ωm0

)1/3

=

(

1

2

)1/3

amΛ,

and thus it happens slightly before the cosmological constant starts to dom-
inate the energy density of the universe. For our standard values Ωm0 = 0.3,
h = 0.7, this corresponds to a redshift zacc = a0/aacc − 1 ≈ 0.67, and the
age of the universe at this point is

tacc =
2

3H0

√
1− Ωm0

sinh−1
(

1√
2

)

≈ 7.3 Gyr.

In this model, then, the universe has been accelerating for the last 6.2 billion
years.

Finally, let us consider the extreme limits of this model. At early times,
when a ≪ amΛ we can use that sinh−1 x ≈ x for x ≪ 1 in equation (3.27)
to find

H0t ≈
2

3
√
1− Ωm0

(

a

amΛ

)3/2

,
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which gives

a(t) ≈ amΛ

(

3

2

√

1− Ωm0H0t

)2/3

,

so a ∝ t2/3 in the early stages, as expected for a matter-dominated model. In
the opposite limit, a≫ amΛ, we can use the approximation sinh−1 x ≈ ln(2x)
for x≫ 1 in (3.27). Solving for a, we find

a(t) ≈ 2−2/3amΛ exp(
√

1− Ωm0H0t),

so that a ∝ exp(
√
1− Ωm0H0t) in the Λ-dominated phase, as we would have

expected from our discussion of the de Sitter universe.

3.5 Horizons

Which parts of the universe are visible to us now? And which parts will be
visible to us in the future? Given that the speed of light is finite, and that
the universe is expanding, these are relevant question to ask, and leads to
the introduction of the two concepts event horizon and particle horizon. The
best discussion of these concepts is still Wolfgang Rindler’s paper from 1966
(W. Rindler. MNRAS 116, 1966, 662), and I will to a large extent follow his
treatment here. The event horizon answers the question: If distant source
emits a light ray in our direction now, will it reach us at some point in the
future no matter how far away this source is? The particle horizon answers
a different question: Is there a limit to how distant a source, which we have
received, or are receiving, light from by now, can be? Thus, the event horizon
is related to events observable in our future, whereas the particle horizon is
related to events observable at present and in our past. The particle horizon
is particularly important because it tells us how large regions of the universe
are in causal contact (i.e. have been able to communicate by light signals)
at a given time. Since no information, and in particular no physical forces,
can be transmitted at superluminal speed, the particle horizon puts a limit
on the size of regions where we can reasonably expect physical conditions to
be the same.

Let us start by citing Rindler’s definitions of the two horizons:

• Event horizon: for a given fundamental observer A, this is a hypersur-
face in spacetime which divides all events into two non-empty classes:
those that have been, are, or will be observable by A, and those that
are forever outside A’s possible powers of observation.

• Particle horizon: for a given fundamental observer A and cosmic time
t0, this is a surface in the instantaneous 3-space t = t0 which divides
all events into two non-empty classes: those that have already been
observable by A at time t0 and those that have not.
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We will place our fundamental observer at the origin at comoving coor-
dinate r = 0. Light rays will play an important role in the following, and a
light ray going through the origin is described by having dθ = 0 = dφ, and
ds2 = 0, where ds2 is given by the RW line element. This gives

cdt

a(t)
= ± dr√

1− kr2
,

where the plus sign is chosen for rays moving away from the origin, the
minus sign for rays towards the origin. In what follows it is useful to use
the function

S
−1
k (r) =

∫ r

0

dr√
1− kr2

,

introduced in our discussion of the proper distance. From that discussion,
recall that at a given time t1, the proper distance from the origin of a source
at comoving coordinate r1 is given by

dP(t1) = a(t1)S
−1
k (r1).

Now, r1 is by definition constant in time, so the equation of motion describ-
ing the proper distance of the source from the origin at any given time t is
simply

dP(t) = a(t)S−1
k (r1).

Let us now consider a light ray emitted towards the origin from comoving
coordinate r1 at time t1. At time t, its comoving radial coordinate is given
by

∫ r

r1

dr√
1− kr2

= −
∫ t

t1

cdt′

a(t′)
,

from which we find

S
−1
k (r) = S

−1
k (r1)−

∫ t

t1

cdt′

a(t′)
(3.29)

and hence the proper distance of this light ray from the origin at a given
time t is

dlP = a(t)

[

S
−1
k (r1)−

∫ t

t1

cdt′

a(t′)

]

, (3.30)

where the superscript l stands for ‘light’. The key point to note now is that
for the light ray to reach the origin, the expression in the brackets must
vanish at some time, otherwise the light ray will always be at a non-zero
distance from the origin. We will limit our cases to the situation where
S
−1
k (r) is a strictly increasing function of r, which corresponds to k = −1, 0.

(The case of a positively curved universe is more subtle, for details see
Rindler’s original paper.)
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3.5.1 The event horizon

Will the light ray emitted by the source at r1 at time t1 ever reach the
origin? The key question here is whether the integral

∫ ∞

t1

cdt′

a(t′)
,

converges to a finite limit. To see this, note that S−1(r) is a positive, in-
creasing function of r, and that r1 is constant. If r1 is so large that

S
−1
k (r1) >

∫ ∞

t1

cdt′

a(t′)
,

then at no finite time t will the expression in brackets in equation (3.30)
vanish, and hence the light ray will never reach the origin. It may sound
paradoxical that a light ray moving towards the origin at the speed of light
(as measured locally) will never reach it, but bear in mind that space is
expanding while the light ray is moving (and there is no speed limit on
the expansion of space, only on particles moving through space). It is a bit
like an athlete running towards a moving goal. If the finishing line moves
away faster than the athlete can run, he will never reach it. If the integral
converges then, there is a maximum value rEH of r1 such that for r1 > rEH
light emitted from r1 at t1 will never reach the origin. We see that this value
of r is determined by

S
−1
k (rEH) =

∫ ∞

t1

cdt′

a(t′)
,

so that the light ray emitted towards the origin at time t1 reaches the origin
in the infinite future. Light rays emitted at the same time from sources with
S
−1
k (r) > S

−1
k (rEH) will never reach the origin. The time t1 is arbitrary, so

we can replace it by t to make it clear that the event horizon is in general a
time-dependent quantity. The proper distance to the event horizon is given
by

dEHP = a(t)

∫ ∞

t

cdt′

a(t′)
. (3.31)

3.5.2 The particle horizon

The event horizon concerns events observable in the future, whereas the
particle horizon is related to events which have been, or are being, observed
by a given time t (for example now). Again, we consider a source at comoving
radial coordinate r1 which emits a light signal at time t1, so that the equation
of motion of the light signal is again

dlP = a(t)

[

S
−1
k (r1)−

∫ t

t1

cdt′

a(t′)

]

. (3.32)
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We want to know whether there is a limit to which light rays can have
reached the origin by the time t. To maximize the chance of the light
reaching the origin, we consider a light ray emitted at the earliest possible
moment, which normally means taking t1 = 0 (but in the case of the de
Sitter model, where there is no Big Bang, we have to take t1 = −∞.) Since
a(t) → 0 as t → 0, there is a possibility that the integral on the right hand
side diverges. However, in the case where the integral does converge to a
finite value, there will be points r1 so that

S
−1
k (r1) >

∫ t

0

cdt′

a(t′)
,

and a light ray emitted from r1 at t = 0 will then not yet have reached
the origin by time t. We then say that there exist a particle horizon with
comoving radial coordinate at time t determined by

S
−1
k (rPH) =

∫ t

0

cdt′

a(t′)
, (3.33)

and the proper distance of this point from the origin is

dPHP = a(t)

∫ t

0

cdt′

a(t′)
. (3.34)

3.5.3 Examples

First, let us consider the de Sitter model. Recall that in this model we found
that the scale factor is given by a(t) = a0 exp[H0(t− t0)], where t0 is cosmic
time at the current epoch. There is nothing preventing us from defining
t0 = 0, so we will do this for simplicity, and hence take a(t) = a0 exp(H0t).
Bear in mind that there is no Big Bang in this model, and the time t can
vary from −∞ to +∞. Consider the integral

I(t1, t2) =

∫ t2

t1

cdt

a(t)
=

c

a0

∫ t2

t1
e−H0tdt =

c

a0H0
(e−H0t1 − e−H0t2). (3.35)

First, let t1 = t be fixed and let t2 vary. Then we see that I is an increasing
function of t2. Furthermore, we see that I reaches a limiting value as t2 →
∞:

I(t1 = t, t2 → ∞) =
c

a0H0
e−H0t.

Thus, there exists an event horizon in this model. Since the de Sitter model
we consider here is spatially flat, we have S

−1
k (r) = r, and hence the comov-

ing radial coordinate of the event horizon is

rEH =
c

a0H0
e−H0t.



3.5. HORIZONS 49

At a given time t, there is therefore a maximum radial coordinate, rEH, and
light signals emitted from sources with r > rEH at this time will never reach
the origin. Furthermore, as t increases, rEH decreases, and hence more and
more regions will disappear behind the event horizon. This does not mean
that they will disappear completely from our sight: we will be receiving
light signals emitted before the source disappeared inside the event horizon
all the time to t = ∞, but the light will be more and more redshifted. And,
of course, no light signal emitted after the source crossed the event horizon
will ever be received by us. Note that the proper distance to the event
horizon is constant:

dEHP = a(t)rEH =
c

H0
.

Thus, we can look at this in two ways: in comoving coordinates, the observer
(at r = 0) and the source stay in the same place, whereas the event horizon
moves closer to the origin. In terms of proper distances, the origin observer
and the event horizon stay in the same place as time goes by, but the source
is driven away from us by the expansion and eventually moves past the event
horizon.

For the de Sitter model, there is no particle horizon. To see this, fix
t2 = t and let t1 → −∞ in the expression for I(t1, t2) above. Clearly, the
expression diverges. This means that light rays sent out at t = −∞ will have
reached the origin by time t, no matter where they are sent from. Hence, in
this model, the whole universe is causally connected. This is an important
point to note for our discussion of inflation later on.

For our second example, let us consider the flat Einstein-de Sitter model,
where a(t) = a0(t/t0)

2/3, and H0 = 2/3t0. Once again, we start by calculat-
ing the integral

I(t1, t2) =

∫ t2

t1

cdt

a(t)
=

2c

a0H0

[

(

t2
t0

)1/3

−
(

t1
t0

)1/3
]

.

First, let t1 = t be fixed and let t2 vary. We see that I increases without
limit as t2 → ∞, and hence there is no event horizon in this model. Thus,
receiving a light signal emitted anywhere in the universe at any time is just a
matter of waiting long enough: eventually, the light will reach us. However,
for t2 = t fixed, with t1 varying, we see that I has a finite limit for t1 → 0:

I(t1 → 0, t2 = t) =
2c

a0H0

(

t

t0

)1/3

.

Thus, there is a particle horizon in this model. This means that at time t,
there is a limit to how distant a source we can see. The comoving radial
coordinate of the particle horizon is given by

rPH =
2c

a0H0

(

t

t0

)1/3

,
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and the proper distance to the particle horizon is given by (since S−1
k (r) = r

in this model)

dPHP = a(t)rPH =
2c

H0

(

t

t0

)

.

Finally, we note that the ΛCDM model has both a particle horizon (since
it behaves as an EdS model at early times) and an event horizon (since it
behaves as a dS model at late times). I leave the demonstration of this as
an exercise.

3.6 Ages and distances

In order to make contact with observations, we need to know how to cal-
culate observables for the Friedmann models. We will limit our attention
to models containing a mixture of dust, radiation, a cosmological constant,
and curvature. A convenient way of writing the Friedmann equation in this
case is

H2(a)

H2
0

= Ωm0

(

a0
a

)3

+Ωr0

(

a0
a

)4

+Ωk0

(

a0
a

)2

+ΩΛ0, (3.36)

or, since a/a0 = 1/(1 + z), we can alternatively write it as

H2(z)

H2
0

= Ωm0(1 + z)3 +Ωr0(1 + z)4 +Ωk0(1 + z)2 +ΩΛ0. (3.37)

By inserting t = t0 in the first equation, or z = 0 in the second equation,
we see that

Ωm0 +Ωr0 +Ωk0 +ΩΛ0 = 1. (3.38)

We have already obtained expressions for the age of the universe in some
Friedmann models. In general it is not possible to find analytical expressions
for the age, so it is useful to have a form which is suited for numerical
computations. This is easily done by noting that the definition

ȧ

a
=

1

a

da

dt
= H,

can be written as

dt =
da

aH(a)
.

If there is a Big Bang in the model so that a(t = 0) = 0, then we can find
the cosmic time corresponding to the scale factor having the value a as

t(a) =

∫ a

0

da′

a′H(a′)
,
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and the present age of the universe is

t0 =

∫ a0

0

da

aH(a)
, (3.39)

and for given values of the density parameters, this integral can be computed
numerically using equation (3.36). When evaluating the intergral numeri-
cally, it is useful to introduce a dimensionless variable x through a = a0x.
Substituting this in the integral gives

t0 =

∫ 1

0

dx

xH(x)
. (3.40)

We can also write these equations in terms of the redshift z. Note that
1 + z = a0/a implies that

dz = −a0da
a2

= −(1 + z)2
da

a0

so we can write (3.39) as

t0 = −
∫ 0

∞

(1 + z)

(1 + z)2
dz

H(z)
=

∫ ∞

0

dz

(1 + z)H(z)
. (3.41)

However, in numerical computations the form (3.40) is usually more con-
venient since it only involves integration over the finite interval from 0 to
a0.

We have looked at three different measures of distance: The proper
distance, the luminosity distance, and the angular diameter distance. At
the present epoch, they are given by

dP = a0S
−1
k (r) (3.42)

dL = a0(1 + z)r (3.43)

dA =
a0

1 + z
r, (3.44)

so they all depend on the comoving radial coordinate r of the object which
distance we are measuring. If we consider first a spatially flat universe
(k = 0), r is given by

r =

∫ t0

te

cdt

a(t)
, (3.45)

where te is the time at which the light we observe today at t0 was emitted.
We rewrite the integral by substituting dt = da/ȧ:

r =

∫ a0

a(te)

cda

aȧ

=

∫ a0

ae

cda

a2H(a)
H0

H0

=
c

H0

∫ a0

ae

da

a2H(a)/H0
, (3.46)
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where ae ≡ a(te). We typically want to find the distance to an object at a
given redshift z, since the redshift is a directly measurable quantity. The
redshift of the object is given by 1 + z = a0/ae, and we introduce a new
substitution 1 + z′ = a0/a. For a = a0 this gives z′ = 0, while for a = ae we
have z′ = z. Furthermore,

dz′ = −a0
a2
da = − 1

a0

(

a0
a

)2

da = − 1

a0
(1 + z′)2da, (3.47)

so

da = − a0dz
′

(1 + z′)2
. (3.48)

The expression for r then becomes

r =
c

H0

∫ 0

z

1
a20

(1+z′)2
H(z′)
H0

(

− a0
(1 + z′)2

)

dz′

= − c

a0H0

∫ 0

z

dz′

H(z′)/H0

=
c

a0H0

∫ z

0

dz′

H(z′)/H0
(3.49)

The different distances follow easily, for example

dL = a0(1 + z)
c

a0H0

∫ z

0

dz′

H(z′)/H0
=
c(1 + z)

H0

∫ z

0

dz′

H(z′)/H0
, (3.50)

and we see that the present value of the scale factor, a0, cancels out.
What do we do when k 6= 0? In that case, we have seen that

r = Sk

(∫ t0

te

cdt

a(t)

)

, (3.51)

where Sk(x) = sin(x) for k = +1, and Sk(x) = sinh(x) for k = −1 (for
k = 0 Sk(x) = x and we are back in the situation considered in the previous
section). The integral we have looked at already, so we can write

r = Sk

(

c

a0H0

∫ z

0

dz′

H(z′)/H0

)

, (3.52)

but now it is no longer obvious that the present value of the scale factor
(which is not so easy to measure) will cancel out in the final results for the
distances. However, we note that now

Ωk0 = − kc2

a20H
2
0

6= 0. (3.53)

For k = +1 we can write

−Ωk0 =
c2

a20H
2
0

, (3.54)
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and since −Ωk0 > 0, we get

a0 =
c

H0
√
−Ωk0

. (3.55)

For k = −1 we have

Ωk0 =
c2

a20H
2
0

, (3.56)

and
a0 =

c

H0

√
Ωk0

. (3.57)

We can summarize both cases by writing

a0 =
c

H0

√

|Ωk0
, (3.58)

and we now have a0 expressed in terms of quantities we can more easily
obtain. Substituting for a0 in the expression for r gives

r = Sk

(

c

H0

H0

√

|Ωk0

c

∫ z

0

dz′

H(z′)/H0

)

= Sk

(

√

|Ωk0

∫ z

0

dz′

H(z′)/H0

)

, (3.59)

and the final expression for, e.g., the luminosity distance becomes

dL = a0(1 + z)r =
c(1 + z)

H0

√

|Ωk0
Sk

(

√

|Ωk0

∫ z

0

dz′

H(z′)/H0

)

. (3.60)

Note that this result includes the case k = 0. Both sin(x) and sinh(x) are
approximately equal to x as x→ 0, so

lim
|Ωk0|→0

dL =
c

H0

√

|Ωk0|
(1 + z)

√

|Ωk0

∫ z

0

dz′

H(z′)/H0

=
c(1 + z)

H0

∫ z

0

dz′

H(z′)/H0
, (3.61)

in agreement with equation (3.50).
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Chapter 4

The early universe

So far we have only been concerned with the space-time geometry of the
Universe. The cosmological principle determined the form of the metric up
to the spatial curvature k and the scale factor a(t). The spatial curvature
is determined by the total density, and we used the Friedmann equations to
find a(t) in some more or less realistic models.

Now it is time to take a look at the history of the contents of the Universe.
This history begins in the radiation dominated era.

4.1 Radiation temperature in the early universe

We have earlier seen that the universe was dominated by its ultrarelativis-
tic (radiation) component during the first few tens of thousands of years.
Then, a ∝

√
t, and H = ȧ/a ∝ 1/t. From your course on statistical physics

and thermodynamics you recall that the energy density of a gas of ultrarela-
tivistic particles is proportional to T 4, the temperature to the fourth power.
Also, we have found that the variation of the energy density with scale fac-
tor for ultrarelativistic particles is ρc2 ∝ 1/a4. From this, we immediately
deduce two important facts:

T ∝ 1

a
∝ (1 + z), (4.1)

T ∝ 1√
t
, (4.2)

where the last equality follows from the Friedmann equation. This tells
us that the temperature of the radiation increases without limit as we go
backwards in time towards the Big Bang at t = 0. However, there are
strong reasons to believe that the physical picture of the universe has to be
altered before we reach t = 0 and T = ∞, so that it is not strictly valid
to extrapolate equations (4.1) and (4.2) all the way back to the beginning.
The result is based on thermodynamics and classical GR, and we expect

55
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quantum gravity to be important in the very early universe. We can get
an estimate of the energy scale where quantum gravity is important by the
following argument: quantum dynamics is important for a particle of mass
m when we probe length scales corresponding to its Compton wave length
2πh̄/(mc). General relativistc effects dominate when we probe distances
corresponding to the Schwarzschild radius 2Gm/c2. Equating the two, we
find the characteristic energy scale (neglecting factors of order unity)

EP = mPc
2 ∼

√

h̄c5

G
≈ 1019 GeV. (4.3)

From Heisenbergs uncertainty principle, the time scale associated with this
energy scale is

tP ∼ h̄

EP
=

√

h̄G

c5
≈ 10−43 s, (4.4)

and the corresponding length scale is

ℓP =

√

h̄G

c3
≈ 10−35 m. (4.5)

Unfortunately, there is no universally accepted theory of quantum gravity
yet. The most common view is that string theory holds the key to unlock the
secrets of the very early universe, but this framework is still in the making
and a lot of work remains before it can be used to make testable predictions
for particle physics and the beginning of the universe. Thus, even though
the Big Bang model extrapolated back to t = 0 says that the universe began
at a point of infinite temperature and density, this cannot be looked upon
as a prediction of the true state of affairs. New physics is bound to enter
the picture before we reach t = 0. We really don’t know anything about
exactly how the universe began, if it began at all. All we can say is that our
observable universe has evolved from a very hot and dense phase some 14
billion years ago. One should therefore be very wary of strong philosophical
statements based on arguments concerning the Big Bang singularity1. It
might well not exist.

4.2 Statistical physics: a brief review

If we wish to be more precise about the time-temperature relationship than
in the previous section, we need to know how to calculate the statistical
properties of gases in thermal equilibrium. The key quantity for doing so
for a gas of particles of species i is its distribution function fi(p). This

1An example of two philosophers battling it out over the implications of the Big Bang
model can be found in the book ‘Theism, atheism, and Big Bang cosmology’ by W. L.
Craig and Q. Smith (Clarendon Press, Oxford, 1993)
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function tells us what fraction of the particles is in a state with momentum
p at at given temperature T , and it is given by

fi(p) =
1

e(Ei(p)−µi)/(kBT ) ± 1
, (4.6)

where kB is Boltzmann’s constant, µi is the chemical potential of the species,

Ei =
√

p2c2 +m2
i c

4 (mi is the rest mass of a particle of species i), and the

plus sign is for fermions (particles of half-integer spin), whereas the minus
sign is chosen if the particles i are bosons (have integer spin). Remember
that fermions obey the Pauli principle, which means that any given quantum
state can accomodate at most one particle. For bosons, no such restriction
applies. Note that E(p) depends only on p =

√

p2, and therefore we can
write fi = fi(p).

Once the distribution function is given, it is easy to calculate equilibrium
properties of the gas, like the number density, energy density, and pressure:

ni =
gi

(2πh̄)3

∫

fi(p)d
3p, (4.7)

ρic
2 =

gi
(2πh̄)3

∫

Ei(p)fi(p)d
3p, (4.8)

Pi =
gi

(2πh̄)3

∫

(pc)2

3E(p)
fi(p)d

3p, (4.9)

where the pressure is denoted by a capital P in this chapter to distinguish
it from the momentum p. The quantity gi is the number of internal degrees
of freedom of the particle, and is related to the degeneracy of a momentum
state. For a particle of spin S, we normally have gi = 2S+1, corresponding
to the number of possible projections of the spin on a given axis. There
are, however, important exceptions to this rule. Massless particles, like the
photon, are constrained to move at the speed of light. For such particles it
turns out that is impossible to find a Lorentz frame where the spin projection
vanishes. Thus, for photons, which have S = 1, there are only two possible
spin projections (polarization states).

It is useful to write the integrals above as integrals over the particle
energy Ei instead of the momentum p. Using the relation between energy
and momentum,

E2
i = p2c2 +m2

i c
4,

we see that EidEi = c2pdp, and

p =
1

c

√

E2
i −m2

i c
4.

Furthermore, since the distribution function depends on p only, the angular
part of the integral gives just a factor 4π, and so we get

ni =
gi

2π2(h̄c)3

∫ ∞

mic2

(E2 −m2
i c

4)1/2EdE

exp[(E − µi)/(kBT )]± 1
, (4.10)
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ρic
2 =

gi
2π2(h̄c)3

∫ ∞

mic2

(E2 −m2
i c

4)1/2E2dE

exp[(E − µi)/(kBT )]± 1
, (4.11)

Pi =
gi

6π2(h̄c)3

∫ ∞

mic2

(E2 −m2
i c

4)3/2dE

exp[(E − µi)/(kBT )]± 1
. (4.12)

We will normally be interested in the limit of non-relativistic particles,
corresponding to mic

2/(kBT ) ≫ 1, and the ultrarelativistic limit, corre-
sponding to mic

2/(kBT ) ≪ 1. We take the latter first, and also assume
that kBT ≫ µi. This assumption, that the chemical potential of the particle
species in question is negligible, is valid in most applications in cosmology.
This is easiest to see in the case of photons, where one can derive the distri-
bution function in the canonical ensemble (corresponding to fixed particle
number, volume, and temperature), with the result that it is of the Bose-
Einstein form with µ = 0. With these approximations, let us first calculate
the energy density, and consider the case of bosons first. Then

ρic
2 ≈ gi

2π2(h̄c)3

∫ ∞

mic2

E3dE

exp(E/kBT )− 1
.

We introduce the substitution x = E/(kBT ), which gives

ρic
2 ≈ gi(kBT )

4

2π2(h̄c)3

∫ ∞

0

x3dx

ex − 1
,

where we have taken the lower limit in the integral to be 0, sincemic
2 ≪ kBT

by assumption. The integral can be looked up in tables, or you can calculate
it yourself in several different ways. For example, we can start by noting
that e−x < 1 for x > 0, so that the expression 1/(1− e−x) can be expanded
in an infinite geometric series. We can therefore proceed as follows:

∫ ∞

0

x3dx

ex − 1
=

∫ ∞

0
x3e−x

1

1− e−x
dx

=

∫ ∞

0
x3e−x

∞
∑

n=0

e−nxdx =
∞
∑

n=0

∫ ∞

0
x3e−(n+1)xdx

=
∞
∑

n=0

1

(n+ 1)4

∫ ∞

0
t3e−tdt.

The last integral is by the definition of the gamma function equal to Γ(4).
I leave it as an exercise for you to show that Γ(n) = (n − 1)! when n is a
positive integer. Thus the integral is given by

∫ ∞

0

x3dx

ex − 1
= 3!

∞
∑

n=1

1

n4
,

and the sum is by definition the Riemann zeta function ζ(x) evaluated at
x = 4, which can be shown to have the value π4/90. Therefore,

∫ ∞

0

x3dx

ex − 1
= Γ(4)ζ(4) = 3!

π4

90
=
π4

15
.
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The energy density of a gas of ultrarelativistic bosons is therefore given by

ρic
2 =

giπ
2

30

(kBT )
4

(h̄c)3
. (4.13)

In the case of fermions, we need to evaluate the integral

∫ ∞

0

x3dx

ex + 1
.

This can be done by the same method used for the bosonic integral, but the
simplest way is to relate the two cases by using the identity

1

ex + 1
=

1

ex − 1
− 2

e2x − 1
.

Then,

∫ ∞

0

x3dx

ex + 1
=

∫ ∞

0

x3dx

ex − 1
− 2

∫ ∞

0

x3dx

e2x − 1

=

∫ ∞

0

x3dx

ex − 1
− 2

24

∫ ∞

0

t3dt

et − 1

=

∫ ∞

0

x3dx

ex − 1
− 1

23

∫ ∞

0

x3dx

ex − 1

=
7

8

∫ ∞

0

x3dx

ex − 1
,

where we have used the substitution t = 2x, and the fact that the integration
variable is just a ‘dummy variable’ to rename the integration variable from
t to x and thus we have

ρic
2 =

7

8

giπ
2

30

(kBT )
4

(h̄c)3
. (4.14)

for ultrarelativistic fermions. The calculation of the number density pro-
ceeds along the same lines and is left as an exercise. The result is

ni =
giζ(3)

π2

(

kBT

h̄c

)3

bosons (4.15)

=
3

4

giζ(3)

π2

(

kBT

h̄c

)3

fermions, (4.16)

where ζ(3) ≈ 1.202. Furthermore, it is easy to show that the pressure is
related to the energy density by

Pi =
1

3
ρic

2, (4.17)

for both bosons and fermions.
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In the non-relativistic limit, mic
2 ≫ kBT , we expand the energy of a

particle in powers of its momentum p, which to second order gives Ei ≈
mic

2 + p2/(2mi), and we find that the particle number density is given by

ni ≈ gi
2π2(h̄c)3

c3
∫ ∞

0

p2dp

exp

(

mic2+
p2

2mi
−µi

kBT

)

± 1

≈ gi

2π2h̄3

∫ ∞

0
p2 exp

(

µi −mic
2

kBT

)

exp

(

− p2

2mikBT

)

dp

=
gi

2π2h̄3
exp

(

µi −mic
2

kBT

)

(2mikBT )
3/2
∫ ∞

0
x2e−x

2
dx.

The remaining integral can either be looked up in tables, or be obtained from
the more familiar integral

∫∞
0 exp(−αx2)dx =

√

π/4α by differentiating on
both sides with respect to α. It has the value

√
π/4. The final result is then

ni = gi

(

mikBT

2πh̄2

)3/2

exp

(

µi −mic
2

kBT

)

. (4.18)

Note that this result is independent of whether the particles are fermions or
bosons, i.e., whether they obey the Pauli principle or not. The reason for
this is that in the non-relativistic limit the occupation probability for any
momentum state is low, and hence the probability that any given state is
occupied by more than one particle is negligible. In the same manner one
can easily find that

ρic
2 ≈ nimic

2, (4.19)

Pi = nikBT, (4.20)

again, independent of whether the particles obey Bose-Einstein or Fermi-
Dirac statistics. From this we see that

Pi
ρic2

=
kBT

mic2
≪ 1,

which justifies our use of P = 0 as the equation of state for non-relativistic
matter.

In the general case, the energy density and pressure of the universe gets
contributions from many different species of particles, which can be both
ultrarelativistic, non-relativistic, or something in between. The contribu-
tion to the energy density of a given particle species of mass mi, chemical
potential µi, and temperature Ti can be written as

ρic
2 =

gi
2π2

(kBTi)
4

(h̄c)3

∫ ∞

xi

(u2 − x2i )
1/2u2du

exp(u− yi)± 1
,
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where u = E/(kBTi), xi = mic
2/(kBTi), and yi = µi/(kBTi). It is convenient

to express the total energy density in terms of the photon temperature, which
we will call T , since the photons are still with us, whereas other particles,
like muons and positrons, have long since annihilated. We therefore write
the total energy density as

ρc2 =
(kBT )

4

(h̄c)3

∑

i

(

Ti
T

)4 gi
2π2

∫ ∞

xi

(u2 − x2i )
1/2u2du

exp(u− yi)± 1
.

Similarly, the total pressure can be written as

P =
(kBT )

4

(h̄c)3

∑

i

(

Ti
T

)4 gi
6π2

∫ ∞

xi

(u2 − x2i )
3/2du

exp(u− yi)± 1
.

We note from our earlier results that the energy density and pressure of
non-relativistic particles is exponentially suppressed compared to ultrarel-
ativistic particles. In the early universe (up to matter-radiation equality)
it is therefore a good approximation to include only the contributions from
ultrarelativistic particles in the sums. With this approximation, and using
equations (4.13) and (4.14), we get

ρc2 ≈ π2

30

(kBT )
4

(h̄c)3

[

∑

i=bosons

gi

(

Ti
T

)4

+
7

8

∑

i=fermions

gi

(

Ti
T

)4
]

,

which we can write compactly as

ρc2 =
π2

30
g∗

(kBT )
4

(h̄c)3
, (4.21)

where we have defined the effective number of relativistic degrees of freedom,

g∗ =
∑

i=bosons

gi

(

Ti
T

)4

+
7

8

∑

i=fermions

gi

(

Ti
T

)4

. (4.22)

Since Pi = ρc2/3 for all ultrarelativistic particles, we also have

P =
1

3
ρc2 =

π2

90
g∗

(kBT )
4

(h̄c)3
. (4.23)

Note that g∗ is a function of the temperature, but usually the dependence
on T is weak.

Using (4.21) in the Friedmann equation gives

H2 =
8πG

3c2
ρc2 =

4π3

45

G

h̄3c5
g∗(kBT )

4,
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Using the definition of the Planck energy, EP =
√

h̄c5/G, we can write this
as

H =

(

4π3

45

)1/2

g
1/2
∗ (T )

(kBT )
2

h̄EP
≈ 1.66g

1/2
∗ (T )

(kBT )
2

h̄EP
. (4.24)

Furthermore, sinceH = 1/2t in the radiation dominated era, and the Planck
time is related to the Planck energy by tP = h̄/EP, we find

t

tP
=

1

2

(

45

4π3

)1/2

g
−1/2
∗ (T )

(

kBT

EP

)−2

= 0.301g
−1/2
∗ (T )

(

kBT

EP

)−2

, (4.25)

and using the values EP = 1.222 × 1019 GeV, tP = 5.391 × 10−44 s, we can
write this result in the useful form

t ≈ 2.423g
−1/2
∗ (T )

(

kBT

1 MeV

)−2

s. (4.26)

Thus, we see that the universe was a few seconds old when the photon

temperature had dropped to kBT = 1 MeV, if g
1/2
∗ was not much larger

than one at that time. The quantity g∗ depends on how many particles are
ultrarelativistic, their internal degrees of freedom, and their temperature
relative to the photon temperature.

4.3 The Boltzmann equation

If we want to study processes involving particle creation, freeze-out of ther-
mal equilibrium etc., it is important to be able to consider systems which
are not necessarily in thermal equilbrium. The key equation in this context
is the Boltzmann equation.

The Boltzmann equation is trivial when stated in words: the rate of
change in the abundance of a given particle is equal to the rate at which
it is produced minus the rate at which it is annihilated. Let’s say we are
interested in calculating how the abundance of particle 1 changes with time
in the expanding universe. Furthermore, assume that the only annihilation
process it takes part in is by combining with another particle, 2, to form two
particles, 3 and 4: 1 + 2 → 3 + 4. Also, the reverse process is taking place,
3 + 4 → 1 + 2, and in equilbrium the two processes are in balance. The
Boltzmann equation which formalizes the statement above looks like this:

a−3d(n1a
3)

dt
= n

(0)
1 n

(0)
2 〈σv〉

[

n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

]

. (4.27)

In this equation, n
(0)
i denotes the number density of species i in thermal

equilibrium at temperature T , which we derived in section 2.2, equations
(2.15), (2.16), and (2.18), and 〈σv〉 is the so-called thermally averaged cross
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section, which basically measures the reaction rate in the medium. Note
that the left-hand side of this equation is of order n1/t or, since the typ-
ical cosmological timescale is 1/H, n1H. The right-hand side is of order

n
(0)
1 n

(0)
2 〈σv〉, so we see that if the reaction rate n

(0)
2 〈σv〉 ≫ H, then the only

way for this equation to be fulfilled, is for the quantity inside the square
brackets to vanish:

n3n4

n
(0)
3 n

(0)
4

=
n1n2

n
(0)
1 n

(0)
2

, (4.28)

which therefore can be used when the reaction rate is large compared to the
expansion rate of the universe.

Conversely, if the reaction rate is much smaller than the expansion rate,
the right-hand side of the Boltzmann equation is practically zero, which
means that the number of particles of type 1 is constant. This species is
then ofen said to have been frozen out. As a rule of thumb, we say that this
happens when the interaction rate drops below the expansion rate.

4.4 An extremely short course on particle physics

We will confine our attention to the so-called Standard Model of elementary
particle physics. This highly successful model should be considered one of
the highlights of the intellectual history of the 20th century2. The Stan-
dard Model summarizes our current understanding of the building blocks of
matter and the forces between them. The fermions of the model are the con-
stituents of matter, whereas the bosons transmit the forces between them.
Some of the properties of the fermions are summarized in table 1.1. Note
that there are three generations of fermions, each heavier than the next.
The charges are given in units of the elementary charge e. The fractionally
charged particles are the quarks, the building blocks of baryons and mesons,
like the neutron, the proton and the pions. The baryons are built from three
quarks, whereas the mesons are built from quark-antiquark pairs. The par-
ticles with integer charges in the table are called leptons. In addition to the
properties given in the table, the fermions have important quantum numbers

which correspond to internal degrees of freedom:

• Each quark has three internal degrees of freedom, called colour.

• All quarks and leptons have spin 1/2, giving two internal degrees of
freedom (2S + 1 = 2) associated with spin.

• For each fermion, there is a corresponding antifermion with the same
mass and spin, but with the opposite charge.

2For an introduction at the popular level, I can recommend R. Oerter: ‘The theory
of almost everything’ (Pi Press, New York, 2006). The detailed properties of elementary
particles, as well as several highly readable review articles, can be found at the web site
of the Particle Data Group: http://pdg.lbl.gov/
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Electric charge Q = 0 Q = −1 Q = +2/3 Q = −1/3

1. family νe(< 3 eV) e (511 keV) u (1.5-4 MeV) d (4-8 MeV)

2. family νµ (< 0.19 MeV) µ (106 MeV) c (1.15-1.35 GeV) s (80-130 MeV)

3. family ντ (< 18.2 MeV) τ (1.78 GeV) t (170-180 GeV) b (4.1-4.4 GeV)

Table 4.1: The fermions of the Standard Model. The numbers in the paran-
theses are the particle rest masses mc2

• Note that the neutrinos are normally approximated as being mass-
less (although we know now that this is not strictly correct). They
are the only electrically neutral fermions in the Standard Model, but
they have a different charge called weak hypercharge, which means that
neutrinos and antineutrinos are different particles (at least within the
Standard Model). Even though neutrinos have spin 1/2, when they
are considered massless they have only one internal degree of freedom
associated with the spin. For a given neutrino, only one of two pos-
sibilities are realized: either the spin is aligned with the direction of
the momentum, or it is anti-aligned. In the first case, we say that
they are right-handed, in the second case they are left-handed. In
the Standard Model, neutrinos are left-handed, antineutrinos right-
handed. This property is closely related to the fact that the weak
interaction (the only interactions neutrinos participate in) breaks in-
variance under parity transformations (reflection in the origin).

Many quantum numbers are important because they are conserved in the
interactions between different particles:

• The total spin is always conserved.

• The electric charge is always conserved.

• In the Standard Model, baryon number is under normal circumstances
conserved. The baryon number is defined so that the baryon number
of any quark is 1/3, and that of its corresponding antiquark is −1/3.
Thus, e.g., the baryon number of the proton is +1, whereas all mesons
have baryon number 0.

• The lepton number is conserved. One can actually define three lep-
ton numbers, one associated with each generation: the electron lepton
number, the muon lepton number, and the tau lepton number. Each
is defined so that the leptons in each generation has lepton number 1,
their corresponding antiparticles have lepton number -1. In all inter-
actions observed so far, each of the three lepton numbers is conserved
separately.



4.4. AN EXTREMELY SHORT COURSE ON PARTICLE PHYSICS 65

Particle Interaction Mass (mc2 Electric charge

Photon Electromagnetic 0 0

Z0 Weak (neutral current) 91 GeV 0

W+,W− Weak (charged current) 80 GeV ±1

Gluons, gi, i = 1, . . . , 8 Strong 0 0

Table 4.2: The gauge bosons of the Standard Model.

The fundamental forces in nature are gravity, electromagnetism, the
weak interaction, and the strong interaction. Gravity is special in that
it affects all particles, and that it is normally negligible compared with the
other forces in elementary particle processes. This is fortunate, since gravity
is the only force for which we do not have a satisfactory quantum mechanical
description. The other three forces are in the Standard Model mediated by
the so-called gauge bosons. Some of their properties are summarized in table
1.2. All of the gauge bosons have spin 1, which corresponds to 2S + 1 = 3
internal degrees of freedom for a massive particle. But since the photon and
the gluons are massless, one of these degrees of freedom is removed, so they
are left with only two. Since the W± and Z0 bosons are massive, they have
the full three internal degrees of freedom.

Of the fermions in the Standard Model, all charged particles feel the
electromagnetic force. All leptons participate in weak interactions, but not
in the strong interaction. Quarks take part in both electromagnetic, weak,
and strong interactions. One of the triumphs of the Standard Model is that
it has been possible to find a unified description of the electromagnetic and
the weak interaction, the so-called electroweak theory. Efforts to include the
strong interaction in this scheme to make a so-called Grand Unified Theory
(GUT) have so far met with little success 3.

In addition to the fermions and the gauge bosons, the Standard Model
also includes an additional boson, the so-called Higgs boson: A spin-zero
particle that is a consequence of a trick implemented in the Standard Model,
the so-called Higgs mechanism, in order to give masses to the other particles
without violating the gauge symmetry of the electroweak interaction.

We can now sum up the total number of degrees of freedom in the Stan-
dard Model. For one family of fermions, each of the two quarks in the family
has two spin degrees of freedom and three colours, making the contribution
from quarks equal to 12. A charged lepton contributes two spin degrees of
freedom, whereas the neutrino contributes only 1. The total contribution

3Note that some popular accounts of particle physics claim that gravity is included in
a GUT. This is wrong, the term is reserved for schemes in which the electromagnetic, the
weak, and the strong force are unified. A theory that also includes gravity is often given
the somewhat grandiose name ‘Theory of Everything’ (TOE).
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from the fermions of one family is hence 12 + 2 + 1 = 15. In addition,
each particle in the family has its own antiparticle with the same number
of internal degrees of freedom, and there are in total three generations of
fermions. Hence, the total number of degrees of freedom for the fermions in
the Standard Model is gtotfermions = 2 × 3 × 15 = 90. As for the bosons, the
photon contributes 2 degrees of freedom, W± and Z0 each contribute 3, the
eight gluons each contribute 2, whereas the spin-0 Higgs boson only has one
internal degree of freedom. The total for the bosons of the Standard Model
is hence gtotbosons = 2 + 3× 3 + 8× 2 + 1 = 28. The total number of internal
degrees of freedom in the Standard Model is therefore 90 + 28 = 118.

Having tabulated the masses (which tell us which particles can be con-
sidered relativistic at a given temperature) and the number of degrees of
freedom of each particle in the Standard Model, we are almost ready to go
back to our study of thermodynamics in the early universe. However, we
need a few more inputs from particle physics first. Recall that when we ap-
ply thermodynamics and statistical mechanics to a system, we assume that
it is in thermal equilibrium. This is in general a good approximation for
the universe as a whole through most of its history. However, some particle
species dropped out of equilibrium at early times and so became decoupled
from the rest of the universe. The key to finding out when this happens for
a given particle is to compare its total interaction rate with the expansion
rate of the Universe. If the interaction rate is much lower than the expansion
rate, the particles do not have time enough to readjust their temperature to
the temperature of the rest of the universe. The rule of thumb is thus that
particles are in thermal equlibrium with other components of the universe if
their interaction rate Γ with those components is greater than the expansion
rate H.

The interaction rate Γ has units of inverse time and is given by Γ = nσv,
where n is the number density, σ is the total scattering cross section, and v
is the average velocity of the particles in question. The scattering cross sec-
tion has units of area, and is related to the probability for a given reaction
to take place. To learn how to calculate such things for elementary parti-
cle interactions involves getting to grips with the machinery of relativistic
quantum field theory. However, some of the basic features can be under-
stood without having to go through all that. What one learns in quantum
field theory is that the scattering amplitude for a given process (the cross
section is related to the square of the scattering amplitude) can be expanded
as a perturbative series in the strength of the interaction governing the pro-
cess. The perturbation series can be written down pictorially in terms of
so-called Feynman diagrams, where each diagram can be translated into a
mathematical expression giving the contribution of the diagram to the total
amplitude. If the interaction strength is weak, it is usually enough to con-
sider the lowest-order diagrams only. An example will make this clearer. Let
us consider the (predominantly) electromagnetic process where an electron
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e(-)

1/s

e(+)

µ(+)

µ(−)

γ

e e

Figure 4.1: Lowest-order Feynman diagram for muon pair production from
an electron-positron pair. In the diagram, time flows from left to right.

and a positron annhilate and produce a muon-antimuon pair. The lowest-
order diagram for this process is shown in figure 4.1. A point where three
lines meet in a diagram is called a vertex. Each vertex gives rise to a factor
of the coupling constant describing the strength of the relevant interaction.
Since we neglect gravity, there are three different coupling constants which
may enter:

• The electromagnetic coupling constant, gEM ∼ e, the elementary charge.
Often it is replaced with the so-called fine structure constant α =
e2/(4πǫ0h̄c) ∼ 1/137.

• The weak coupling constant. In the electroweak theory, this is related
to the electromagnetic coupling constant, so that gweak = e/ sin θW ,
where θW is the so-called Weinberg angle. From experiments we have
sin2 θW ≈ 0.23.

• The strong coupling constant, αs = g2s/4π ∼ 0.3.

The line connecting the two vertices, in this case representing a so-called
virtual photon, gives rise to a propagator factor 1/(s −m2

i c
4), where mi is

the mass of the particle in the intermediate state. Here, since the photon is
massless, the propagator is simpy 1/s. The quantity s is the square of the
total center-of-mass energy involved in the process. So, apart from some
numerical factor, the diagram above, which is the dominating contribution
to the cross section, has an amplitude e× e× 1/s. To find the cross section,
we have to square the amplitude, and in addition we have to sum over all
initial states of the electrons and all final states of the muons. This gives
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Figure 4.2: Lowest-order Feynman diagram for νee
+ → νµµ

+.

rise to a so-called phase space factor F . Thus,

σ ∝ F ×
(

e2

s

)2

= F
e4

s2
∝ F

α2

s2
.

For center-of-mass energies which are much higher than the rest masses of
the particles involved, i.e., for ultrarelativistic particles, the phase space
factor can be shown to scale as s, and thus we get

σ ∝ α2

s
.

This is often accurate enough for cosmological purposes. A more detailed
calculation gives the result σ = 4πα2/(3s).

When considering weak interactions, the only important difference from
electromagnetic interactions is that the particles mediating this force, theW
and Z bosons, are very massive particles. Taking the process νee

+ → νµµ
+

as an example, the diagram looks as shown in figure 4.2. The two vertices
contribute a factor gweak = e/ sin θW each. At the accuracy we are working,
we can just take gweak ∼ e. The propagator gives a factor 1/(s−m2

W c
4), so

that the cross section is

σweak ∝ F
α2

(s−m2
W c

4)2
∼ α2s

(s−m2
W c

4)2
.

For
√
s ≪ mW c

2 ≈ 80 GeV, we see that σweak ∼ α2s/(mW c
2)4, which is a

lot smaller than typical electromagnetic cross sections. Note, however, that
at high center-of-mass energies

√
s ≫ mW c

2, the cross section is again of
the same order of magnitude as electromagnetic cross sections. This reflects
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another aspect of electroweak unification: at low energies, the electromag-
netic and weak interactions look very different, but at very high energies
they are indistinguishable. Note that one often sees weak interaction rates
expressed in terms of the so-called Fermi coupling constant, GF , which is
related to the weak coupling constant by

GF√
2
=
g2weak
8m2

W

.

We note that if the intermediate state in a Feynman diagram is a fermion,
the propagator simply goes as 1/mc2 at low energies, where m is the rest
mass of the fermion. Thus, for a process like Thomson scattering (photon-
electron scattering at low energies), γe → γe, you can draw the diagram
yourself and check that the cross section should scale like α2/m2

e.
Finally, to estimate interaction rates, note that for ultrarelativistic par-

ticles, n ∝ T 3, the center-of-mass energy is the typical thermal energy of
particles, which is proportional to the temperature, so that s ∝ T 2, and
v ∼ c = constant. Thus, for a typical weak interaction at energies below the
W boson rest mass, where σ ∼ α2s/(mW c

2)4, we get

Γ = nσv ∝ T 3 × α2T 2

m4
W

∝ α2T 5

m4
W

,

which falls fairly rapidly as the universe expands and the temperature drops.
For a typical electromagnetic interaction, where σ ∝ α2/s, we get

Γ ∝ T 3 × α2

T 2
∝ α2T,

which drops more slowly with decreasing temperature than the typical weak
interaction rate. Note that the proper units for Γ is inverse time. In order
to get it expressed in the correct units, we need to insert appropriate factors
of h̄, c, and kB in the expressions above. For the weak rate, for example,
you can convince yourself that the expression

Γ =
α2

h̄

(kBT )
5

(mW c2)4
,

has units of inverse seconds.

4.5 Entropy

In situations where we can treat the Universe as being in local thermody-
namic equlibrium, the entropy per comoving volume is conserved. To see
this, note that the entropy S is a function of volume V and temperature T ,
and hence its total differential is

dS =
∂S

∂V
dV +

∂S

∂T
dT.
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But from the First Law of thermodynamics, we also have

dS =
1

T
[d(ρ(T )c2V ) + P (T )dV =

1

T

[

(ρc2 + P )dV + V
d(ρc2)

dT
dT

]

,

and comparison of the two expressions for dS gives

∂S

∂V
=

1

T
(ρc2 + P ),

∂S

∂T
=

V

T

d(ρc2)

dT
.

From the equality of mixed partial derivatives,

∂2S

∂V ∂T
=

∂2S

∂T∂V
,

we see that
∂

∂T

[

1

T
(ρc2 + P )

]

=
∂

∂V

V

T

d(ρc2)

dT
,

which, after some manipulation, gives

dP =
ρc2 + P

T
dT.

By using this result and rewriting the First Law as

TdS = d[(ρc2 + P )V ]− V dP,

we get

TdS = d[(ρc2 + P )V ]− V
ρc2 + P

T
dT,

and hence

dS =
1

T
d[(ρc2 + P )V ]− (ρc2 + P )V

dT

T 2

= d

[

(ρc2 + P )V

T
+ const

]

,

so, up to an additive constant,

S =
a3(ρc2 + P )

T
, (4.29)

where we have taken V = a3. The equation for energy conservation states
that d[(ρc2 + P )V ] = V dP , so that dS = 0, which means that the entropy
per comoving volume is conserved. It is useful to introduce the entropy

density, defined as

s =
S

V
=
ρc2 + P

T
. (4.30)
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Since the energy density and pressure are dominated by the ultrarelativistic
particle species at any given time, so is the entropy density. Normalizing
everything to the photon temperature T , we have earlier found for bosons
that

ρic
2 =

π2

30
gi
(kBT )

4

(h̄c)3

(

Ti
T

)4

,

Pi =
1

3
ρic

2,

and that the relation between pressure and energy density is the same for
fermions, but that there is an additional factor of 7/8 in the expression for
the fermion energy density. From equation (4.30) we therefore find that the
entropy density can be written as

s =
2π2

45
kBg∗s

(

kBT

h̄c

)3

, (4.31)

where we have introduced a new effective number of degrees of freedom

g∗s =
∑

i=bosons

gi

(

Ti
T

)3

+
7

8

∑

i=fermions

gi

(

Ti
T

)3

. (4.32)

In general, g∗s 6= g∗, but for most of the early history of the universe the
difference is small and of little significance.

Since the number density of photons (denoted by nγ) is

nγ =
2ζ(3)

π2

(

kBT

h̄c

)3

,

we can express the total entropy density in terms of the photon number
density as

s =
2π4

45ζ(3)
g∗snγkB ≈ 1.80g∗snγkB.

The constancy of S implies that sa3 = constant, which means that

g∗sT
3a3 = constant, (4.33)

As an application of entropy conservation, let us look at what happens
with neutrinos as the universe expands. At early times they are in equilib-
rium with the photons, but as the universe expands, their scattering rate
decreases and eventually falls below the expansion rate, and they drop out
of equilibrium. A precise treatment of this phenomenon requires the Boltz-
mann equation from the next section, but a reasonable estimate of the tem-
perature at which this happens can be obtained by equating the scattering
rate, given by the typical weak interaction rate discussed earlier,

Γ =
α2

h̄

(kBT )
5

(mW c2)4
,
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to the Hubble expansion rate

H ≈ 1.66g
1/2
∗ (T )

(kBT )
2

h̄EP
.

This results in

kBTdec = 1.18g
1/6
∗ (Tdec)

[

(mW c
2)4

α2EP

]1/3

≈ 4.69g
1/6
∗ (Tdec) MeV.

At temperatures of order MeV, the relevant degrees of freedom in the Stan-
dard Model are photons, electrons, positrons, and neutrinos. This gives
g∗ = 43/4, and hence

kBTdec ≈ 6.97 MeV.

What happens to the neutrinos after this? They will continue as free par-
ticles and follow the expansion of the universe. Their energies will be red-
shifted by a factor adec/a, where adec is the value of the scale factor at Tdec,
and they will continue to follow a Fermi-Dirac distribution with temperature
Tν = Tdecadec/a ∝ a−1. Now, conservation of entropy tells us that

g∗s(aT )
3 = constant,

so T ∝ g
−1/3
∗s a−1 for the particles in the universe still in thermal equilibrium.

Hence, the Fermi-Dirac distribution for neutrinos will look like it does in
the case when they are in thermal equilibrium with the rest of the universe
until g∗s changes. This happens at the epoch when electrons and positrons
become non-relativistic and annihilate through the process e++e− → γ+γ,
at a temperature of kBT = mec

2 ≈ 0.511 MeV. At this temperature, the
average photon energy, given roughly by kBT , is too small for the collision of
two photons to result in the production of an electron-positron pair, which
requires an energy of at least twice the electron rest mass. So, after this all
positrons and electrons will disappear (except for a tiny fraction of electrons,
since there is a slight excess of matter over antimatter in the universe) out of
the thermal history. Before this point, the relativistic particles contributing
to g∗s are electrons, positrons and photons, giving g∗s(before) = 2+ 7

8 × 2×
2 = 11/2, and after this point only the photons contribute, giving g∗s = 2.
Conservation of entropy therefore gives

(aT )after =

(

11

4

)1/3

(aT )before.

So entropy is transferred from the e+e−-component to the photon gas, and
leads to a temperature increase (or, rather, a less rapid temperature de-
crease) of the photons. The neutrinos are thermally decoupled from the
photon gas, and their temperature follows

(aTν)before = (aTν)after,



4.6. BIG BANG NUCLEOSYNTHESIS 73

and thus take no part in the entropy/temperature increase. Therefore, cos-
mological neutrinos have a lower temperature today than the cosmic pho-
tons, and the relation between the two temperatures is given by

Tν =

(

4

11

)1/3

T. (4.34)

4.6 Big Bang Nucleosynthesis

One of the biggest successes of the Big Bang model is that it can correctly
account for the abundance of the lightest elements (mainly deuterium and
helium) in the universe. While the heavy elements we depend on for our
existence are cooked in stars, it is hard to account for the abundances of
the lightest elements from stellar nucleosynthesis. The early universe turns
out to be the natural place for forming these elements, as we will see in this
section.

First, a few facts from nuclear physics. A general nucleus consists of Z
protons and N neutrons, and is said to have mass number A = Z +N . The
standard notation is to denote a general nucleus X by A

ZXN . The number
of protons determines the chemical properties of the corresponding neutral
atom. Nuclei with the same Z, but with different N are called isotopes of the
same element. When it is clear from the context what nucleus we are talking
about, we sometimes denote the nucleus just by giving its mass number A:
AX. The simplest nucleus is hydrogen, 1

1H0 (or simply 1H), which is just a
proton, p. A proton and a neutron may combine to form the isotope 2H,
which is also called the deuteron and denoted by D. One proton and two
neutrons form 3H, triton, also denoted by T. The next element is helium,
which in its simplest form consists of two protons and one neutron (the
neutron is needed for this nucleus to be bound), 3He. By adding a neutron,
we get the isotope 4He.

A nucleus X has rest mass m(AZXN ), and its binding energy is defined
as the difference between its rest mass energy and the rest mass energy of
Z protons and N neutrons:

B = [Zmp +Nmn]c
2 −m(AZXN )c

2.

Here,mpc
2 = 938.272 MeV is the proton rest mass, andmnc

2 = 939.565 MeV
is the neutron rest mass. In many circumstances one can neglect the differ-
ence between these two masses and use a common nucleon mass mN . For
the nucleus to exist, B must be positive, i.e., the neutrons and protons must
have lower energy when they sit in the nucleus than when they are infinitely
separated. Deuterium has a binding energy of 2.22 MeV. The binding en-
ergy increases with A up to 56Fe, and after that it decreases. This means
that for nuclei lighter than iron, it is energetically favourable to fuse and
form heavier elements, and this is the basis for energy production in stars.
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The constituents of nuclei, protons and neutrons, are baryons. Since the
laws of nature are symmetric with respect to particles and antiparticles, one
would naturally expect that there exists an equal amount of antibaryons.
As baryons and antibaryons became non-relativistic, they would have anni-
hilated to photons and left us with a universe without baryons and without
us. Clearly this is not the case. The laws of nature do actually allow baryons
to be overproduced with respect to antibaryons in the early universe, but
the detailed mechanism for this so-called baryon asymmetry is not yet fully
understood. Since the number of baryons determines the number of nuclei
we can form, the baryon number is an important quantity in Big Bang Nu-
cleosynthesis (BBN). It is usually given in terms of the baryon-to-photon
ratio, which has the value

ηb =
nb
nγ

=
nb0(1 + z)3

nγ0(1 + z)3
=
ρb/mN

nγ0

=
ρc0Ωb0

nγ0mN
≈ 2.7× 10−8Ωb0h

2. (4.35)

Since Ωb0 is at most of order 1 (actually it is a few parts in 100), we see
that photons outnumber baryons by a huge factor.

Given the range of nuclei that exist in nature, one could imagine that
following the neutrons and protons and tracing where they end up would be
a huge task. However, the problem is simplified by the fact that essentially
no elements heavier than 4He are formed. This is because there is no stable
nucleus with A = 5 from which the building of heavier elements can proceed
in steps. Two helium nuclei cannot combine to form the 8Be beryllium
nucleus, and proceed from there on to heavier elements, because also this
nucleus is unstable. In stars, three helium nuclei can combine to form an
excited state of 12C, but in the early universe the conditions for this process
to proceed are not fulfilled. Also, since 4He has a higher binding energy than
D and T, the nucleons will prefer to end up in helium, and thus we need in
practice only consider production of helium, at least as a first approximation.
However, the formation of the deuteron is an intermediate step on the way
to helium. In more detail, the chain of reactions leading to 3He and 4He are

d+ n → 3H+ γ

d+ p → 3He + γ,

or

d+ d → 3H+ p

d+ d → 3He + n,

from which one can form 4He as

3H+ p → 4He + γ, or
3He + n → 4He + γ.
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So, the onset of nucleosynthesis is when deuteron production begins. Deuterons
are formed all the time in the early universe, but at high temperatures they
are immediately broken up by photons with energies equal to the deuteron
binding energy 2.22 MeV or higher. Since the mean photon energy is roughly
kBT , one would naively expect that the process of photons breaking up
deuterons would become inefficient as soon as kBT ∼ 2.22 MeV. However,
this process persists until much lower temperatures are reached. This is
because kBT is only the mean photon energy: there are always photons
around with much higher (or lower) energies than this, even though they
only make up a small fraction of the total number of photons. But since
there are so many more photons than baryons, roughly 109 times as many as
we saw above, even at much lower temperatures than 2.22 MeV there may
be enough high-energy photons around to break up all deuterons which are
formed. Let us look at this in more detail. The number density of photons
with energy E greater than a given energy E0 is given by

nγ(E ≥ E0) =
1

π2(h̄c)3

∫ ∞

E0

E2dE

eE/kBT − 1
.

We are interested in the situation when E0 ≫ kBT, and then eE/kBT ≫ 1 in
the integrand, so we can write

nγ(E ≥ E0) =
1

π2(h̄c)3

∫ ∞

E0

dEE2e−E/kBT

=
1

π2

(

kBT

h̄c

)3 ∫ ∞

x0
x2e−xdx

=
1

π2

(

kBT

h̄c

)3

(x20 + 2x0 + 2)e−x0 ,

where I have introduced the variable x = E/kBT . Since we have found
earlier that the total number density of photons is given by

nγ =
2.404

π2

(

kBT

h̄c

)3

,

the fraction of photons with energies greater than E0 is

f(E ≥ E0) = 0.416e−x0(x20 + 2x0 + 2),

where x0 = E0/kBT . If this fraction is greater than or equal to the baryon-
to-photon rato, there are enough photons around to break up all deuterons
which can be formed. To be definite, let us take ηb = 10−9. Then deuteron
break-up will cease when the temperature drops below the value determined
by

f(E ≥ E0) = ηb,
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which gives the equation

0.416e−x0(x20 + 2x0 + 2) = 10−9.

This equation must be solved numerically, and doing so gives x0 ≈ 26.5,
which means that deuteron break-up by photons is efficient down to tem-
peratures given by

kBT =
2.22 MeV

26.5
≈ 0.08 MeV.

Because of these two facts: essentially no elements heavier than helium,
and no production until temperatures below 0.1 MeV, we can split the prob-
lem into two parts. First, calculate the neutron abundance at the onset of
deuteron synthesis, and then from this calculate the helium abundance.

To calculate the neutron abundance, we must again go by way of the
Boltzmann equation. Weak reactions like p + e− ↔ n + νe keep the pro-
tons and neutrons in equilibrium until temperatures of the order of 1 MeV,
but after that one must solve the Boltzmann equation. At these tempera-
tures, neutrons and protons are non-relativistic, and the ratio between their
equilibrium number densities is

n
(0)
n

n
(0)
p

=

(

mp

mn

)3/2

exp

[

−(mn −mp)c
2

kBT

]

≈ e−Q/kBT ,

where Q = (mn −mp)c
2 ≈ 1.293 MeV. For temperatures kBT ≫ Q, we see

that np ≈ nn, whereas for kBT ≤ Q, the neutron fraction drops, and would
fall to zero if the neutrons and protons were always in equilibrium.

Let us define the neutron abundance as

Xn =
nn

nn + np
.

The Boltzmann equation applied to the generic process n + ℓ1 ↔ p + ℓ2,

where ℓ1 and ℓ2 are leptons assumed to be in equilibrium (i.e., nℓ = n
(0)
ℓ ),

gives

a−3d(nna
3)

dt
= λnp(npe

−Q/kBT − nn),

where λnp = n
(0)
ℓ 〈σv〉 is the neutron decay rate. We can write the num-

ber density of neutrons as nn = (nn + np)Xn, and since the total number
of baryons is conserved, (nn + np)a

3 is constant, and we can rewrite the
Boltzmann equation as

dXn

dt
= λnp[(1−Xn)e

−Q/kBT −Xn].

Now, we switch variables from t to x = Q/kBT , and since T ∝ 1/a, we get

d

dt
=
dx

dt

d

dx
= Hx

d

dx
,
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where

H =

√

8πG

3
ρ,

and

ρc2 =
π2

30
g∗

(kBT )
4

(h̄c)3
.

Assuming that e± are still present, we have g∗ = 10.75. Inserting the ex-
pression for the energy density, we can write the Hubble parameter as

H(x) =

√

4π3G

45c2
g∗

Q4

(h̄c)3
1

x2
= H(x = 1)

1

x2
,

where H(x = 1) ≈ 1.13 s−1. The differential equation for Xn now becomes

dXn

dx
=

xλnp
H(x = 1)

[e−x −Xn(1 + e−x)].

To proceed, we need to know λnp. It turns out that there are two processes
contributing equally to λnp: n+ νe ↔ p+ e−, and n+ e+ ↔ p+ νe. It can
be shown that

λnp =
255

τnx5
(12 + 6x+ x2),

where τn = 885.7 s is the free neutron decay time. The differential equation
can now be solved numerically, with the result shown in figure 4.3. We see
that the neutrons drop out of equilibrium at kBT ∼ 1 MeV, and that Xn

freezes out at a value ≈ 0.15 at kBT ∼ 0.5 MeV.
On the way from freeze-out to the onset of deuterium production, neu-

trons decay through the standard beta-decay process n→ p+e−+νe. These
decays reduce the neutron abundance by a factor e−t/τn . The relation be-
tween time and temperature found earlier was,

t ≈ 2.423g
−1/2
∗ (T )

(

kBT

1 MeV

)−2

s,

and taking into account that electrons and positrons have now annihilated,
we have

g∗ = 2 +
7

8
× 6×

(

4

11

)4/3

≈ 3.36.

This gives

t ≈ 132

(

0.1 MeV

kBT

)2

s,

and by the onset of deuteron production at kBT ≈ 0.08 MeV, this means
that the neutron abundance has been reduced by a factor

exp

[

− 132 s

885.7 s

(

0.1

0.08

)2
]

≈ 0.79,
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Figure 4.3: Solution of the Boltzmann equation for the neutron abundance
(dashed line), along with the equilbrium abundance (full line).

and hence that at the onset of deuteron production we have Xn = 0.79 ×
0.15 ≈ 0.12.

We now make the approximation that the light element production oc-
curs instantaneously at the time where deuteron production begins. Since
the binding energy of 4He is greater than that of the other light nuclei,
production of this nucleus is favoured, and we will assume that all the neu-
trons go directly to 4He. Since there are two neutrons for each such nucleus,
the abundance will be Xn/2. However, it is common to define the helium
abundance as

X4 =
4n4He

nb
= 4× 1

2
Xn = 2Xn,

which gives the fraction of mass in 4He. Using our derived value for Xn, we
therefore get X4 ≈ 0.24. Bearing in mind the simplicity of our calculation,
the agreement with more detailed treatments, which give X4 ≈ 0.22, is
remarkable.

I close this section with a few comments on this result. First of all,
we see that the helium abundance depends on the baryon density, mainly
through the temperature for the onset of deuteron production, which we
found dependend on ηb. A more exact treatment of the problem gives a
result which can be fit by the expression

X4 = 0.2262 + 0.0135 ln(ηb/10
−10),
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so we see that the dependence on the baryon density is weak. By measuring
the primordial helium abundance, we can in principle deduce the baryon
density of the universe, but since the dependence on ηb is weak, helium
is not the ideal probe. Observations of the primordial helium abundance
come from the most unprocessed systems in the universe, typically identified
by low metallicities. The agreement between theory and observations is
excellent.

A more accurate treatment reveals that traces of other elements are
produced. Some deuterons survive, because the process D + p →3 He + γ
is not completely efficient. The abundance is typically of order 10−4-10−5.
If the baryon density is low, then the reactions proceed more slowly, and
the depletion is not as effective. Therefore, low baryon density leads to
more deuterium, and the deuterium abundance is quite sensitive to the
baryon density. Observations of the deuterium abundance is therefore a
better probe of the baryon density than the helium abundance. Measuring
the primordial helium abundance typically involves observing absorbtion
lines in the spectra of high-redshift quasars. Although this is a field of
research bogged by systematic uncertainties, the results indicate a value
Ωb0h

2 ≈ 0.02.

There will also be produced a small amount of nuclei with A = 7,

4He +3 H →7 Li + γ,

and

4He +3 He →7 Be + γ,

but these reactions have Coulomb barriers of order 1 MeV, and since the
mean nuclear energies at the time of element production are ∼ 0.1 MeV and
less, these abundances will be small.

The abundance of light elements can also by used to put constraints on
the properties and behaviour of elementary particles valid at this epoch in
the history of the universe. An important effect for the helium abundance
was the decay of neutrons which reduces the value of the neutron abundance
at the onset of deuteron production. This factor depends on the expansion
rate of the universe, and if the expansion rate were higher, fewer neutrons
would have had time to decay before ending up in helium nuclei, thus in-
creasing the helium abundance. The Hubble parameter is at this epoch
proportional to the energy density of relativistic species, and so the helium
abundance can be used to constrain the number of relativistic species at
the time of Big Bang Nucleosynthesis. Actually, the first constraints on the
number of neutrino species Nν came from this kind of reasoning, and showed
that Nν ≤ 4.
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4.7 Recombination

The formation of the first neutral atoms is an important event in the history
of the universe. Among other things, this signals the end of the age where
matter and radiation were tightly coupled, and thus the formation of the
cosmic microwave background. For some strange reason, this era is called
recombination, even though this is the first time electrons and nuclei combine
to produce neutral atoms.

We will in this section look exclusively on the formation of neutral hy-
drogen. A full treatment must of course include the significant amount of
helium present, but since one gets the basic picture by focusing on hydrogen
only, we will simplify as much as we can. Since the binding energy of the
hydrogen atom is BH = 13.6 eV, one would guess that recombination should
take place at a temperature kBT = BH. However, exactly the same effect
as in the case of deuteron formation is at work here: since the number of
neutral atoms is given by the number of baryons, and the photons outnum-
ber the baryons by a factor of about a billion, even at kBT significantly less
than BH there are still enough energetic photons around to keep the matter
ionized. Following exactly the same reasoning as in the previous section,
one finds that the recombination temperature is given roughly by

kBTrec =
BH
26.5

∼ 0.5 eV.

The process responsible for formation of hydrogen is

e− + p↔ H+ γ,

and as long as this process is in equlibrium, the Boltzmann equation is
reduced to

nenp
nH

=
n
(0)
e n

(0)
p

n
(0)
H

.

We note that because of overall charge neutrality, we must have ne = np.
The number density of free electrons is given by ne, whereas the total number
density of electrons is ne + nH = np + nH. The fraction of free electrons is
defined as

Xe =
ne

ne + nH
=

np
np + nH

.

The equilibrium number densities are given by

n(0)e = 2

(

mekBT

2πh̄2

)3/2

exp

(

−mec
2

kBT

)

,

n(0)p = 2

(

mpkBT

2πh̄2

)3/2

exp

(

−mpc
2

kBT

)

,

n
(0)
H = 4

(

mHkBT

2πh̄2

)3/2

exp

(

−mHc
2

kBT

)

,
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where the first factor on the right hand side of these expressions is the
number of degrees of freedom. For the ground state of hydrogen, this factor
is 4: the proton has spin 1

2 , and the electron with spin 1
2 has zero angular

momentum when hydrogen is in its ground state. The proton and the elctron
can then couple to a spin 0 state (which has only one possible value for the
total spin projection) or a spin 1 state (which has three), and neglecting
the small hyperfine splitting between these two states, this gives a spin
degeneracy factor of 4. Substituting these expressions in the equilibrium
condition above gives

nenp
nH

=

(

mekBT

2πh̄2

)3/2

exp

(

− BH

kBT

)

,

where in the prefactor the small difference between the mass of the proton
and the mass of the hydrogen atom has been neglected, and BH = mec

2 +
mpc

2 −mHc
2. Using the definition of the free electron fraction, we can now

write
nenp = (ne + nH)

2X2
e ,

and,
nH = (ne + nH)(1 −Xe),

and we get the equation

X2
e

1−Xe
=

1

ne + nH

(

mekBT

2πh̄2

)3/2

exp

(

− BH

kBT

)

.

But ne + nH = np + nH = nb, the number density of baryons, which by
definition is equal to ηbnγ , and since the number density of photons is still
given by the equilibrium result, we have

nb =
2ζ(3)

π2

(

kBT

h̄c

)3

ηb.

The equation for Xe therefore becomes

X2
e

1−Xe
=

1

4

√

π

2

1

ζ(3)ηb

(

mec
2

kBT

)3/2

exp

(

− BH

kBT

)

=
0.261

ηb

(

mec
2

kBT

)3/2

exp

(

− BH

kBT

)

.

Since ηb ∼ 10−9, we see that when kBT ∼ BH, the right hand side of the
equation is of order 109(mec

2/BH)
3/2 ∼ 1015, and since Xe is at most unity,

the only way for the equation to be fulfilled is by havingXe ∼ 1. This reflects
what I said in the introduction, namely that recombination takes place at
temperatures significantly less than the binding energy of neutral hydrogen.
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Figure 4.4: The solution of the equation for the free electron fraction in the
case Ωb0h

2 = 0.02.

The equation can be solved for various values of ηb = 2.7 × 10−8Ωb0h
2. In

figure 4.4 the solution for the free electron fraction is shown as a function
of redshift for the canonical value Ωb0h

2 = 0.02. Note that this solution is
not accurate once significant recombination starts taking place: as the free
electron fraction falls, the rate for recombination also falls, so that eventually
the electrons drop out of equilibrium, and the free electron fraction will freeze
out at a non-zero value. A full treatment requires the solution of the full
Boltzmann equation, but we will not go into that here. The approach above
gives a good indication of when the free electron fraction drops significantly,
and we see that this takes place at redshifts around z ∼ 1000. The solution
of the full Boltzmann equation shows that Xe freezes out at a value of a few
times 10−4.

During recombination, the scattering rate of photons off electrons drops
dramatically. Up to this time, photons could not move freely over very long
distances, but after this so-called decoupling of the photons, their mean-free-
path became essentially equal to the size of the observable universe. This
is therefore the epoch where the universe became transparent to radiation,
and the photons present at this stage are observable today as the cosmic
microwave background radiation, with a temperature today of about 2.73K.



Chapter 5

Structure formation

We have so far assumed that the universe is homogeneous. While this is a
valid and useful approximation for understanding the large-scale properties
of the universe, it clearly cannot be the whole story. We all know that the
matter in the universe is not smoothly distributed. It is clumpy, and the
clumps come in a range of sizes: from planets via stars and clusters of stars,
to galaxies, clusters of galaxies and superclusters. If the universe were com-
pletely homogeneous to begin with, it would have stayed so forever, so there
must have been initial perturbations in the density. As we will see in the
final chapter, one of the great achievements of inflationary models is to pro-
vide a concrete mechanism for producing inhomogeneities in the very early
universe. A major challenge in cosmology is to understand how these inho-
mogeneities grow and become the structures we see in the universe today.
The inhomogeneities produced in inflation also lead to small fluctuations in
the temperature of the cosmic microwave background (CMB). Measuring
the statistical properties of the large-scale distribution of matter and the
temperature variations in the CMB is one of the most active and important
fields in cosmology and are the most important ways of learning about dark
matter, dark energy, and inflation.

Perturbations in the density are commonly characterized by the so-called
density contrast

∆(x, t) =
ρ(x, t)− ρ0(t)

ρ0(t)
, (5.1)

where ρ0(t) is the spatially averaged density field at time t, and ρ(x, t) is
the local density at the point x at the same time. We distinguish between
two cases:

• ∆ < 1: the inhomogeneities are in the linear regime, and we can use
linear perturbation theory.

• ∆ > 1: the inhomogeneities are starting to collapse and form gravi-
tationally bound structures. Non-linear theory must be used in this
case.

83
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We will only consider the first case.
Since the universe on large scales is described by general relativity, one

would think that we have to study the Einstein equations to understand
the growth of density perturbations. Formally this is correct, but it turns
out that a lot of the physics can be understood, both quantitatively and
qualitatively, by Newtonian theory if we restrict ourselves to scales smaller
than the particle horizon and speeds less than the speed of light.

5.1 Non-relativistic fluids

We will start with the simplest situation, a universe with just one compo-
nent, and find the equations describing small density perturbations. If we
treat this component as a fluid, the fundamental equations are:

∂ρ

∂t
+∇ · (ρv) = 0 (5.2)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p−∇φ (5.3)

∇2φ = 4πGρ, (5.4)

where ρ is the density, v is the velocity field, p is the pressure, and φ is the
gravitational potential (do not confuse it with the scalar field of inflation in
the previous chapter). The equations are called, respectively, the continuity
equation, the Euler equation, and Poisson’s equation. The partial derivatives
describe time variations in the quantities at a fixed point in space. This
description is often called Eulerian coordinates. The equations can also be
written in a different form where one follows the motion of a particular fluid
element. This is called the Lagrangian description of the fluid. Derivatives
describing the time evolution of a particular fluid element are written as
total derivatives d/dt, and one can show that

d

dt
=

∂

∂t
+ (v · ∇). (5.5)

Note that the effect of the operator (v · ∇) on a scalar function f is given
by

(v · ∇)f = vx
∂f

∂x
+ vy

∂f

∂y
+ vz

∂f

∂z
, (5.6)

in Cartesian coordinates, whereas the effect on a vector field A is given by

(v · ∇)A =

(

vx
∂Ax
∂x

+ vy
∂Ax
∂y

+ vz
∂Ax
∂z

)

ex

+

(

vx
∂Ay
∂x

+ vy
∂Ay
∂y

+ vz
∂Ay
∂z

)

ey

+

(

vx
∂Az
∂x

+ vy
∂Az
∂y

+ vz
∂Az
∂z

)

ez. (5.7)



5.1. NON-RELATIVISTIC FLUIDS 85

In Lagrangian form the equations (5.2)-(5.4) can be written as

dρ

dt
= −ρ(∇ · v) (5.8)

dv

dt
= −1

ρ
∇p−∇φ (5.9)

∇2φ = 4πGρ. (5.10)

The transition from (5.3) to (5.9) is easily seen; the transition from (5.2) to
(5.8) can be shown by writing out (5.2):

∂ρ

∂t
+∇ · (ρv) =

∂ρ

∂t
+ ρ(∇ · v) + v · ∇ρ

=
∂ρ

∂t
+ (v · ∇)ρ+ ρ(∇ · v) = 0,

and the desired result follows.
We could imagine starting by studying perturbations around a uniform

state where ρ and p are constant in space and v = 0. Unfortunately, such a
solution does not exist. The reason for this is that we would then have

∂ρ

∂t
= 0

∂v

∂t
= 0 = −1

ρ
∇p−∇φ = −∇φ

∇2φ = 4πGρ

From the second equation follows ∇2φ = 0, and from the last equation we
then see that ρ = 0, which means that the universe is empty, and there-
fore not very exciting. Clearly, we cannot start from the solution for a static
medium. But this is not a disaster, since we are at any rate interested in per-
turbations around an expanding background. In this case the unperturbed
problem has a non-trivial solution, namely the matter-dominated expanding
solution. Let us call the solution v0, ρ0, p0 and φ0. These quantities obey,
by definition, equations (5.8)-(5.10). We now add small perturbations to
these solutions, and write the full quantities as

v = v0 + δv (5.11)

ρ = ρ0 + δρ (5.12)

p = p0 + δp (5.13)

φ = φ0 + δφ. (5.14)

We assume the perturbations are so small that it is sufficient to expand
the equations to first order in them. Furthermore, we assume that the
unperturbed pressure p0 is homogeneous, ∇p0 = 0. With these assumptions,
we can derive the equations for the perturbed quantities. From (5.8):

d

dt
(ρ0 + δρ) = −(ρ0 + δρ)∇ · (v0 + δv),
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and written out in full detail, this becomes

dρ0
dt

+
d

dt
δρ = −ρ0∇ · v0 − ρ0∇ · δv

− δρ∇ · v0 − δρ∇ · δv,

where we see that the last term is of second order in the perturbations and
therefore should be neglected in first-order perturbation theory. If we use
the fact that ρ0 obeys equation (5.8), several terms cancel and we are left
with

d

dt
δρ = −ρ0∇ · δv − δρ∇ · v0.

We divide this equation by ρ0:

1

ρ0

d

dt
δρ = −∇ · δv − δρ

ρ0
∇ · v0,

and use (5.8) in the last term on the right-hand side so that

1

ρ0

d

dt
δρ = −∇ · δv +

δρ

ρ20

dρ0
dt
.

If we move the last term on the right-hand side over to the left side, we see
that the equation can be written as

d

dt

(

δρ

ρ0

)

≡ d∆

dt
= −∇ · δv. (5.15)

Next we look at the left-hand side of (5.9):

d

dt
(v0 + δv) =

[

∂

∂t
+ (v0 + δv) · ∇

]

(v0 + δv)

=
∂v0

∂t
+ [(v0 + δv) · ∇]v0 +

∂

∂t
δv + [(v0 + δv) · ∇]δv

=
∂v0

∂t
+ (v0 · ∇)v0 + (δv · ∇)v0 +

d

dt
δv.

The right-hand side becomes

− 1

ρ0 + δρ
∇(p0 + δp)−∇(φ0 + δφ) = − 1

ρ0

1

1 + δρ
ρ0

∇δp−∇φ0 −∇δφ

= − 1

ρ0
∇δp −∇φ0 −∇δφ.

We now equate the left-hand side and the right-hand side and use that v0,
p0 and φ0 are solutions of (5.3) (with ∇p0 = 0). This leaves us with

d

dt
δv + (δv · ∇)v0 = − 1

ρ0
∇δp −∇δφ. (5.16)
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The perturbed version of (5.9) is easily found, since Poisson’s equation
is linear and φ0 and ρ0 are solutions of the unperturbed version:

∇2δφ = 4πGδρ. (5.17)

Equations (5.15,5.16,5.17) are the linearized equations describing how the
perturbations evolve with time.

Since we consider a uniformly expanding background it will be convenient
to change from physical coordinates x to comoving coordinates r,

x = a(t)r, (5.18)

where a(t) is the scale factor. We then have

δx = δ[a(t)r] = rδa(t) + a(t)δr,

and the velocity can be written as

v = v0 + δv =
δx

δt

= r
δa(t)

δt
+ a(t)

δr

δt
= ȧr+ a(t)u

= Hx+ a(t)u

The first term v0 is given by the Hubble expansion, whereas the velocity
perturbation is

δv = a(t)
δr

δt
≡ a(t)u. (5.19)

The velocity u, describes deviations from the smooth Hubble flow, and is
often called the peculiar velocity. Equation (5.16) can hence be rewritten as

d

dt
(au) + (au · ∇)(ȧr) = − 1

ρ0
∇δp −∇δφ.

We replace the ∇ operator in physical coordinates with ∇ in co-moving
coordinates. They are related by

∇ =
1

a
∇c,

where the index c denotes ‘co-moving’. We then get

d

dt
(au) +

(

au · 1
a
∇c

)

(ȧr) = − 1

ρ0

1

a
∇cδp −

1

a
∇cδφ.
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The second term on the left-hand side can be rewritten as

(u · ∇c)(ȧr) = ȧ(u · ∇c)r

= ȧ
∑

i,j=x,y,z

ui
∂

∂ri
rjej

= ȧ
∑

i,j=x,y,z

uiejδij

= ȧ
∑

i=x,y,z

uiei = ȧu,

so that we have

ȧu+ au̇+ ȧu = − 1

ρ0a
∇cδp −

1

a
∇cδφ,

and finally

u̇+ 2
ȧ

a
u = − 1

ρ0a2
∇cδp −

1

a2
∇cδφ. (5.20)

Note that we have three equations for four unknowns: δρ, u, δφ, and δp.
We therefore need one more equation to close the system, and we get this
by specializing to an adiabatic system where the pressure perturbations are
related to the density perturbations by

δp = c2sδρ, (5.21)

where cs is the sound speed in the system. With this extra condition, (5.20)
can be rewritten as

u̇+ 2
ȧ

a
u = − c2s

ρ0a2
∇cδρ −

1

a2
∇cδφ. (5.22)

We are primarily interested in the time development of the density per-
turbation δρ, and we will therefore find an equation where only this quantity
appears as an unknown. We can achieve this by first taking the divergence
of equation (5.22):

∇c · u̇+ 2
ȧ

a
∇cu = − c2s

ρ0a2
∇2
cδρ−

1

a2
∇2
cδφ.

From (5.17) in co-moving coordinates we have

1

a2
∇2
cδφ = 4πGδρ,

and therefore

∇c · u̇+ 2
ȧ

a
∇cu = − c2s

ρ0a2
∇2
cδρ− 4πGδρ. (5.23)
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From equation (5.15) we get

d∆

dt
= −∇ · δv = −1

a
∇c · (au) = −∇c · u,

and
d2∆

dt2
= −∇c · u̇,

which inserted in (5.23) results in

d2∆

dt2
+ 2

ȧ

a

d∆

dt
=

c2s
ρ0a2

∇2
cδρ+ 4πGδρ, (5.24)

where ∆ = δρ/ρ0. This is the desired equation for δρ.

We write the density perturbation as a Fourier series

∆(r, t) =
∑

k

∆k(t)e
ikc·r, (5.25)

where kc = ak is the co-moving wave number, so that

kc · r = ak · r = k · (ar) = k · x,

where k is the physical wave number. Since equation (5.25) is linear, there
will be no coupling between different Fourier modes, and the result will be a
set of independent equations for each mode on the same form as the equation
we will now find. In other words, there is no severe restriction involved in
the assumption (5.25). We see that

∇2
cδρ = ∇2

c(ρ0∆) = −k2cρ0∆ = −a2k2ρ0∆,

so that equation (5.24) can be written

d2∆k

dt2
+ 2

ȧ

a

d∆k

dt
= ∆k(4πGρ0 − k2c2s). (5.26)

We will in the following analyze this equation. It describes the time evolution
of a perturbation on a physical length scale d ∼ 1/k, where k = |k|.

5.2 The Jeans length

Even though we are interested in perturbations around an expanding back-
ground, it is useful to first look at the case ȧ = 0. We look for solutions
with time dependence ∆k(t) = ∆k exp(−iωt), so that ∆̈k(t) = −ω2∆k(t).
If we insert this in equation (5.26), we see that ω must obey the dispersion
relation

ω2 = c2sk
2 − 4πGρ0. (5.27)
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This dispersion relation describes either acoustic oscillations (sound waves)
or instabilities, depending on the sign of the right-hand side. An important
quantity is therefore the value of the wave number k for which the right-
hand side is equal to zero. This value is often called the Jeans wave number
kJ, and is given by

kJ =

√
4πGρ0
cs

. (5.28)

and the corresponding wave length is called the Jeans length,

λJ =
2π

kJ
= cs

√

π

Gρ0
. (5.29)

For k > kJ (λ < λJ) the right-hand side of equation (5.27) is positive, so
that ω is real, and we then have solutions of the perturbation equation of
the form

∆(x, t) = ∆ke
i(k·x−ωt),

where ω = ±
√

c2sk
2 − 4πGρ0. These represent periodic variations in the

local density, i.e., acoustic oscillations. In this case, the pressure gradient is
strong enough to stabilize the perturbations against collapse.

For k < kJ (λ > λJ) the right-hand side of (5.27) is negative, so that ω
is imaginary. The solutions are then of the form

∆(x, t) = ∆ke
±Γt,

where

Γ =
√

4πGρ0 − c2sk
2 =

[

4πGρ0

(

1− λ2J
λ2

)]1/2

. (5.30)

We see that we get one exponentially decaying and one exponentially
growing solution. The latter represents a perturbation which collapses and
finally forms a gravitationally bound subsystem. The growth rate for this
mode is Γ, which for perturbations on scales λ≫ λJ is approximately given
by Γ ≈ √

4πGρ0, and the typical collapse time is then τ ∼ 1/Γ ∼ (Gρ0)
−1/2.

The physics of this result can be understood from the stability condition for
a spherical region of uniform density ρ: for the region to be in equilibrium,
the pressure gradient must balance the gravitational forces. For a spherical
shell at a distance r from the centre of the sphere, the condition is

dp

dr
= −GρM(< r)

r2
,

where M(< r) ∼ ρr3 is the mass contained within the distance r from the
centre. For this equation to be fulfilled, the pressure must increase towards
the centre of the sphere, and we approximate dp/dr ∼ p/r. We therefore
get

p = Gρ2r2



5.3. THE JEANS INSTABILITY IN AN EXPANDING MEDIUM 91

at equilibrium, and if we take c2s = p/ρ, we get stability when

r =
cs√
Gρ

∼ λJ.

For r > λJ the pressure gradient is too weak to stabilize the region, and
hence it will collapse. We also note that λJ ∼ csτ , so the Jeans length can
be interpreted as the distance a sound wave covers in a collapse time.

5.3 The Jeans instability in an expanding medium

The analysis in the previous subsection was valid for density perturbations
in a static background, ȧ = 0. However, in cosmology we are interested in
expanding backgrounds. Let us write equation (5.26) as

d2∆k

dt2
+ 2

ȧ

a

d∆k

dt
= 4πGρ0

(

1− λ2J
λ2

)

∆k, (5.31)

where the term with ȧ/a will modify the analysis in the previous subsection.
This term can be compared to a friction term: in addition to the pressure
gradient, the expansion of the universe will work against gravity and try
to prevent the collapse of a density perturbation. Let us consider the case
λ≫ λJ, so that the equation simplifies to

d2∆k

dt2
+ 2

ȧ

a

d∆k

dt
= 4πGρ0∆k.

In the case where the background universe is the Einstein-de Sitter universe
with Ωm0 = 1, a = a0(t/t0)

2/3, this equation has simple solutions. We then
have ȧ/a = 2/(3t) and 4πGρ0 = 2/(3t2), so that the equation becomes

d2∆k

dt2
+

4

3t

d∆k

dt
− 2

3t2
∆k = 0. (5.32)

We look for a solution of the form ∆k = Ktn, whereK is a constant. Inserted
in equation (5.32), we find that n must satisfy

n2 +
1

3
n− 2

3
= 0,

which has n = −1 and n = 2/3 as solutions. We see that we have damped,
decaying mode ∆k ∝ 1/t and a growing mode ∆k ∝ t2/3 ∝ a ∝ 1/(1 +
z). The expansion of the universe has hence damped the growth of the
perturbations and turned exponential growth into power-law growth.

A comment on the ȧ/a term: we have taken this from solutions of the
Friedmann equations for a homogeneous universe, that is we have neglected
the perturbations. This is the correct approach in first-order perturbation
theory, because equation (5.26) is already of first order in the perturbation
∆k. Had we included corrections of first order in ∆k in the equations for
ȧ/a, these would have given corrections of second order to equation (5.26),
and they can therefore be neglected in first-order perturbation theory.
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5.4 Perturbations in a relativistic gas

The formalism in the preceding sections describe perturbations in a non-
relativistic fluid. If the fluid is relativistic, we need a more general formalism.
The professional way of doing this is to use general relativity and in addition
take into account that a fluid description is not really appropriate for e.g.
photons, since they should be described by the Boltzmann equation for their
distribution function. We will here content ourselves with formulating and
solving the relativistic fluid equations in the radiation dominated epoch of
the universe for redshifts 1 + z > 4× 104Ωm0h

2.
In the relativistic case one can show that one gets two equations express-

ing conservation of energy and momentum:

∂ρ

∂t
= −∇ ·

[(

ρ+
p

c2

)

v

]

(5.33)

∂

∂t

(

ρ+
p

c2

)

=
ṗ

c2
−
(

ρ+
p

c2

)

(∇ · v). (5.34)

In the special case p = ρc2/3 both equations reduce to

dρ

dt
= −4

3
ρ(∇ · v). (5.35)

The analogue of the Euler equation turns out to be
(

ρ+
p

c2

) [

∂v

∂t
+ (v · ∇)v

]

= −∇p−
(

ρ+
p

c2

)

∇φ, (5.36)

while the analogue of the Poisson equation is

∇2φ = 4πG

(

ρ+
3p

c2

)

, (5.37)

which for p = ρc2/3 gives
∇2φ = 8πGρ. (5.38)

We see that for the special case of a relativistic gas, p = ρc2/3 the equa-
tions reduce to the same form as in the non-relativistic case, except that
the numerical coefficients which enter are slightly different. It should there-
fore come as no surprise that after a similar analysis of linear perturbations
as in the non-relativistic case, we end up with an equation very similar to
equation (5.26):

d2∆k

dt2
+ 2

ȧ

a

d∆k

dt
=

(

32πGρ0
3

− k2c2s

)

∆k, (5.39)

and the Jeans length in the relativistic case is therefore

λJ = cs

(

3π

8Gρ0

)1/2

, (5.40)



5.5. PERTURBATIONS IN THE GRAVITATIONAL POTENTIAL 93

where cs = c/
√
3.

For modes with λ≫ λJ equation (5.39) becomes

d2∆k

dt2
+ 2

ȧ

a

d∆k

dt
− 32πGρ0

3
∆k = 0, (5.41)

and since we in the radiation dominated phase have ȧ/a = 1/2t, ρ0 =
3/(32πGt2), we get the equation

d2∆k

dt2
+

1

t

d∆k

dt
− 1

t2
∆k = 0. (5.42)

We seek solutions of the form ∆k ∝ tn, and find that n must satisfy

n2 − 1 = 0,

i.e., n = ±1. The growing mode is in this case ∆k ∝ t ∝ a2 ∝ (1 + z)−2.

5.5 Perturbations in the gravitational potential

The equation for the growing mode in the gravitational potential φ was

∇2δφ ∝ δρ = ρ0∆.

If we seek solutions δφ = δφk exp(ikc · r), we find that

1

a2
∇2
cδφ = −k

2
c

a2
δφke

ikc·r ∝ ρ0∆ke
ikc·r,

which gives
δφk ∝ ρ0a

2∆k, (5.43)

Since ρ0 ∝ a−3, ∆k ∝ a for dust, and ρ0 ∝ a−4, ∆k ∝ a2 for radiation,
we find that δφk is constant in both cases. Therefore the perturbations in
φk, and therefore also in φ, are independent of time in both the matter-
dominated and radiation-dominated phases if the universe is spatially flat.
In particular, we have that φ is constant in an Einstein-de Sitter universe
to first order in perturbation theory.

5.6 No significant growth while radiation domi-

nates

So far we have only considered the case where the universe contains one
component. The real situation is of course more complicated than this. We
know that the universe contains both radiation, neutrinos, baryons, dark
matter, possibly a cosmological constant etc. In realistic calculations of
structure formation, we must take all these components into account.
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We will now consider a simple case where an analytic solution can be
found: the growth of perturbations in the matter density ρm in the radi-
ation dominated phase. In this phase we can consider the radiation to be
unperturbed on scales inside the particle horizon. We can then use equation
(5.26) for non-relativistic matter, but take ȧ/a from the Friedmann equa-
tions for a universe with matter and radiation. We also assume that we can
neglect non-gravitational interactions between radiation and matter, which
should be a good approximation since most of the matter is dark. We will
also limit ourselves to consider perturbations on scales λ ≫ λJ, so that the
equation we have to solve is

∆̈k + 2
ȧ

a
∆̇k − 4πGρm∆k = 0. (5.44)

To solve this equation, it is convenient to change variable from t to a, so
that

d

dt
=

da

dt

d

da
= ȧ

d

da
(5.45)

d2

dt2
=

d

dt

(

ȧ
d

da

)

= ȧ2
d2

da2
+ ä

d

da
. (5.46)

Furthermore, we introduce

y =
a

aeq
, (5.47)

where aeq is the scale factor at matter-radiation equality, determined by

ρm(aeq) = ρr(aeq),

where ρm = ρm0a
−3, ρr = ρr0a

−4, so that

aeq =
ρr0
ρm0

. (5.48)

We also see that

ρm
ρr

=
ρm0a

−3

ρr0a−4
=

a

ρr0/ρm0
=

a

aeq
= y. (5.49)

The Friedmann equations can then be written as

(

ȧ

a

)2

=
8πG

3
(ρm + ρr) =

8πG

3
ρr

(

1 +
ρm
ρr

)

=
8πG

3
ρr(1 + y), (5.50)

and

ä

a
= −4πG

3
(ρm + ρr + 3pr) = −4πG

3
(ρm + 2ρr)

= −4πG

3
ρr(2 + y). (5.51)
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We express d/da by d/dy:

d

da
=

dy

da

d

dy
=

1

aeq

d

dy
(5.52)

d2

da2
=

1

a2eq

d2

dy2
. (5.53)

Inserting all of this into equation (5.44), we get

2

3
ρry

2(1 + y)
d2∆k

dy2
− 1

3
ρry(2 + y)

d∆k

dy
+

4

3
ρry(1 + y)

d∆k

dy
− ρm∆k = 0,

which after some manipulations gives

d2∆k

dy2
+

2 + 3y

2y(1 + y)

d∆k

dy
− 3

2y(1 + y)
∆k = 0. (5.54)

By substitution one easily sees that this equation has the growing solution

∆k ∝ 1 +
3

2
y, (5.55)

which means that in the course of the entire radiation-dominated phase from
y = 0 to y = 1 the perturbations grow by the modest factor

∆k(y = 1)

∆k(y = 0)
=

1 + 3
2

1
=

5

2
.

That perturbations in the matter density cannot grow significantly in the
radiation-dominated phase is known as the Meszaros effect. It can be un-
derstood qualitatively by comparing the collapse time for a density pertur-
bation with the expansion time scale for the universe. We have seen that
the collapse time is τc ∼ 1/

√
Gρm, whereas the expansion time scale is

τH =
1

H
=
a

ȧ
≈
(

3

8πGρr

)1/2

∼ 1√
Gρr

.

Since ρr > ρm in this epoch, we have τH < τc. In other words: in the
radiation-dominated phase the universe expands faster than a density per-
turbation can collapse.

5.7 The power spectrum

We have seen that we can write the general solution of equation (5.26)as a
Fourier series

∆(x, t) =
∑

k

∆k(t)e
−ik·x, (5.56)
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where

∆k(t) =
1

V

∫

∆(x, t)eik·xd3x. (5.57)

Here V is some large normalization volume and

1

V

∫

ei(k−k′)·xd3x = δk,k′ . (5.58)

In the limit V → ∞, we can write ∆(x, t) as a Fourier integral

∆(x, t) =
1

(2π)3

∫

∆ke
−ik·xd3k, (5.59)

where

∆k(t) =

∫

∆(x, t)eik·xd3x. (5.60)

We will take the liberty of using both these descriptions, according to which
is most convenient. Since the differential equation for ∆(x, t) is linear, (5.56)
or (5.59) will by insertion in the perturbation equation give a set of inde-
pendent equation for each ∆k mode, all of the same form as equation (5.26).
In other words: there is no loss of generality in the way we treated the
problem in earlier subsections. Since the equations are linear, there will be
no coupling between modes with different k, and perturbations on different
length scales therefore evolve independently. Note that this applies in linear
perturbation theory only. In the non-linear regime, perturbations on dif-
ferent length scales can and will couple, and this is one of the reasons why
non-linear perturbation theory is more complicated.

Observationally we are mostly interested in the statistical properties of
∆. The most common view is that the likely origin of the density perturba-
tions are quantum fluctuations in the inflationary epoch of the universe. We
can therefore consider ∆(x, t) as a stochastic field. The simplest inflation-
ary models predict that the initial perturbations ∆in(x, t) had a Gaussian
distribution

p(∆in) ∝ exp

(

−∆2
in

2σ2

)

.

As we have seen, perturbations will evolve in the time after inflation, but as
long as the evolution is linear, a Gaussian field will remain a Gaussian field.
When the perturbations reach the non-linear regime, different modes will
be coupled, and we can in general get non-Gaussian fluctuations. But scales
within the linear regime can be expected to follow a Gaussian distribution.
This means that they are fully characterized by their mean and standard
deviation, and their mean (i.e., average over all space) is by definition equal
to zero, since ∆ is the local deviation from the mean density. The other
quantity we need to characterize the distribution is then 〈∆2〉, where

〈. . .〉 = 1

V

∫

. . . d3x,
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is the spatial average. By using (5.56) we get

∆2(x, t) =
∑

k,k′

∆k(t)∆k′(t)e
−i(k+k

′)·x. (5.61)

We therefore find that

〈∆2(x, t)〉 =
1

V

∫

∆2(x, t)d3x =
1

V

∑

k,k′

∆k∆k′

∫

e−i(k+k′)·xd3x

=
∑

k,k′

∆k∆k′δk,−k′ =
∑

k

∆k∆−k.

Since ∆(x, t) is a real function, and it does not matter whether we sum over
all k or all −k, we must have

∆∗(x, t) =
∑

k

∆∗
ke
ik·x

=
∑

k

∆ke
−ik·x =

∑

k

∆−ke
ik·x

which gives
∆−k(t) = ∆∗

k(t). (5.62)

Therefore,

〈∆2(x, t)〉 =
∑

k

|∆k(t)|2

=
1

(2π)3

∫

|∆k(t)|2d3k ≡ 1

(2π)3

∫

P (k, t)d3k, (5.63)

where we have defined the power spectrum of the density fluctuations as

P (k, t) ≡ |∆k(t)|2. (5.64)

This quantity then gives the standard deviation of the fluctuations on the
length scale associated with the wave number k and therefore the strength
of the fluctuations on this scale. In normal circumstances, P will be inde-
pendent of the direction of k (this is because ∆ obeys a differential equation
which is invariant under spatial rotations, and if the initial conditions are ro-
tationally invariant, the solutions will also be so. Inflationary models usually
give rise to rotationally invariant initial conditions), and we get

〈∆2(x, t)〉 = 1

2π2

∫ ∞

0
k2P (k)dk. (5.65)

An important observational quantity is the two-point correlation func-
tion (hereafter called just the correlation function) ξ(r, t) for the distribution
of galaxies. It is defined by counting the number of galaxies with a given
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separation r. If we consider the contribution to this from two small volumes
dV1 around position x and dV2 around position x+ r, for a completely uni-
form distribution of galaxies this will be given by dN12 = n̄2dV1dV2. If there
are deviations from a uniform distribution, we can write the contribution as

dN12 = n̄2[1 + ξ(r, t)]dV1dV2, (5.66)

where we have defined the correlation function ξ so that it gives the deviation
from a completely uniform, random distribution of galaxies. We next assume
that the distribution of galaxies is directly proportional to the distribution
of matter. This is a dubious assumption on small scales, but has been tested
and seems to hold on large scales. We can then write

dN12 = 〈ρ(x, t)ρ(x + r, t)〉dV1dV2
= ρ20〈[1 + ∆(x, t)][1 + ∆(x+ r, t)]〉dV1dV2
= ρ20[1 + 〈∆(x, t)∆(x + r, t)〉]dV1dV2, (5.67)

where we have used 〈∆〉 = 0. We therefore see that

ξ(r, t) = 〈∆(x, t)∆(x+ r, t)〉. (5.68)

We can now derive a relation between the correlation function and the power
spectrum:

ξ(r, t) = 〈∆(x, t)∆(x + r, t)〉 = 〈∆(x, t)∆∗(x+ r, t)〉
= 〈

∑

k,k′

∆k(t)∆
∗
k′(t)e

−ik·xeik
′·(x+r)〉

=
∑

k,k′

∆k(t)∆
∗
k′(t)e

−ik′·r 1
V

∫

ei(k
′−k)·xd3x

=
∑

k

|∆k(t)|2e−ik·r

=
1

(2π)3

∫

|∆k(t)|2e−ik·rd3k

=
1

(2π)3

∫

P (k, t)e−ik·rd3k. (5.69)

We have now shown that the correlation function ξ is the Fourier transform
of the power spectrum P . If P is independent of the direction of k, so that
P (k, t) = P (k, t), we can simplify the expression further:

ξ(r, t) = ξ(r, t) =
1

(2π)3

∫ 2π

0
dφ

∫ +1

−1
d(cos θ)

∫ ∞

0
dkk2P (k, t)e−ikr cos θ

=
1

4π2

∫ ∞

0
dkk2P (k, t)

1

ikr
(eikr − e−ikr)

=
1

2π2

∫ ∞

0
dkk2P (k, t)

sin(kr)

kr
, (5.70)
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where we have chosen the direction of the kz axis along r. We see that
in this case ξ(r, t) is also isotropic, and is given by the integral of P (k, t)
weighted by a filter function which damps contributions from values of k
where k > 1/r.

5.8 Fluctuations in the cosmic microwave back-

ground

The temperature fluctuations in the cosmic microwave background (CMB)
are an important source of information about the universe. We will in the
following section look at the physics behind the fluctuations on angular
scales of a few degrees or less, the so-called acoustic peaks.

The mean temperature of the CMB is T0 ≈ 2.73 K. However, there are
small deviations from the mean temperature depending on the direction of
observation. The relative deviation from the mean is written

∆T

T0
(θ, φ) =

T (θ, φ)− T0
T0

, (5.71)

and it is practical to decompose ∆T/T0 in spherical harmonics:

∆T

T0
(θ, φ) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ
aℓmYℓm(θ, φ), (5.72)

where the spherical harmonics obey the orthogonality relation

∫

Y ∗
ℓmYℓ′m′dΩ = δℓℓ′δmm′ . (5.73)

The coefficients aℓm are given by

aℓm =

∫

∆T

T0
(θ, φ)Yℓm(θ, φ)dΩ. (5.74)

The standard prediction from inflationary models is that the coefficients aℓm
have a Gaussian distribution with uniformly distributed phases between 0
and 2π. Then each of the 2ℓ + 1 coefficients aℓm associated with multipole
ℓ will give an independent estimate of the amplitude of the temperature
fluctuation on this angular scale. The power spectrum of the fluctuations is
assumed to be circular symmetric around each point (that is, independent
of φ), so that a∗ℓmaℓm averaged over the whole sky gives an estimate of the
power associated with multipole ℓ:

Cℓ =
1

2ℓ+ 1

ℓ
∑

m=−ℓ
a∗ℓmaℓm = 〈|aℓm|2〉. (5.75)
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If the fluctuations are Gaussian, the power spectrum Cℓ gives a complete
statistical description of the temperature fluctuations. It is related to the
two-point correlation function of the fluctuations by

C(θ) = 〈∆T (n1)

T0

∆T (n2)

T0
〉 = 1

4π

∞
∑

ℓ=0

(2ℓ+ 1)CℓPℓ(cos θ), (5.76)

where n1 and n2 are unit vectors in the two directions of observation, cos θ =
n1 · n2, and Pℓ is the Legendre polynomial of degree ℓ.

We will in the following look at the so-called acoustic oscillations in the
power spectrum of the CMB. These have their origin in the physics in the
baryon-photon plasma present around the epoch of recombination. In the
description of these oscillations, we must then take into account that we are
dealing with a system with (at least) three components: photons, baryons,
and dark matter. The dark matter dominates the energy density and the
gravitational fields present, but does not interact in other ways with the
photons and the baryons. The latter two are coupled two each other by
Thomson scattering, and as a first approximation we can assume that they
are so strongly coupled to each other that we can treat the photons and the
baryons as a single fluid. In this fluid we have

nγ ∝ nb ∝ ρb (5.77)

nγ ∝ T 3, (5.78)

which gives T ∝ ρ
1/3
b and

∆T

T
≡ Θ0 =

1

3

∆ρb
ρb

=
1

3
∆b. (5.79)

In other words, the fluctuations in the temperature are determined by the
density perturbations in the baryonic matter. The equation describing the
time evolution of these is of the form

d2∆b

dt2
+ 2

ȧ

a

d∆b

dt
= gravitational term − pressure term. (5.80)

If we make the approximation that gravity is dominated by the dark matter
with density ρD, and that the pressure term is dominated by the baryon-
photon plasma with speed of sound cs, we get

d2∆b

dt2
+ 2

ȧ

a

d∆b

dt
= 4πGρD∆D −∆bk

2c2s. (5.81)

In addition, we will assume that we can neglect the Hubble friction term
and take ȧ ≈ 0. Inserting Θ0 = ∆b/3 we get

d2Θ0

dt2
=

4πG∆DρD
3

− k2c2sΘ0. (5.82)
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We can relate the first term on the right-hand side to the fluctuations in the
gravitational potential via Poisson’s equation

∇2δφ = 4πGρD∆D.

For a single Fourier mode δφ = φk exp(ik · x) we find by substitution

φk = −4πGρD∆D

k2
, (5.83)

so that
d2Θ0

dt2
= −1

3
k2φk − k2c2sΘ0. (5.84)

We look at adiabatic perturbations, and the entropy is dominated by the
photons,

S ∝ T 3V ∝ T 3

mb/V
∝ T 3

ρb
∝ ρ

3/4
r

ρb
, (5.85)

where mb is the baryon mass, and we recall that ρr ∝ T 4, so we have

δS

S
=

3

4

δρr
ρr

− δρb
ρb

= 3
δT

T
− δρb

ρb
= 0, (5.86)

so that

∆b =
δρb
ρb

= 3
δT

T
=

3

4

δρr
ρr
. (5.87)

The speed of sound is given by

cs =

(

∂p

∂ρ

)1/2

S

. (5.88)

In the photon-baryon plasma we have ρ = ρb + ρr and p = pb + pr ≈ pr =
ρrc

2/3. Therefore we get

c2s =
δp

δρ
=

δρrc
2/3

δρb + δρr

=
c2

3

1

1 + δρb
δρr

, (5.89)

so that

cs =
c√
3

[

1 +

(

δρb
δρr

)

S

]−1/2

=
c√
3

(

1 +
3

4

ρb
ρr

)−1/2

=
c

√

3(1 + R)
, (5.90)
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where R ≡ 3ρb/4ρr.
We will simplify the problem further by assuming that φk and cs are

independent of time. Then equation (5.84) is a simple oscillator equation,
and by substitution one can show that

Θ0(t) =

[

Θ0(0) +
(1 + R)

c2
φk

]

cos(kcst)

+
1

kcs
Θ̇0(0) sin(kcst)−

(1 + R)

c2
φk (5.91)

is a solution. After recombination, the photons will propagate freely towards
us, so we see the fluctuations today more or less as they were at the time
t = trec of recombination. Then,

kcstrec = kλS , (5.92)

where λS is the so-called sound horizon: the distance a sound wave with
speed cs has covered by the time trec. The temperature fluctuations can
therefore be written as

Θ0(trec) =

[

Θ0(0) +
(1 + R)

c2
φk

]

cos(kλS)

+
1

kcS
Θ̇0(0) sin(kλS)−

(1 + R)

c2
φk. (5.93)

We therefore get oscillations in k space, which become oscillations in ℓ space
after projection on the sky. We see that the initial conditions enter via the
terms containing Θ0(0) and Θ̇0(0). The case Θ(0) 6= 0, Θ̇(0) = 0 are called
adiabatic initial conditions, while the case Θ(0) = 0, Θ̇(0) 6= 0 is called
isocurvature initial conditions. The simplest inflationary modes give rise to
adiabatic initial conditions.

Another thing we have not yet taken into account is the fact that the
oscillations take place within gravitational potential wells with amplitude
φk. The observed oscillation is therefore, for adiabatic initial conditions,

Θ0(trec) +
φk
c2

=

[

Θ0(0) +
(1 + R)

c2
φk

]

cos(kλS)−
R

c2
φk. (5.94)

The term in the angular brackets correspond to horizon-scale fluctuations,
the so-called Sachs-Wolfe effect, and one can show that

Θ0(0) +
φk
c2

=
φk
3c2

, (5.95)

and that the observed temperature fluctuations therefore can be written as

(

∆T

T0

)

eff
=

φk
3c2

(1 + 3R) cos(kλS)−
R

c2
φk. (5.96)
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The first extremal value occurs for kλS = π, which gives

(

∆T

T0

)

eff
= − φk

3c2
(1 + 6R), (5.97)

and the next one occurs for kλS = 2π, giving

(

∆T

T0

)

eff
=

φk
3c2

(5.98)

so we see that the ratio of the first and the second extremal value (which
corresponds roughly to the ratio of the first and second peak in the power
spectrum) can be used to determine the R, which again gives the baryon
density Ωb0h

2.
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Chapter 6

Inflation

The Big Bang model is extremely successful in accounting for many of the
basic features of our universe: the origin of light elements, the formation
of the cosmic microwave background, the magnitude-redshift relationship of
cosmological objects etc. However, we always want to deepen our under-
standing and ask further questions. As we will see in the first section, there
are several questions we can ask that cannot be answered within the Hot
Big Bang model of the universe. These questions indicate that the universe
must have started in a very special initial state in order to have the prop-
erties that it has today. This does not mean a crisis for the model in the
sense that the model is inconsistent, but having the universe start off with
fine-tuned initial conditions is not something we like. The idea of inflation,
an epoch of accelerated expansion in the very early universe, goes some way
towards resolving this issue in that it shows that having an early epoch of
accelerated expansion can do away with some of the fine-tuning problems.

6.1 Puzzles in the Big Bang model

Observations tell us that the present universe has a total energy density
which is close to the critical one. Why is that so? To see that this is a
legitimate question to ask, and indeed a real puzzle, let us consider the first
Friedmann equation:

(

ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ,

where ρ is the total energy density. Defining the time-dependent critical
density ρc(t) = 3H2/8πG and the corresponding density parameter Ω(t) =
ρ(t)/ρc(t), we have after dividing the equation above by H2:

Ω(t)− 1 =
kc2

a2H2
.

105
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Let us assume that the universe is matter dominated so that a ∝ t2/3,
H = 2/3t, and aH ∝ t−1/3, giving

Ω(t)− 1 ∝ t2/3.

What are the implications of this equation? It tells us that the deviation
of the density from the critical density increases with time. If we have, say
Ω(t0) = 1.02 now, at matter-radiation equality, when teq = 47000 yrs ∼
1.5 × 1012 s, we have

Ω(teq)− 1 =

(

1.5× 1012

4.4× 1017

)2/3

(Ω(t0)− 1) ∼ 4.5× 10−6.

So the density must have been even closer to the critical one back then. In
the radiation-dominated era, a ∝ t1/2, H ∝ 1/t, so aH ∝ t−1/2. At the
epoch of Big Bang Nucleosynthesis, tnuc ∼ 60 s, it then follows that

Ω(tnuc)− 1 =
60

1.5× 1012
× 4.5× 10−6 ∼ 1.8 × 10−16.

Pushing the evolution back to the Planck time tPl ∼ 10−43 s, we find

Ω(tP)− 1 ∼ 3× 10−61.

The point of all this numerology is the following: since 1/aH is an increasing
function of time, the deviation of the density from the critical one also
increases with time. This means that in order to have a density close to the
critical one today, the density must have been extremely fine-tuned at the
beginning of the cosmic evolution. Considering all the possible values the
density could have started out with, it seems extremely unlikely that the
universe should begin with a value of Ω equal to one to a precision of better
than one part in 1060!

The isotropy of the CMB poses another puzzle: we observe that the
temperature of the CMB is around 2.7 degrees Kelvin to a precision of
about one part in 105 across the whole sky. The natural thing to assume is
that the physical processes have served to smooth out any large temperature
variation that may have existed in the early universe. However, we also know
that the size of regions where causal physics can operate is set by the particle
horizon. The particle horizon at last scattering, zLSS ∼ 1100, assuming a
matter-dominated universe with negligible spatial curvature, is given by

rPH(zLSS) =

∫ ∞

zLSS

cdz

a0H0

√
Ωm0(1 + z)3/2

=
2c

a0H0

√
Ωm0

(1 + zLSS)
−1/2.

The meaning of this number becomes clear if we consider the angular size
of this region on the sky today. The radial comoving coordinate of the last
scattering surface is given by

r(zLSS) =

∫ zLSS

0

cdz

a0H(z)
.
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For a spatially flat universe with dust and a cosmological constant, one finds
numerically that to a very good approximation,

r(zLSS) ≈
1.94c

a0H0Ω0.4
m0

.

This gives us the angular size of the particle horizon at last scattering on
the sky today as

θPH =
rPH(zLSS)

r(zLSS)
∼ 1.8Ω−0.1

m0 degrees.

How, then, is it possible for regions on the sky today separated by as much
as 180 degrees to have almost exactly the same temperature? As in the case
of the matter density, nothing prevents us from saying that the uniform tem-
perature was part of the initial conditions of the Big Bang model. However,
we might with good reason feel a bit uneasy about having the universe start
off in such a special state.

The CMB poses another question for the Big Bang model. Tiny temper-
ature fluctuation have actually been observed, of the order of ∆T/T ∼ 10−5.
Moreover, they seem to be correlated over scales much larger than the par-
ticle horizon at last scattering. How is it possible to set up temperature
fluctuations which are correlated on scales which are seemingly causally
disconnected? Again, there is nothing to prevent us from making the tem-
perature fluctuations part of the initial conditions of the Big Bang, but most
of us would like to have an explanation for why the universe started in such
a special state.

Inflation is an attempt at providing a dynamical answer to these question
by postulating a mechanism which makes a more general initial state evolve
rapidly into a universe like the one we observe. The basic idea can be
illustrated by looking at a model we have already considered: that of a
universe dominated by vacuum energy.

6.2 Example: de Sitter space

We recall that the de Sitter universe expands at an exponential rate, a(t) ∝
eH0t, where H0 =

√

Λ/3. This gives immediately that H = H0, a constant,
and hence aH ∝ eH0t. In contrast to the matter-dominated and radiation-
dominated models, we see that 1/aH is a decreasing function of time, and

Ω(t)− 1 ∝ e−2H0t.

Thus, if the universe starts off in a de Sitter-like state, any deviations of the
density from the critical one will rapidly be wiped out by the expansion.
To put it in geometric terms, if a region of the universe was not spatially
flat to begin with, the enormous expansion rate would blow it up and make
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its radius of curvature infinitesimally small. The horizon problem can also
be solved by postulating the existence of de Sitter-expansion in the early
universe, because we recall that there is no particle horizon in de Sitter space,
and hence no limit on the size of regions which can be causally connected
at a given time. The simplest way to think of this is perhaps that the
enormous expansion can make a region which is initially small enough for
physical conditions to be the same everywhere, but which may possible have
a significant spatial curvature, blow up to be an almost flat region of the
size of the observable universe.

A numerical example, borrowed from Barbara Ryden’s textbook ‘Intro-
duction to cosmology’ (2nd edition,Cambridge University Press, 2017), may
serve to make these ideas more precise. Suppose that the universe started
out as radiation-dominated, went through a brief period of inflation, af-
ter which it returned to radiation-dominated expansion. More specifically,
assume that the scale factor is given by

a(t) = ai

(

t

ti

)1/2

, t < ti

= aie
Hi(t−ti), ti < t < tf

= aie
Hi(tf−ti)

(

t

tf

)1/2

, t > tf ,

where ti is the time where inflation starts, tf is the time inflation ends, and
Hi is the Hubble parameter during inflation. We see that in the course of
the inflationary epoch, the scale factor grows by a factor

a(tf )

a(ti)
= eN ,

where N , the so-called number of e-foldings, is given by

N = Hi(tf − ti).

If the characteristic timescale during inflation, 1/Hi, is small compared with
the duration of inflation, (tf − ti), we see that N will be large, and a will
increase by a huge factor. To be specific, let us assume that inflation starts
at ti ∼ 10−36 s, and that Hi ∼ 1/ti ∼ 1036 s−1, and furthermore that
tf − ti ∼ 100/Hi ∼ 10−34 s. Then

a(tf )

a(ti)
∼ e100 ∼ 1043.

During the inflationary epoch we will have

Ω(t)− 1 ∝ e−2Hi(t−ti),



6.2. EXAMPLE: DE SITTER SPACE 109

and so we see that the flatness problem is easily solved: suppose the universe
had Ω(ti)− 1 ∼ 1 at the beginning of inflation. The exponential expansion
would then drive Ω to be extremely close to 1 at the end of inflation:

Ω(tf )− 1 = e−2N (Ω(ti)− 1) ∼ e−200 ∼ 10−87.

The horizon problem is also solved. The proper distance to the particle
horizon is at any time given by

dPH(t) = a(t)

∫ t

0

cdt′

a(t′)
,

and so it had the size

dPH(ti) = ai

∫ ti

0

cdt

ai(t/ti)1/2
= 2cti

at the beginning of inflation. At the end of inflation, we find that the proper
distance to the particle horizon is given by

dPH(tf ) = aie
N
(∫ ti

0

cdt

ai(t/ti)1/2
+

∫ tf

ti

cdt

ai exp[Hi(t− ti)]

)

∼ eN × c

(

2ti +
1

Hi

)

.

Inserting numbers, we find that dPH(ti) = 2cti ∼ 6 × 10−28 m. To put this
number into perspective, recall that the typical size of an atomic nucleus is
10−15 m. The size of the particle horizon immediately after inflation is on
the other hand

dPH(tf ) ∼ eN × 3cti ∼ 2× 1016 m ∼ 0.8 pc!

So, in the course of 10−34 s, the size of the particle horizon is increased from
a subnuclear to an astronomical scale. The net result is that the horizon
size is increased by a factor ∼ eN compared to what it would have been
without inflation. After inflation, the horizon size evolves in the usual way,
but since it started out enormously larger than in the calculation which lead
us to the horizon problem, we see that this problem is now solved. From
another point of view, the size of the visible universe today is set by the
proper distance to the last scattering surface, and this is given by

dP(t0) ∼ 1.4 × 104 Mpc.

If inflation ended at tf ∼ 10−34; s, that corresponds to af ∼ 2×10−27. Thus,
at the time inflation ended, the part of the universe currently observable
would fit into a sphere of proper size

dP(tf ) = afdP(t0) ∼ 0.9 m.
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So, immediately after inflation, the observable universe was less than a meter
in radius! And even more amazingly, prior to inflation, this region was a
factor e−N smaller, which means that its size was

dP(ti) = e−NdP(tf ) ∼ 3× 10−44 m!

The vast regions of space visible to us thus could have started out as a
Planck-length sized nugget! Note also that the size of this region is much
smaller than the particle horizon at the beginning of inflation, and thus
there is no problem with understanding the isotropy of the CMB.

How many e-foldings of inflation do we need to be consistent with present
constraints on the curvature of the universe? Observations of the tempera-
ture fluctuations in the CMB provide the most sensitive probe of the spatial
geometry, and the best constraint we have at the time of writing comes
from ESA’s Planck mission: |Ω(t0)−1| ≤ 0.005. Assuming the universe was
matter dominated back to teq, we find that

|Ω(teq)− 1| ≤ |Ω(t0)− 1|
(

teq
t0

)2/3

∼ 0.005 ×
(

1.6× 1012 s

4.4× 1017 s

)2/3

∼ 10−6.

From there and back to the end of inflation, we take the universe to be
radiation dominated, and hence

|Ω(t = 10−34 s)− 1| ≤ 10−6

(

10−34 s

1.6× 1012 s

)

∼ 6× 10−53.

Since inflation reduces |Ω − 1| by a factor ∼ exp(−2N), we find, assuming
|Ω− 1| ∼ 1 at the beginning of inflation, we need

e−2N ∼ 6× 10−53,

which gives N ∼ 60.
So, we see that the idea of an inflationary epoch neatly solves the conun-

drums of the standard Big Bang model. However, the model we considered
here is too simplistic in that it provided no mechanism for inflation to end.
If inflation were driven by constant vacuum energy, it would never end, and
the Universe would continue to inflate forever. Also, if vacuum energy drives
the present era of accelerated expansion, its value is far too low to provide
the rapid expansion required for inflation to work. For these reasons, one
must come up with more detailed models which preserve the nice features of
the simple picture painted in this section. The way this is usually done is by
introducing one or several so-called scalar fields in the very early universe.

6.3 Scalar fields and inflation

In earlier physics courses you have come across the concept of a field in
the form of e.g. the electric and magnetic fields. These are vector fields:
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prescriptions for associating a vector with a given point in space at a given
time. By analogy, a scalar field is a rule for associating a real (or complex)
number with a point in space at a given time. As a concrete example from
everyday life, the temperature of the Earth’s atmosphere can be considered
a scalar field. Scalar fields also appear in theoretical particle physics. The
most famous example is the Higgs field which is introduced in the elec-
troweak theory to provide the elementary particles with rest masses. The
discovery of the Higgs boson, the particle corresponding to the Higgs field,
at the LHC in 2012 lent some moral support to the idea behind inflation
since this confirmed that fundamental scalar fields exist in Nature.

The main thing we need to know about a scalar field is that it has
a kinetic and a potential energy associated with it, and hence an energy
density and a pressure. We will in the following consider a homogeneous
scalar field φ. Homogeneity means that φ is a function of time only, not
of the spatial coordinates. Then, measuring φ in units of energy, it can be
shown that the energy density of the field is given by

ρφc
2 =

1

2h̄c3
φ̇2 + V (φ), (6.1)

and the pressure by

pφ =
1

2h̄c3
φ̇2 − V (φ), (6.2)

where V (φ) is the potential energy of the field. One important thing you
should note is that if the field varies slowly in time, in the sense that

φ̇2

2h̄c3
≪ V (φ),

then the scalar field will have an equation of state given approximately by
pφ = −ρφc2, and it will behave like a cosmological constant. This is the key
idea behind using a scalar field to drive inflation.

We will assume that the scalar field dominates the energy density and
pressure of the universe, and that we can neglect the curvature (which will
be driven rapidly to zero anyway if inflation works the way it is supposed
to). The first of the Friedmann equations then reads

H2 =
8πG

3c2
ρφc

2 =
8πG

3c2

(

1

2h̄c3
φ̇2 + V (φ)

)

. (6.3)

As the second equation to use, we will choose the adiabatic expansion equa-
tion

ρ̇c2 = −3H(ρc2 + p).

From equation (6.1) we get

ρ̇φc
2 =

φ̇φ̈

h̄c3
+
dV

dφ
φ̇,
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and from (6.1) and (6.2) we see that ρφc
2 + pφ = φ̇2/(h̄c3). Hence, the

equation for the scalar field becomes

φ̈+ 3Hφ̇+ h̄c3V ′(φ) = 0, (6.4)

where V ′(φ) = dV/dφ. This equation is very interesting, because it is an
exact analog to the equation of motion of a particle of unit mass moving
along the x-axis in a potential well V (x), and subject to a frictional force
proportional to its velocity ẋ. Newton’s second law applied to the motion
of this particle gives

ẍ = −bẋ− V ′(x),

that is ẍ + bẋ + V ′(x) = 0. So we can think of φ as the coordinate of a
particle rolling down the potential V (φ) and with a frictional force 3Hφ̇
supplied by the expansion of the universe. In the more familiar classical
mechanics example, you may recall that the particle will reach a terminal
velocity when ẍ = 0, given by ẋ = −V ′(x)/b. After this point, the particle
will move with constant velocity. Similarly, at some point the scalar field
will settle down to motion down the potential at constant ‘velocity’ given
by 3Hφ̇ = −h̄c3V ′(φ), that is,

φ̇ = − h̄c
3

3H

dV

dφ
.

Let us assume that the field has reached this terminal velocity. We will have
inflation if the energy of the field behaves like a cosmological constant, and
we have seen that the criterion for this is φ̇2 ≪ h̄c3V . Inserting the terminal
velocity for the scalar field in this criterion gives

(

dV

dφ

)2

≪ 9H2V

h̄c3
.

Since the potential energy of the scalar field dominates if this condition is
fulfilled, the Hubble parameter is given by

H2 =
8πG

3c2
V,

and inserting this in the condition above gives

(

dV

dφ

)2

≪ 24πG

h̄c5
V 2 =

24π

E2
P

V 2,

or
2

3

E2
P

16π

(

V ′

V

)2

≪ 1.

It is usual to define the so-called slow-roll parameter ǫ by

ǫ =
E2

P

16π

(

V ′

V

)2

, (6.5)
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and we see that the condition above becomes ǫ ≪ 1. It is also possible to
derive a further condition, this time on the curvature of the potential V ′′,
related to the fact that inflation must last for a sufficiently long time. We
will not have φ̈ = 0 all the time, but as long as φ̈≪ h̄c3V ′(φ), we can ignore
it in the equation of motion for the scalar field. From 3Hφ̇ = −h̄c3V ′(φ) we
get

3Hφ̈ = −h̄c3V ′′(φ)φ̇,

where we have used that H is approximately constant during inflation. This
relation then gives

φ̈ = −h̄c3 φ̇

3H
V ′′(φ),

and using

φ̇ = − h̄c
3

3H
V ′(φ),

we find

φ̈ =
(h̄c3)2

9H2
V ′V ′′,

so the condition on φ̈ becomes

h̄c3

9H2
V ′V ′′ ≪ V ′,

i.e.,
h̄c3

9H2
V ′′ ≪ 1.

But, since H2 = 8πGV/3c2, this can be rewritten as

h̄c3

9

3c2

8πG

V ′′

V
≪ 1,

or,
1

3

E2
P

8π

V ′′

V
≪ 1.

Defining

η =
E2

P

8π

V ′′

V
, (6.6)

the condition can be written (since V ′′ in principle can be negative)

|η| ≪ 1.

When ǫ≪ 1 and |η| ≪ 1 the equations (6.3) and (6.4) reduce to

H2 ≈ 8πG

3c2
V (φ) (6.7)

3Hφ̇ ≈ −h̄c3V ′(φ). (6.8)
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These two equations are called the slow-roll approximation (SRA). The con-
ditions ǫ ≪ 1 and |η| ≪ 1 are necessary for this approximation to be ap-
plicable (in most normal cases they are also sufficient). One of the nice
features is that if the condition on ǫ is fulfilled, then inflation is guaranteed
to take place. To see this, note that inflation takes place if ä > 0, and hence
ä/a > 0 (since a is positive). Since

Ḣ =
d

dt

(

ȧ

a

)

=
ä

a
−H2,

this condition can be reformulated as

− Ḣ

H2
< 1.

By taking the time derivative of equation (6.7) we get 2HḢ = 8πGV ′φ̇/3c2,
so

Ḣ =
4πG

3c2
V ′ φ̇
H
.

We can find φ̇/H by dividing (6.8) by (6.7):

3Hφ̇

H2
= −h̄c3 3c2

8πG

V ′

V
,

which gives
φ̇

H
= − h̄c5

8πG

V ′

V
= −E

2
P

8π

V ′

V
.

By inserting this in the expression for Ḣ above, we find

Ḣ = −4πG

3c2
E2

P

8π

(V ′)2

V
.

If we now use equation (6.7) again, we get

− Ḣ

H2
=

4πG

3c2
3c2

8πG

1

V

E2
P

8π

(V ′)2

V
=

E2
P

16π

(

V ′

V

)2

= ǫ,

and so we see that ä > 0 if ǫ < 1. In scalar field models of inflation, ǫ = 1
is usually taken to mark the end of inflation.

Within the SRA we can derive a useful expression for the number of
e-foldings that remain at a given time t before inflation ends. This number
is defined as

N = ln

[

a(tend)

a(t)

]

, (6.9)

where tend is the time when inflation ends. Note that defined this way, N
measures how many e-foldings are left until inflation ends, since we see that
N(tend) = 0, and when t = ti, at the start of inflation, N(ti) = Ntot, the
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total number of e-foldings produced by inflation. Thus, N is a decreasing
function of time. Since

∫

ȧdt/a =
∫

da/a = ln a, we can write

N(t) =

∫ tend

t
H(t)dt,

and by dividing (6.7) by (6.8) we get

N(t) = − 8π

E2
P

∫ tend

t

V

V ′ φ̇dt =
8π

E2
P

∫ φ

φend

V

V ′ dφ, (6.10)

where φend = φ(tend) can be found from the criterion ǫ(φend) = 1.

6.3.1 Example: inflaction in a φ2 potential

Let us look at an example. We will consider inflation driven by the evolution
of a scalar field with potential energy

V (φ) =
1

2

m2c4

(h̄c)3
φ2,

and hence an energy density

ρφc
2 =

1

2

1

h̄c3
φ̇2 +

1

2

m2c4

(h̄c)3
φ2.

The ground state for the field is the state of minimum energy, which in this
case is given by the field being at rest (φ̇ = 0) at the bottom of the potential
well at φ = 0 (V (φ = 0) = 0, see figure 6.1.) We imagine that for some
reason, the field starts out at a large, non-zero value φi, and hence with a
large potential energy. Similarly to a ball being released from far up the
side of a hill, the scalar field will try to ‘roll down’ to the minimum energy
state at φ = 0. If it rolls sufficiently slowly, the potential energy can be
treated as essentially constant for a significant portion of the way down to
the minimum, and hence the universe will inflate. The slow-roll conditions
involve the parameters ǫ and η, so let us start by evaluating them:

ǫ =
E2

P

16π

(

V ′

V

)2

=
E2

P

4πφ2
,

and

η =
E2

P

8π

V ′′

V
=

E2
P

4πφ2
= ǫ.

The criterion for the SRA to be valid hence becomes

φ≫ EP

2
√
π
≡ φend,
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Figure 6.1: The inflaton depicted as a ball rolling down a potential well.

and inflation will be over when φ ∼ φend.
Inserting the potential in the SRA equations (6.7) and (6.8) gives

H2 =
4πG

3

m2c2

(h̄c)3
φ2 =

4π

3

m2c4

h̄2
φ2

E2
P

3Hφ̇ = −m
2c4

h̄2
φ.

Taking the square root of the first equation and inserting it in the second,
we get

√
12π

mc2

h̄

φ̇φ

EP
+
m2c4

h̄2
φ = 0,

i.e.,

φ̇ = − EP√
12π

mc2

h̄
,

which can be trivially integrated to give

φ(t) = φi −
mc2EP

h̄
√
12π

t,

where for convenience we take inflation to begin at ti = 0. Inserting this
result in the equation for H, we get

H =

√

4π

3

mc2

h̄EP

(

φi −
mc2EP

h̄
√
12π

t

)

,
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and since H = ȧ/a = da/adt, we get

∫ a(t)

ai

da

a
=

√

4π

3

mc2

h̄EP

∫ t

0

(

φi −
mc2EP

h̄
√
12π

t

)

dt,

and finally,

a(t) = ai exp

[

√

4π

3

mc2

h̄EP

(

φit−
mc2EP

2h̄
√
12π

t2
)]

.

We can find the total number of e-foldings produced for a given initial field
value φi by using (6.10):

N =
8π

E2
P

∫ φi

φend

V dφ

V ′ =
8π

E2
P

∫ φi

EP/
√
4π

1

2
φdφ =

(

φi
√
2π

EP

)2

− 1

2
.

As we have seen earlier, we need about 60 e-foldings for inflation to be
useful. This gives a condition on the initial value of φ in this model: N = 60
requires

φi =
11

2
√
π
EP ≈ 3.10EPl.

Now, I have said earlier that we don’t know the correct laws of physics when
the energy of the system reaches the Planck energy and beyond. It seems
we may be in trouble then, since the field has to start out at a value greater
than EP in this model. However, the value of the field is in itself of little
consequence, it is not directly observable. As long as the energy density,
given by V (φi), is less than the Planck energy density, EP/l

3
P, we should be

in business. This can be achieved by choosing the mass of the field, m, low
enough. How low? The value of the potential is

V (φi) =
1

2

m2c4

(h̄c)3
φ2i =

121

8π

E2
Pm

2c4

(h̄c)3
.

This should be compared to the Planck energy density

ρPc
2 =

c7

h̄G2
,

and V (φi) will therefore be much less than ρPlc
2 if m satisfies

mc2 ≪
[

(h̄c)3

EPl3P

]1/2

= EP.

Therefore, as long as the mass of the scalar field is much smaller than the
Planck mass, we should be safe.
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6.3.2 Reheating

Once the slow-roll conditons have broken down, the scalar field will start
oscillating about the minimum of the potential. In the example with V (φ) ∝
φ2 above, the field will speed up as it approaches the minimum, and then go
into a phase where it oscillates around φ = 0. Since energy is conserved, you
might think that the field would bounce back up to the value from which
it started, but the friction term 3Hφ̇ in its equation of motion (6.4) means
that the field will lose energy and the oscillations will be damped.

So far we have assumed that the scalar field is free. However, realistically
it will be coupled to other fields and particles. These couplings can be
modelled as an additional friction term Γφ̇ in the equation of motion of the
scalar field. Thus, the energy originally stored in the inflaton field will go
into creating the particles that we know and love. This process, where the
scalar field undergoes damped oscillations and transfers its energy back into
‘normal’ particles is called reheating. After the reheating phase, the universe
will enter a radiation-dominated era and will evolve as in the standard Big
Bang model.

6.4 Fluctuations

So far we have assumed that the scalar field responsible for inflation is
homogeneous. But quantum mechanics limits how homogeneous the field
can be. The Heisenberg uncertainty principle for energy and time limits how
precisely we can know the value of the field in a given time interval, and as a
consequence of this inflation will begin and end at different times in different
regions of space. We will soon show that this leads to perturbations in the
energy density. This is an important result, because these perturbations
may have been the seeds of the density perturbations that later became the
large-scale structures in our Universe.

The Heisenberg uncertainty principle for energy and time states that in
the time interval ∆t the precision ∆E with which the energy of a system
can be measured is limited by

∆t∆E ∼ h̄.

Inflation takes place at an energy scale which I will denote by mc2. For a
quadratic inflaton potential, m is the mass of the field. There is, unfortu-
nately, at the moment no theory that predicts the value of mc2, but it is
widely believed that the GUT scale 1015 GeV is where the action is. I will
first consider the time just before inflation starts. The typical energy per
particle is then kBT ∼ mc2, and from the relationship between temperature
and time in the early universe (derived in chapter 2) I find

kBT = mc2 ∼ EP

√

tP
t
,
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so that

t ∼ h̄EP

m2c4
.

The order of magnitude of the fluctuations in the energy per particle is
therefore

∆E ∼ h̄

t
∼ m2c4

EP
,

and the relative fluctuations have amplitude

∆E

E
∼ 1

mc2
m2c4

EP
∼ mc2

EPl
.

The energy density is given by ρ ∝ T 4 ∝ E4, and so I find

∆ρ

ρ
∼ dρ

ρ
∼ 1

E4
4E3dE ∼ dE

E
∼ ∆E

E
,

so that the fluctuations in the energy density are of the same order of magni-
tude as the fluctuations in the energy per particle. Notice that the amplitude
of the fluctuations depends on the energy scale m of inflation. If this was
the whole truth, we could have determined this energy scale by measuring
the amplitude of the fluctuations. In reality things are unfortunately not
that simple. As I will show next, a more detailed estimate of the amplitude
shows that it depends on both the inflaton potential V and its derivative.

Fluctuations in the scalar field φ arise because inflation ends at different
times in different patches of the universe. If I consider two patches where
inflation ends within a time interval ∆t, I can write

|∆φ| = |φ̇|∆t,

so that

∆t =

∣

∣

∣

∣

∣

∆φ

φ̇

∣

∣

∣

∣

∣

.

A more careful treatment of the time development of the density pertur-
bations shows that the most important quantity is their amplitude as they
cross the horizon during inflation. This amplitude is determined by the
difference in the amount by which the two patches have expanded,

∆ρ

ρ
∼ H∆t ∼ H

∣

∣

∣

∣

∣

∆φ

φ̇

∣

∣

∣

∣

∣

.

The first equality above may not seem obvious, so I will try to justify it.
I compare to volume elements containing the same total energy U . In the
course of the inflationary epoch one element is stretched by a factor a, the
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other by a+∆a. This leads to a difference in energy density after inflation
given by

∆ρ =
U

a3
− U

(a+∆a)3

= U

(

1

a3
− 1

(a+ ȧ∆t)3

)

=
U

a3






1− 1

(

1 + ȧ
a∆t

)3







≈ U

a3

[

1−
(

1− 3
ȧ

a
∆t

)]

= 3H∆tρ,

so that
∆ρ

ρ
= 3H∆t ∼ H∆t.

The natural time scale during inflation is the Hubble time 1/H, and applying
the uncertainty principle to the field φ

1

H
|∆φ| ∼ h̄,

that is

|∆φ| ∼ h̄H,

so that
∆ρ

ρ
∼ h̄H2

|φ̇|
.

Next I want to apply the equations of the slow-roll approximation (SRA),

H2 =
8πh̄c3

3E2
P

V (φ)

φ̇ = − h̄c
3

3H
V ′(φ).

If I insert these equations in the expression for ∆ρ/ρ, I find

∆ρ

ρ
∼ h̄

h̄c3

E2
P

V
H

h̄c3V ′

∼ h̄

E3
P

V

V ′H

∼ (h̄c)3/2

E3
P

V 3/2

V ′ .



6.4. FLUCTUATIONS 121

The ratio ∆ρ/ρ can be determined from observations. To take one exam-
ple, the amplitude of the temperature fluctuations in the cosmic microwave
background over angular scales of a few degrees on the sky are proportional
to ∆ρ/ρ. The NASA satellites COBE and WMAP, and the ESA satel-
lite Planck have carried out such observations, and their results show that
∆ρ/ρ ∼ 10−5. Unfortunately we cannot come up with a theoretical predic-
tion to compare this number with as long as we don’t know what the correct
model of inflation is. Neither can we go backwards from the observations
to, e.g., the energy scale of inflation, because the amplitude of the density
perturbations also depend on the value of φ when the perturbations crossed
the horizon.

But there is still hope. Another prediction of inflation is that there will
also be produced gravitational waves, and that their amplitude is deter-
mined directly by the energy scale of inflation. This is the topic of the next
subsection.

6.4.1 Inflation and gravitational waves

General relativity predicts the existence of waves in the gravitational field,
in the same way as there are waves in the electromagnetic field. This kind
of wave does not exist in Newtonian gravitation. An object hit by a passing
gravitational wave would show an oscillatory pattern of being tretched and
compressed in the directions perpendicular to the direction of propagation
of the wave. The amplitude of these waves is, however, very small. The first
detection of gravitational waves was announced by the LIGO team in 2016.
Their two interferometers had seen gravitational waves from two black holes
merging in a galaxy 1.4 billion light years away. These waves induced a
change in the length of their detectors of about one thousandth of the size
of a proton!

Why are there no gravitational waves in Newtonian theory? It is easy
to see why this is the case if we reformulate the theory in terms of the
gravitational potential Φ. Outside a spherical mass distribution of total
mass M we have the familiar result

Φ(r) = −GM
r
,

where r is the distance from the centre of the mass distribution. More
generally the gravitational potential in a point ~x outside a mass distribution
with density distribution ρ(~x, t) can be shown to be given by

Φ(~x, t) = −G
∫

ρ(~y, t)

|~x− ~y|d
3y. (6.11)

This equation shows why gravitational waves do not exist in Newtonian the-
ory. The same time t appears on both sides of the equation, and this means
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that a change in ρ will be transfered immediately to the gravitational po-
tential at any point outside the mass distribution. Waves have to propagate
at a finite speed, so it does not make sense to talk of gravitational waves in
this situation.

The local version of equation (6.11) is found by using the relation

∇2 1

|~x− ~y| = −δ(~x− ~y).

This gives
∇2Φ(~x, t) = 4πGρ(~x, t).

Again we see that changes in ρ are instantly communicated to Φ. This flies
in the face of what we have learned in special relativity. Without introducing
general relativity (which, of course, is what one really has to do) we can try
to make a minimal modification to the equation that will leave it consistent
with special relativity:

Φ(~x, t) = −G
∫ ρ

(

~y, t− |~x−~y|
c

)

|~x− ~y| d3y. (6.12)

We now see that Φ at time t depends on the source at an earlier time
t − |~x − ~y|/c, consistent with the time a light signal needs to travel from
the point ~y in the source to the point ~x outside it. I have here taken it for
granted that the information travels at the speed of light. More generally it
can trave at a speed v < c, and to prove that v = c, one has to use general
relativity. The local version of (6.12) is

∇2Φ− 1

c2
∂2Φ

∂t2
= 4πGρ,

which should remind you of wave equations you have come across before.
Gravitational waves travelling in vacuum where ρ = 0 follow the equation

∇2Φ− 1

c2
∂2Φ

∂t2
= 0,

which has plane wave solutions

Φ(~x, t) = Aei(
~k·~x−ωt),

where ω = c|~k|.
What kind of sources can give rise to gravitational waves? First of

all, the mass density of the source must vary in time. Next, the mass
distribution must have a certain amount of structure. A radially oscillating
spherical source does not generate gravitational waves. In electromagnetism
it is common to decompose the spatial structure of a charge distribution in
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multipoles: dipole, quadrupole, octupole, etc. We can do the same thing
with a mass distribution. If the source oscillates at a characteristic frequency
ω, one can show that the radiated power (energy per time) in a multipole
mode of order ℓ (ℓ = 1 is dipole, ℓ = 2 quadrupole, etc.) is given by

P (ℓ) ∝
(

ω

c

)2ℓ+2

|Qℓm|2,

where

Qℓm =

∫

d3xrℓY ∗
ℓm(θ, φ)ρ,

is the multipole moment. The spherical harmonics Yℓm appear in this ex-
pression. You may recall from quantum mechanics that they carry angular
momentum given by ℓ. The electromagnetic field has angular mometum
equal to 1, and can therefore be sourced by a dipole distribution. In general
relativity one finds that gravitational waves have angular momentum 2, and
they therefore need a mass distribution with at least a quadrupole moment
as their source. If we return to inflation for a moment, the scalar field has
angular momentum equal to 0, and can therefore not source gravitational
waves directly. However, the gravitational field will have quantum fluctu-
ations, and some of these fluctuations will have a quadrupole moment. So
quantum fluctuations in the inflationary epoch can give rise to gravitational
waves.

We can determine the amplitude of the gravitational waves generated
by quantum fluctuations by combining Heisenberg’s uncertainty principle
with a little dimensional analysis. We define a dimensionless fluctuation
in the gravitational field Φ by ∆Φ/Φ, where Φ is the smooth value the
field would have had in the absence of waves. The natural time scale in
the inflationary epoch is the Hubble time 1/H. The right hand side of the
uncertainty principle is Planck’s constant h̄ which has dimensions energy
times seconds. We therefore need an energy scale on the left hand side, and
the most natural choice is the Planck energy EP, since this is believed to be
the energy scale of quantized gravity. Thus,

1

H

∆Φ

Φ
EP ∼ h̄,

which gives
∆Φ

Φ
∼ h̄H

EP
∝ (h̄c)3/2

V 1/2

EP
,

where I have used the SRA equation H2 ∝ V 1/2. This equation shows us
something extremely interesting: the amplitude of the gravitational waves
produced in the inflationary epoch gives us direct information about the po-
tential V and hence about the energy scale of inflation. This is an important
motivation to look for them.
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6.4.2 The connection to observations

Once inflation gets going, most of the perturbations in the inflaton field will
be swept outside the horizon. Think of the perturbations produced as a
Fourier series where each term has a definite wavelength. The wavelength
is strethced by the expansion and rapidly becomes greater than the Hubble
length 1/H, which varies slowly in the inflationary epoch. Once outside the
horizon, there is no longer any communication between peaks and troughs
in the term corresponding to this wavelength, and it will therefore be ‘frozen
in’ as a classical perturbation outside the horizon. The same applies to the
gravitational field: they too will be stretched outside the horizon and become
classical perturbations. Later in the history of the universe the modes will
re-enter the horizon, and we will follow their fate after this point in chapter
4. An important point to bear in mind is that inflation generates sensible
initial conditions for the formation of structure in the Universe.

An important question is when perturbations on length scales observable
today crossed outside the horizon in the inflationary epoch. A useful rule
of thumb turns out to be that this happened about 50 e-foldings before the
end of inflation. We can determine the value of the inflaton, φ∗, at that time
by solving the equation

50 =
8π

E2
P

∫ φ∗

φend

V

V ′ dφ.

We have seen that

∆ρ

ρ
∼ (h̄c)3/2

E3
P

V 3/2

V ′

∆Φ

Φ
∼ (h̄c)3/2

E2
P

V 1/2.

If I form the ration of these two amplitudes, I find that

r ≡ (∆Φ/Φ)/(∆ρ/ρ) ∼ EP
V ′

V
∝

√
ǫ.

A more detailed calculation gives

r = 3
√
ǫ.

This is a clear and unambigous prediction of inflation: the ratio of the
amplitudes of the gravitational waves and the density perturbations have
to satisfy this relation if inflation is driven by a single scalar field. This
an important reason for looking for gravitational waves from inflation: they
will give a crucial test of the whole concept of inflation. The most promising
method for looking for these waves is probably precise measurements of
the polarization of the cosmic microwave background. In more advanced
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treatments one shows that gravitational waves give rise to a characteristic
polarization pattern if they are present.

Let us look at an example. Assume that inflation is driven by a scalar
field with a quadratic potential, V (φ) ∝ φ2. In an earlier example we found
that the slow-roll parameter ǫ for this potential was given by

ǫ =
E2

P

4πφ2
,

and that inflation ends when the field has dercreased to the value

φend =
EP

2
√
π
.

Note that we can also write

ǫ =
φ2end
φ2

.

I wish to calculate the ratio r defined above, and to do this I need to find the
value of ǫ when the field has the value φ∗ corresponding to the epoch where
scales observable in the Universe today disappeared outside the horizon. As
I stated earlier I find thsi value by solving the equation

50 =
8π

E2
P

∫ φ∗

φend

V ′

V
dφ =

8π

E2
P

∫ φ∗

φend

1

2
φdφ.

The integral is easily evaluated, and the resulting equation just as easliy
solved with the result

(

φ∗
φend

)2

= 101,

so that

ǫ(φ∗) =
1

101
.

This model therefore predicts that

r = 3

√

1

101
≈ 0.3.

Gravitational waves from the inflationary epoch have sadly not been de-
tected at the time of writing. So far we only have upper limits on their
amplitude. The Planck satellite has found an upper limit of r < 0.09, so the
quadratic potential we have studied seems to be ruled out.

6.4.3 The spectrum of density perturbations

Inflationary models give noe clear prediction of the amplitude of the density
perturbations as long as we don’t know the energy scale of inflation. But
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one thing they can predict is how the amplitude varies with length scale.
From the expressions

∆E

E
∼ mc2

EP
,

and
∆ρ

ρ
∼ (h̄c)3/2

E3
P

V 3/2

V ′

we see that no specific length scale is picked out by the fluctuations. That
does not exclude that the amplitude varies with length scale, but what it
does tell us is that the variations will follow a power-law (in contrast to, e.g.,
an exponential variation, which has a characteristic damping length). We
can determine this power-law if we approximate spacetime during inflation
by a flat de Sitter-space. We have seen earlier that a de Sitter-universe is
invariant under time translations and will look the same at all epochs. This
is understandable since it is empty. Furthermore, the vacuum energy ρΛ is
constant, the Hubble parameter H is constant, and the latter fact means
that the Hubble length 1/H also is constant. The Universe is effectively in
a stationary state. No place and no time is preferred.

Einstein’s field equations connect the line element and the mass-energy
density of the Universe. Perturbations in the energy density will therefore
give rise to perturbations in the line element. But in de Sitter space the
perturbations in the line element must be the same on all length scales while
they are inside the horizon, otherwise we could use a change in the amplitude
to separate one epoch from another. The line element is determined by the
gravitational potential Φ, and when the situation is time-independent we
can determine Φ from the equation

∇2Φ = 4πGρ,

where ρ is a constant. In spherical coordinates I can write this equation as

1

r2
∂

∂r

(

r2
∂Φ

∂r

)

= 4πGρ,

and this gives

r2
∂Φ

∂r
=

4πG

3
ρr3,

and after yet another integration I find

Φ =
2πG

3
ρr3,

where I have chosen Φ(r = 0) = 0. On an arbitrary length scale λ < 1/H
the fluctuation in Φ caused by the fluctuation in ρ will be

∆Φ =
2πG

3
∆ρλ2.
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At the horizon 1/H I have

Φ =
2πG

3H2
ρ,

so that
∆Φ

Φ
= H2λ2

∆ρ

ρ
.

But in this stationary state ∆Φ/Φ must be independent of λ, and since H
is constant I must have

∆ρ

ρ
∼ 1

λ2
.

This is known as a scale-invariant spectrum of density perturbations, of
the Harrison-Zeldovich spectrum. It is scale-invariant in the sence that
the fluctuations in the gravitational potential are independent of the length
scale. This result is valid in a de Sitter universe. In more realistic models
for inflation the density perturbations will still to a good approximation
follow a power-law, but with a different exponent. The main cause of this
deviation from scale-invariance is the fact that the Hubble parameter varies
as the scalar field slowly rolls towards the minimum of its potential, and the
density perturbations on a given length scale will therefore depend on when
the mode crossed outside the horizon.
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Chapter 7

Bonus material: General

relativity

7.1 Why general relativity?

The most important equations in the course are arguably the Friedmann
equations, which describe the evolution of a homogeneous and isotropic uni-
verse. One can derive something very similar to them from Newtonian grav-
ity, but not without making assumptions that are strictly not warranted,
and radiation (photons and other particles moving at, or close to, the speed
of light) have to be inserted by hand. In my experience many students are
left unconvinced and unsatisfied by this shortcut. I experimented once with
starting the course with the following short introduction to general relativ-
ity and derivation of the Friedmann equations, but many of the students
thought that I wasted valuable time on material that would not appear in
the final exam. I can see their point, but I have decided to keep this chapter
in the lecture notes for those who would like to browse through it in their
leisure time.

General Relativity (GR for short) represents our best description and
understanding of space, time and gravity to date. It is essential for formu-
lating consistent cosmological models. It is a geometric theory and can be
formulated in a so-called coordinate-independent way. This you will learn
in the GR course in the physics department. A coordinate-independent ap-
proach requires a higher level of abstraction than our purposes in this course
demand. When we apply the theory, we will always choose a specific set of
coordinates. I will therefore present the theory in a more old-fashioned form.

7.2 Tensors

Consider two points P and Q with coordinates xµ and xµ+dxµ, respectively,
where µ = 0, 1, . . . n− 1 (so that space has n dimensions). These two points
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define an infinitesimal vector ~PQ which we consider to be attached to the
starting point P . The components of the vector in the xµ system are dxµ.
What will they be in another coordinate system, say x′µ? There will be
a transformation from the first system to the latter wich can be expressed
as x′µ = x′µ(xν). Since we consider an infinitesimal vector, we can use the
chain rule for differentiation to find the coordinates in the new system:

dx′µ =
∂x′µ

∂xν
dxν ,

where we have used the convention that repeated indices are summed over
(we sum over all values of ν, from 0 to n − 1). The partial derivatives are
to be evaluated at the point P . The relation above for the transformation
of an infinitesimal vector is the basis for the definition of what we mean by
a contravariant vector (can also be seen as a contravariant tensor of

rank 1). A contravariant vector is a set of quantities Aµ in the xµ system
which transform to the x′µ system in the same way as dxµ:

A′µ =
∂x′µ

∂xν
Aν ,

where the partial derivatives again are to be evaluated at the point P .

A contravariant tensor of rank 2 is a set of n2 quantities T µν asso-
ciated with the point P in the xµ system which transform in the following
way:

T ′µν =
∂x′µ

∂xα
∂x′ν

∂xβ
Tαβ.

Perhaps the simplest example of this are the products of the components of
to contravariant vectors, AµBν . We can define contravariant tensors of arbi-
trarily high rank by adding more factors of ∂x′µ/∂xα to the transformation
equation.

An important special case is a contravariant tensor of rank zero, better
known as a scalar. Perhaps not surprisingly, a scalar, say φ, transforms as

φ′ = φ

Let φ = φ(xµ) be a continuous, differentiable scalar function, so that its
derivatives ∂φ/∂xµ exist at all points. We may consider the coordinates xµ

as functions of x′ν and write

φ = φ(xµ(x′ν)).

If we now use the chain rule to differentiate with respect to x′ν , we get

∂φ

∂x′ν
=
∂xµ

∂x′ν
∂φ

∂xµ
.
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This equation serves as the prototype for how a covariant vector (also
known as a covariant tensor of rank 1) transforms. In general a covariant
vector is a set of quantities Aµ associated with the point xµ transforming as

A′
µ =

∂xν

∂x′µ
Aν .

Note that x and x′ have exchanged places in the partial derivative. We can go
on in the same way as for contravariant tensors and define covariant tensors
of higher rank. As an example, a covariant tensor of rank 2 transforms as

T ′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ .

We can also construct mixed tensors. A mixed tensor of rank 3 may, for
example, have one contravariant and two covariant indices and transform as

T ′µ
νσ =

∂x′µ

∂xα
∂xβ

∂x′ν
∂xγ

∂x′σ
Tαβγ .

Why bother with tensors? An important reason for us is that they are
important in relativity. We can catch a glimpse of their significance if we
consider the tensor equation

Xµν = Yµν .

This equation tells us that the components of the covariant tensors X and
Y are equal in the coordinate system x. But then we also have

∂xµ

∂x′α
∂xν

∂x′β
Xµν =

∂xµ

∂x′α
∂xν

∂x′β
Yµν

and since we know that X and Y transform as covariant tensors of rank 2,
we may conclude that X ′

αβ = Y ′
αβ. The components of X and Y are equal

also in the new coordinate system. Since there is nothing special about x
and x′, this shows that a tensor equation is valid in all coordinate systems.
Tensors are therefore natural objects to make use of if we want to formulate
laws of nature that are valid in all reference frames.

One thing to bear in mind is that a tensor equation like

Xµ
αβ = Y µα

β

MAKES ABSOLUTELY NO SENSE! ABSOLUTELY NONE! If you ever
make a mistake like this, years will be added to your time in purgatory,
I promise. I dread to think about how much time there I have ratched
up. Although as mixed tensors of rank 3 they have the same number of
components, they are mathematically totally different objects. X has one
contravariant and two covariant indices, Y has two contravariant and one
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covariant. This will become more obvious when you learn what sort of
geometrical objects tensors are, but for now we may note that X and Y
transform differently.

If tensors are to be useful to us, we must be able to do things to them,
Things like adding and subtracting two tensors, for example. One important
point here, related to the previous paragraph, is that we can only add and
subtract tensors of the same type. If they are, addition and subtraction are
defined componentwise. For example:

Sµν = Xµν + Yµν .

Symmetric and antisymmetric tensors are concepts that are useful
from time to time. A tensor of rank 2 is symmetric if (shown here for
covariant tensors) Xµν = Xνµ, and antisymmetric if Xµν = −Xνµ. Any
tensor of rank 2 can be written as the sum of a symmetric part X(µν) and
an antisymmetric part X[µν], where

X(µν) =
1

2
(Xµν +Xνµ)

X[µν] =
1

2
(Xµν −Xνµ)

which you can easily check.

Another important operation is a contraction: From a tensor of con-
travariant rank p ≥ 1 and covariant rank q ≥ 1, we can form a tensor of rank
(p−1, q−1) by equating one contravariant index to one covariant index and
sum over them. An example will make this clearer: From Xµ

νγσ we can form
the tensor Yγσ by taking

Yγσ = Xµ
µγσ .

Remember here that repeated indices are summed over. Note that if we
contract a tensor of rank (1, 1), we get a scalar:

Xµ
µ = A.

The metric tensor

A particularly important tensor gµν of rank 2 is the metric tensor, or quite
simply the metric. This is a symmetric tensor used to define the distance
ds between two infinitesimally separated points xµ and xµ + dxµ:

ds2 = gµν(x)dx
µdxν .

It also defines the length of a vector A in the point x as

A2 = gµν(x)A
µAν ,
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and the scalar product between two vectors A and B,

AB = gµν(x)A
µBν.

Two vectors are said to be orthogonal if their scalar product vanishes.
In both the special and the general theory of relativity it is possible for a
vector which is different from the null vector to have zero length, A2 = 0.

Although it is not strictly true, it is sometimes useful to think of the
metric as an n × n quadratic matrix. It then has a determinant, which we
denote by g, g = det(gµν). If g 6= 0, the metric has an inverse. This inverse
is a contravariant tensor of rank 2, gµν , satisfying

gµαg
αν = δνµ,

where δνµ = 1 for µ = ν equal to zero otherwise. The metric gµν can be used
to lower indices, and its inverse gµν to lift indices. For example:

T νµ = gµαT
αν

T µν = gµαTαν .

The equivalence principle

The equivalence principle is one of the starting points for the general theory
of relativity. The crucial observation forming the basis for the equivalence
principle is that an observer in free fall feels no gravitation field. If he releases
an object from rest, the object will remain at rest with respect to him after
he has let go of it. In general, there is no experiment he can make that
will reveal to him that he is in a gravitational field. He can regard himself
as being at rest. More precisely, although perhaps also more obscurely, we
can say that In any point in a gravitation field we can choose a frame of

reference, the so-called free-fall system, defined by the fact that it moves with

the acceleration a freely falling body would have had at the same point. In

ths system, all the laws of physics will have the samme form as in the special

theory of relativity. The exception is gravity, which vanishes locally in this

system

A couple of comments are in order:

1. This formulation of the equivalence principle implies that inertial mass
mI (which appears in Newton’s 2. law) equals gravitating mass mG

(which appears in the law of gravity). If this were not the case, the
observer and the object he releases would have experienced different
accelerations, and they would not have remained at rest with respect
to each other.

2. Note that this is valid at a point. It is in general not possible to find a
frame of reference covering all of spacetime in which gravity vanishes
everywhere.



134 CHAPTER 7. BONUS MATERIAL: GENERAL RELATIVITY

The equivalence principle is important because it helps us with formu-
lating relativistically correct laws: Start by analysing the situation the the
free-fall system where special relativity can be applied. If we can formulate
the result as a tensor equation, we then know that it will be valid in all

reference frames.

The geodesic equation

We will now use the equivalence principle to find the equation of motion
of a particle in a graviational field by starting in the free-fall frame where
we can use special relativity. The particle is at a point with coordinates
ξµ = (t, x, y, z), and we have chosen units where c = 1. The line element is

ds2 = dt2 − dx2 − dy2 − dz2 = ηµνdξ
µdξν ,

so the metric is the Minkowski metric ηµν = diag(1,−1,−1,−1). Since there
are no forces acting on the particle in the free-fall system, its equation of
motion according to special relativity is simply

d2ξµ

dτ2
= 0,

where dτ2 = ds2 is proper time, that is, time as measured on a watch
following the particle. This is a tensor equation in special relativity: Under
Lorentz transformations ξ is a four-vector, and τ is a scalar. But Lorentz
transformations only apply between frames moving with constant relative
velocity. We need an equation which is invariant under more general trans-
formations. Let us find out what happens to the equation above under a
general transformation to new coordinates xµ. Under such a transformation
we will have

dξµ =
∂ξµ

∂xν
dxν ,

so
dξµ

dτ
=
∂ξµ

∂xν
dxν

dτ
.

We then have

0 =
d2ξµ

dτ2
=

d

dτ

(

∂ξµ

∂xν
dxν

dτ

)

=
∂ξµ

∂xν
d2xν

dτ2
+
dxν

dτ

d

dτ

(

∂ξµ

∂xν

)

=
∂ξµ

∂xν
d2xν

dτ2
+

∂2ξµ

∂xν∂xρ
dxν

dτ

dxρ

dτ

Next we multiply this equation by ∂xσ/∂ξµ and sum over µ. In the first
term we find the factor

∂xσ

∂ξµ
∂ξµ

∂xν
d2xν

dτ2
=
∂xσ

∂xν
d2xν

dτ2
= δσν

d2xν

dτ2
=
d2xσ

dτ2
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and hence
d2xσ

dτ2
+
∂xσ

∂ξµ
∂2ξµ

∂xν∂xρ
dxν

dτ

dxρ

dτ
= 0.

We rewrite this equation as

d2xσ

dτ2
+ Γσνρ

dxν

dτ

dxρ

dτ
= 0,

where

Γσνρ =
∂xσ

∂ξµ
∂2ξµ

∂xν∂xρ

is called the Christoffel symbol or the connection. In the new coordi-
nates, the proper time is given by

dτ2 = ηµνdξ
µdξν = ηµν

∂ξµ

∂xα
∂ξν

∂xβ
dxαdxβ ≡ gαβdx

αdxβ,

where the metric in the new coordinates is

gαβ = ηµν
∂ξµ

∂xα
∂ξν

∂xβ
.

You can now convince yourself that the new equation of motion, called the

geodesic equation is invariant under a general coordinate transformation.
You need to know that the Christoffel symbol is not a tensor, but transforms
as

Γ′α
βγ =

∂x′α

∂xδ
∂xη

∂x′β
∂xφ

∂x′γ
Γδηφ +

∂x′α

∂xδ
∂2xδ

∂x′β∂x′γ
.

If we now introduce the covariant derivative

∇γA
α =

∂Aα

∂xγ
+ ΓαβγA

β ,

(we will often write this as Aα;γ) we can show that ∇γA
α transforms as a

mixed rank-2 tensor. The trajectory of the particle is given by xµ(τ).
The tangent vector to the trajectory at a given point is given by Xµ =

dxµ/dτ , which transforms as a contravariant vector. It is now a quite man-
agable task (you should do it!) to show that the geodesic equation can be
written as

Xγ∇γX
α = 0.

We will often use the notation ∇γX
α = Xα

;γ , and
∂Xα

∂xγ = Xα
,γ . The geodesic

equation can then be written in the (misleadingly) simple form

XγXα
;γ = 0.

Written like this it is quite clear that the geodesic equation is a tensor
equation, and therefore is valid in all frames of reference. Note that the
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equation is valid under general transformations, also pure coordinate trans-
formations like a change from Cartesian to spherical coordinates. This makes
it sometimes hard in general relativity to separate physical effects from ef-
fects caused simply by the choice of coordinates. This is a problem you will
meet in the Cosmology II course in connection with cosmological perturba-
tion theory, the so-called gauge problem. It will not trouble us in this
course.

With hindsight we can now derive the geodesic equation in a much sim-
pler way. In the free-fall frame the tangent vector to the particle’s trajectory
is given by Ξµ = dξµ/dτ , and the equation of motion can be written as

d

dτ

(

dξµ

dτ

)

=
d

dτ
Ξµ = 0.

Using the chain rule, we rewrite this as

dξν

dτ

∂Ξµ

∂ξν
= ΞνΞµ,ν = 0.

Partial derivatives with respect to coordinates is not a tensorial operation,
but covariant differentiation is, and in the free-fall frame these are the same,
since all the Christoffel symbols vanish there. We can therefore write the
equation as

ΞνΞµ;ν = 0.

We have now written the equation of motion as a tensor equation, and hence
it is valid in all frames of reference.

Note that Γ and gµν are geometric quantities. Gravity is encoded in the
geometry of spacetime, and has therefore become a geometric effect. There
are no forces in the geodesic equation. Since both Γ and gµν are geometric
quantities, it is perhaps not surprising that they are related. I state without
proof that

Γσµν =
1

2
gρσ

(

∂gνρ
∂xµ

+
∂gµρ
∂xν

− ∂gµν
∂xρ

)

.

The metric is therefore an extremely important object in GR. If we know it,
we know the geometry of spacetime, and the geometry of spacetime directs
the motion of free particles.

I end this section with a note on covariant differentiation. For a mixed
tensor, the covariant derivative is given by

∇γT
α···
β··· =

∂

∂xγ
Tα···β··· + ΓαδγT

δ···
β··· + · · · − ΓδβγT

α···
δ··· − · · · ,

so that each contravariant index gives rise to a Christoffel symbol with
positive sign, whereas each covariant index gives rise to one with negative
sign. For a contravariant tensor of rank 2, the covariant derivative is

∇γT
µν =

∂

∂xγ
T µν + ΓµβγT

βν + ΓνβγT
µβ .
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The Newonian limit

We will now consider a particle moving slowly in a weak, static gravitational
field. Remember that we use units where c = 1, so slow motion means

dxi

dt
≪ 1.

In the geodesic equation this means that all terms containing dxi/dτ (i =
1, 2, 3) are negligible in comparison with the term containing(dt/dτ)2 , We
therefore get

d2xσ

dτ2
+ Γσ00

(

dt

dτ

)2

= 0.

The gravitational field is assumed to be weak, which should mean that the
metric is not very different from the Minkowski metric of flat spacetime. We
therefore write it as

gµν = ηµν + hµν ,

der |hµν | ≪ 1. We can therefore neglect all terms containing more than one
factor of hµν . A static gravitational field means

∂gµν
∂t

=
∂hµν
∂t

= 0.

The Christoffel symbol we need then becomes

Γσ00 =
gρσ

2

(

∂g0ρ
∂x0

+
∂g0ρ
∂x0

− ∂g00
∂xρ

)

= −1

2
ηρσ

∂h00
∂xρ

.

For σ = i = 1, 2, 3 the geodetic equation becomes

d2xi

dτ2
=
ηiρ

2

∂h00
∂xρ

(

dt

dτ

)2

= −1

2

(

dt

dτ

)2 ∂h00
∂xi

.

Furthermore, for σ = 0 we see that Γ0
00 ∝ ∂h00

∂t = 0, so this component of
the geodesic equation becomes

d2t

dτ2
= 0,

so that dt/dτ = konstant. We can then divide the equations for σ = i by
(dt/dτ)2 and get

d2xi

dt2
= −1

2

∂h00
∂xi

.

In Newtonian mechanics, the equation of motion for a particle in a static
gravitational field is

d2xi

dt2
= − ∂Ψ

∂xi
,

so we see that by taking h00 = 2Ψ, the geodesic equation becomes the
Newtonian equation of motion. In other words, in the Newtonian limit the
00 component of the metric must be g00 = 1 + 2Ψ.
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Important tensors in GR

As said before, the Christoffel symbol is not a tensor. But we can use it to
construct tensors that are related to the curvature of spacetime. The first
we need to know about is the Riemann tensor

Rµσβα = Γµσα,β − Γµσβ,α + ΓµρβΓ
ρ
σα − ΓµραΓ

ρ
σβ ,

where I have used the notation

,α =
∂

∂xα
.

We obtain the Ricci tensor by contracting to indices in the Riemann
tensor:

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓ
β
µν − ΓαβνΓ

β
µα.

The Ricci scalar is then given by

R = gµνRµν .

Finally, the Einstein tensor is defined as

Gµν = Rµν −
1

2
gµνR.

This tensor has the crucial property that its covariant divergence vanishes:
Gµν;ν = 0.

The energy-momentum tensor

Let us briefly return to special relativity and consider a system of non-
interacting particles with energy density described by the function ρ(x). We
let this function represent the energy density as measured by an observer
moving with the particles, which motion is characterized by the four-velocity
field

uµ =
dxµ

dτ
.

From these quantities we can construct a contravariant tensor of rank 2:

T µν = ρuµuν .

In special relativity we have

uµ = γ(1, ~u),

where ~u = d~x/dt,

dτ2 = ds2 = dt2 − d~x2 = dt2(1− u2) =
dt2

γ2
,
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and γ = (1− u2)−1/2. Written out as a matrix, T looks like this:

(T µν) = ρ











1 ux uy uz
ux u2x uxuy uxuz
uy uxuy u2y uyuz
uz uxuz uyuz u2z











From fluid mechanics we know the continuity equation

∂ρ

∂t
+∇ · (ρ~u) = 0,

which expresses (local) conseravation of energy. With our definition of T ,
we can write this equation in a very compact form. By calculating T 0ν

,ν , we
get

T 0ν
,ν =

∂T 0ν

∂xν
=
∂ρ

∂t
+
∂ρux
∂x

+
∂ρuy
∂y

+
∂ρuz
∂z

=
∂ρ

∂t
+∇ · (ρ~u).

Therefore, the continuity equation can be written as

T 0ν
,ν = 0.

Another important equation in hydrodynamics, the Navier-Stokes equation,
says that for a fluid without internal pressure and external forces, we have

ρ

[

∂~u

∂t
+ (~u · ∇)~u

]

= 0.

The physical content of this equation is (local) conservation of momentum.
One can show that with our choice of T , this equation can be written in
component form as

T iν,ν = 0,

for i = 1, 2, 3. We can therefore express conservation of energy and momen-
tum for our system in a very elegant way as

T µν,ν = 0.

Written like this, we see that the extension of this equation to general rela-
tivity should be

T µν;ν = 0.

Because T summarizes the conservation of energy and momentum, it is
called the energy-momentum tensor.

The case we are dealing with most of the time in cosmology is that of
a perfect fluid. A perfect fluid is characterized by its energy density ρ =
ρ(x), its internal pressure p = p(x), and its four-velocity field uµ = dxµ/dτ .
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When the pressure p = 0, we should regain the energy-momentum tensor of
the previous section. This suggests that we should choose

T µν = ρuµuν + pSµν ,

where Sµν is a symmetric tensor. The only symmetric tensors of rank 2
associated with the fluid are uµuν and gµν , so the simplest choice is

Sµν = Auµuν +Bgµν ,

where A and B are constants. We can determine these constants by tak-
ing the special relativistic limit. In this limit gµν = ηµν , the Minkowski
metric. We want, once again, T µν,ν = 0 to express conservation of energy
and momentum. By demanding that T 0ν

,ν = 0 should give us the continuity
equation, and that T iν,ν = 0 should give us the Navier-Stokes equation (this
time with a term from internal pressure), we find (not shown here, but it is,
with the famous phrase, ‘straightforward but tedious’) A = 1, B = −1. We
therefore take

T µν = (ρ+ p)uµuν − pgµν ,

as the energy-momentum tensor of a perfect fluid. It has, by construction,
vanishing covariant divergence: T µν;ν = 0.

The Einstein equation

We still lack a crucial ingredient: an equation that relates the geometry
of spacetime to the distribution of mass and energy. This is analogous to
Newtonian gravity, where Newton’s law of gravity tells us the field produced
by a given set of masses.

The natural point to start with is the tensor that tells us about mass
and energy, Tµν . Somehow, we must relate it to a geometrical quantity. We
note that T has vanishing covariant divergence, and recall that the same
is the case for the purely geometric tensor Gµν , the Einstein tensor. The
simplest guess we can make for the field equation is therefore that these
two are proportional. The constant of proportionality can be determined by
requiring that we regain the Newtonian limit when velocities are small and
the gravitational field is weak and static. The result is

Gµν = 8πGTµν ,

This is the Einstein equation, one of the highlighs of human intellectual
history (and I say this without any irony). If you want to use units where c
is not equal to one, the constant of proportionality is 8πG/c4.

Note that this equation is a guess. It cannot be derived stringently from
the postulates of the theory. It is merely the simplest equation that we can
write down. If you wish to (and in recent years several people have), you can
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write down more complicated field equations. The validation of the Einstein
equation must come from comparing its predictions with observations. So
far, there are no signs that we need a more complicated equation.

7.3 Spacetime curvature or spatial curvature, which

is more important?

In popular accounts of GR, a common way to illustrate the way gravity is
understood as geometry is the (in)famous ‘bowling ball on a matress’. The
surface of the matress represents space, and the bowling ball represents,
e.g., the Sun or Earth. The bowling ball makes a dent in the matress, and
this represents spatial curvature. Marbles flung across the matress on paths
which take them close to the bowling ball, will be deflected. This is taken
to be an anologue to how spacetime curvature causes objects to move on
curved paths.

There are obvious problems with this analogy. For example, space
is three-dimensional, not two-dimensional like the surface of the matress.
What happens to space above the bowling ball? If you put another mat-
tress on top of the bowling ball, it would curve the opposite way, and it
would seem that gravity above the ball is repulsive! This is clearly not the
case with the gravitational fields of the Sun and Earth.

A less obvious, but deeper problem with this analogy is that for particles
moving at speeds significantly below the speed of light, spatial curvature is
not the main cause of gravity. The main reason why, for example, a rock
falls to the ground when dropped, is how Earth’s mass causes clocks to tick
at different rates at different heights. To show this, we will follow a paper
by R. R. Gould in the American Journal of Physics, volume 84 (2016), page
396.

Let us look at spacetime outside Earth. We consider our planet to be
a perfect sphere, and neglect its rotation. In AST1100 (now AST2000)you
learnt what spacetime looks like outside a non-rotating, spherical mass dis-
tribution. The geometry is given by the Schwarzschild line element

ds2 =

(

1− 2GM

rc2

)

c2dt2 − dr2

1− 2GM
rc2

.

Note that I have left out the angular part of the line element since we will
only be looking at radial motion in this section. In AST1100 you used this
line element mostly to study black holes, but it is valid outside all spherical
mass distributions.

Let us consider the situation where you hold a rock at waist height,
release it and let if fall to the ground. The quantitative aspects of this case
is perfectly described by Newtonian physics. If the rock starts at height h0,



142 CHAPTER 7. BONUS MATERIAL: GENERAL RELATIVITY

it will hit the ground after a time

tf =

√

2h0
g
,

where g = 9.8 ms−2. Taking h0 = 1 m, we get tf = 0.45 s. Let us turn to
how the situation is described in GR.

We start by simplifying the line element. Let R be the distance from
Earth’s center to waist height, and let x be the distance the rock has fallen
below waist height since you dropped it. The coordinate r in the line element
is related to them by r = R− x. Now, R is for all pracitical purposes equal
to the radius of Earth, so clearly x ≪ R. We can use this fact to simplify
the line element by expanding it to first order in x/R:

1− 2GM

rc2
= 1− 2GM

c2
1

R− x

= 1− 2GM

Rc2
1

1− x
R

≈ 1− 2GM

Rc2

(

1 +
x

R

)

= 1− 2GM

Rc2
− 2GM

R2c2
x

≈ 1− 2GM

R2c2
x,

where in the last line we have discarded a constant term because it is very,
very much smaller than 1: R is essentially Earth’s radius, whereas 2GM/c2

is Earth’s Schwartzschild radius, which is of the order of 1 cm.
The same manipulations lead to

1

1− 2GM
rc2

≈ 1

1− 2GM
R2c2 x

≈ 1 +
2GM

R2c2
x.

Clearly dr = −dx, so we get

ds2 ≈
(

1− 2GM

R2c2
x

)

c2dt2 −
(

1 +
2GM

R2c2
x

)

dx2.

Now x varies between 0 (waist height) and 1 m (when the rock hits
the ground). The spatial part of the line element, which measures how the
length of measuring rods change, changes in the course of the fall by

√

2GM

R2c2
xdx2 ≈ 10−8 m.

The temporal part of the line element measures of the rates of clock vary.
The fall is over in a time dt = 0.45 s, and in this time the change in the
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temporal part is
√

2GM

R2c2
cdt ≈ 1.5 m.

In other words, the warping of time changes the metric much more than the
curvature of space. In the 0.45 s it takes the stone to fall 1 meter, it explores
only 1 meter of spatial curvature, but ctf = 1.5 × 108 meters of time warp.
The latter is therefore much more influential in determining the path of the
rock, and only for particles moving at, or close to the speed of light, will
spatial curvature be explored to an extent that it matters.

A further indication of how spatial curvature alone is not enough to
cause gravitatinal effects is described in another article in the American
Journal of Physics, volume 84 (2016) page 588. I will briefly describe its
main argument.

Consider the static line element

ds2 = c2dt2 + gijdx
idxj ,

where the gij are functions of spatial coordinates alone, and not of time.
Furthermore, we also assume that gij = 0 when i 6= j. We now go on to
calculate the Christoffel symbols:

Γ0
αβ =

1

2
g0ν(gαν,β + gβν,α − gαβ,ν)

=
1

2
g00(gα0,β + gβ0,α − gαβ,0)

= 0.

Γiαβ =
1

2
giν(gαν,β + gβν,α − gαβ,ν)

=
1

2
gii(gαi,β + gβi,α − gαβ,i).

From this we see that

Γi0β =
1

2
gii(g0i,β + gβi,0 − g0β,i)

= 0 = Γiβ0,

so the only non-vanishing Christoffel symbols are those with all the indices
spatial:

Γijk =
1

2
gii(gji,k + gki,j − gjk,i).

We note that this is exactly the same as for the purely spatial metric of the
3d space described by dl2 = gijdx

idxj.
The motion of particles in this spacetime is determined by the geodesic

equation
d2xσ

dτ2
+ Γσνρ

dxν

dτ

dxρ

dτ
= 0.
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For σ = 0, we get
d2t

dτ2
+ Γ0

νρ

dxν

dτ

dxρ

dτ
= 0.

Since Γ0
νρ = 0 for all ν and ρ, this equation becomes simply

d2t

dτ2
= 0,

which means that t = aτ + b, and we can choose the constants a = 1, b = 0
so that t = τ .

The spatial components of the geodesic equation are

d2xi

dτ2
+ Γiνρ

dxν

dτ

dxρ

dτ
= 0.

Since Γiνρ 6= 0 only when ν and ρ both are spatial indices, we have

d2xi

dτ2
+ Γijk

dxi

dτ

dxj

dτ
= 0.

We now see that xi = constant is a solution. This means that a particle
which starts at rest, will remain at rest. If you drop a rock in this spacetime,
it will not fall to the ground. In this sense, gravity is absent in this spacetime
where all the curvature comes from the spatial part of the metric.

This is all well and good, but are there any examples of actual solutions of
Einstein’s field equation which have this property? As it turns out, there is:
Einstein’s first attempt at constructing a model for the Universe, published
in 1917 in his first paper on cosmology. The model has the line element

ds2 = c2dt2 −
[

dr2

1− r2
+ r2(dθ2 + sin2 θdφ2)

]

.

It is static, and the spatial geometry is that of the surface of a 4-dimensional
sphere. The model is unrealistic, because we know that the Universe is not
static, it is expanding. However, it is amusing that the inventor of our
best theory of how gravity works, arrived at a model of the Universe where
particles don’t feel gravity. This model is, essentially, special relativity on
the surface of a 4-dimensional sphere.

7.4 The Friedmann equations

We have now reached the goal of this chapter. As I may or may not have
said before, I have not dragged you through this basic introduction to GR
to give you anything resembling a deep understading of it (I am far too
shallow for that). If the previous sections have left you in a confused state,
don’t worry: This is my fault, and you won’t be asked about GR on your
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final exam. I simply want to show you where the Friedmann equations come
from. Now you know just enough to follow the proper, general relativistic
derivation. Once you have seen it, you should feel free to forget about it.

The Friedmann equations follow from the Einstein equation in the special
case where the metric is given by the Robertson-Walker line element for a
homogeneous and isotropic universe, and the source for spacetime curvature
is a perfect fluid. Our task in the following is to set up both sides of the
equation. There is nothing particularly difficult about this, conceptually or
technically. It is just a long calculation. Most of the time we are simply
taking derivatives and multiplying and adding stuff. However, there are
quite a lot of operations like this to be carried out, and one absent-minded
mistake in one place will propagate through the whole calculation, leading to
an erroneous result. When I did the calculation when preparing these notes,
I had to work through it three times before I got the right result. I say this
to comfort you. Later in life you may have to do similar calculations in cases
where you don’t already know what the final result should be. Trust me,
unless you are having an especially good day, you probably won’t get it right
the first time. You should do the calculation at least twice. If your results
agree, then you may be on to something, but redo it once more, just to be
safe. Or, even better, get a friend to make the same calculation. If hers or
his results agree with yours, then you are reasonably safe. Of course, if you
are a complete chicken, you can use one of several Mathematica packages for
tensor manipulations which will do the whole thing for you. This will only
take a few seconds, and in the same time you will have lost my respect, thus
accomplishing two major tasks at once. Frankly, in my opinion, you should
only leave your mathematics to a computer if you are prepared to let it do
your drinking and fornication for you, too.

So, let us start by writing down the Robertson-Walker line element. To
save a little bit of writing, I will follow standard practice among fans of GR
and use units where c = 1. Trust me, it is OK, and I will reinstate it at the
end of the calculation. With this convention we can write

ds2 = dt2 − a2(t)

(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)

(7.1)

In what follows, indices will represent coordinates with the following pair-
ings: x0 = t, x1 = r, x2 = θ, x3 = φ. The relationship between the line
element and the metric is ds2 = gµνdx

µdxν , so we note with satisfaction
that the metric is diagonal and read off the following components:

gµν = diag

(

1,− a2

1− kr2
,−a2r2,−a2r2 sin2 θ

)

, (7.2)

where I have saved some more writing by not writing the time-dependence
of a explicitly. Please remember that it is still there. Since the metric is
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diagonal, finding its ‘inverse’ gµν is a doddle:

gµν = diag

(

1,−1− kr2

a2
,− 1

a2r2
,− 1

a2r2 sin2 θ

)

. (7.3)

We now have to calculate the Christoffel symbols, then from them we can go
on to find the Ricci tensor, the Ricci scalar, and finally the Einstein tensor.

The Christoffel symbols are given by

Γµαβ =
1

2
gµν (gαν,β + gβν,α − gαβ,ν) . (7.4)

I am not going to do all of them, only a few so you can see how it can be
done, and then I will just give the final result for the rest. I start with the
case µ = 0:

Γ0
αβ =

1

2
g0ν (gαν,β + gβν,α − gαβ,ν)

=
1

2
g00 (gα0,β + gβ0,α − gαβ,0)

=
1

2
(g00,βδα0 + g00,αδβ0 − gαβ,0)

= −1

2
gαβ,0. (7.5)

A brief explanation of what happened here:

• In the first line, I have just substituted µ = 0 in the general expression
(7.4).

• Since gµν is diagonal, the only term in the sum over ν that contributes,
is when ν = 0.

• I have inserted g00 = 1. Also, gµν is diagonal, so in the first term
α = 0, while in the second β = 0. I have emphasized this fact by also
inserting Kronecker deltas.

• Since g00 = 1 is a constant, taking derivatives with respect to any
coordinate will give zero as a result. The only term that survives is
therefor the last.

Since g00 = 1, this result implies that Γ0
00 = −1

2g00,0 = 0, and since the
metric is diagonal, we have Γ0

0i = Γ0
i0 = 0, and Γ0

ij = Γ0
ji = 0 when i 6= j.

The non-zero Christoffel symbols with upper index = 0 are

Γ0
11 = −1

2
g11,0 = −1

2

∂

∂t

(

− a2

1− kr2

)

=
aȧ

1− kr2
(7.6)
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Γ0
22 = −1

2

∂

∂t
(−a2r2) = r2aȧ (7.7)

Γ0
33 = −1

2

∂

∂t
(−a2r2 sin2 θ) = r2 sin2 θaȧ. (7.8)

I hope it is clear by now how to proceed. None of the operations are very
difficult, but you have to keep track of the indices and make sure that
you cover all cases. The burden is somewhat lessened by the fact that the
Christoffel symbols are symmetric in the lower indices: Γµαβ = Γµβα. The
remaining set of non-zero Γs is

Γ0
11 =

aȧ

1− kr2
, Γ0

22 = r2aȧ, Γ0
33 = r2 sin2 θaȧ (7.9)

Γ1
01 = Γ2

02 = Γ3
03 =

ȧ

a
(7.10)

Γ1
11 =

kr

1− kr2
, Γ1

22 = −r(1− kr2), Γ1
33 = −r(1− kr2) sin2 θ (7.11)

Γ2
12 = Γ3

13 =
1

r
, Γ2

33 = − sin θ cos θ, Γ3
23 = cot θ. (7.12)

The next task is to calculate the Ricci tensor Rµν = Rνµ. It is given in
terms of the Christoffel symbols as

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓ
β
µν − ΓαβνΓ

β
µα. (7.13)

People with minds greater than my own often find elegant ways of calculating
the components of the Ricci tensor. I usually have to resort to the painful
method of calculating it term by term, component by component. I will
show one example:

R00 = Γα00,α − Γα0α,0 + ΓαβαΓ
β
00 − Γαβ0Γ

β
0α. (7.14)

The first term vanishes, since all the Christoffel symbols involved are equal
to zero. In the third term, Γβ00 = 0 for all β, so this term also vanishes. For
the two remaining terms, I find

−Γα0α,0 = −Γ0
00,0 − Γ1

01,0 − Γ2
02,0 − Γ3

03,0

= −3
∂

∂t

ȧ

a
= −3

äa− ȧ2

a2

= 3

(

ȧ

a

)2

− 3
ä

a
, (7.15)

and

−Γαβ0Γ
β
0α = −Γ0

β0Γ
β
00 − Γiβ0Γ

β
0i

= −Γi00Γ
0
0i − Γij0Γ

j
0i

= −
∑

i

∑

j

Γi0iδijΓ
i
0iδij

= −
∑

i

(

Γi0i

)2
= −3

(

ȧ

a

)2

. (7.16)
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In the first and second lines I have used that Γβ00 = 0 for all β. Adding up
all the terms I get

R00 = −3
ä

a
. (7.17)

The rest involve similarly inspiring calculations. To retain whatever sanity
one might have, it is useful to recall that Rµν = Rνµ, so that, once you have
found that, e.g., R12 = 0, you can spare yourself the trouble of calculating
R21. Here are the final results:

Rµν = 0, if µ 6= ν (7.18)

R00 = −3
ä

a
(7.19)

R11 =
2ȧ2 + aä+ 2k

1− kr2
(7.20)

R22 = r2(2ȧ2 + aä+ 2k) (7.21)

R33 = r2 sin2 θ(2ȧ2 + aä+ 2k) (7.22)

We also need the Ricci scalar,

R = gµνRµν = g00R00 + g11R11 + g22R22 + g33R33. (7.23)

Compared to the preceding calculations, doing this sum is a doddle, and I
find:

R = −6

[

(

ȧ

a

)2

+
ä

a
+

k

a2

]

. (7.24)

Now we have all we need to set up the left-hand side of the Einstein
equation. The right-hand side is proportional to the energy-momentum
tensor, and I will assume that it can be approximated by a perfect fluid.
Recall that, in units where c = 1, the energy-momentum tensor of a perfect
fluid is given by

T µν = (ρ+ p)uµuν − pgµν , (7.25)

where uµ is the four-velocity of the fluid. The coordinates we are using are
co-moving: The observer is in a reference frame which moves along with the
fluid. In other words, the fluid is at rest relative to the observer. In that
case, the spatial part of the four-velocity vanishes, and we have

uµ = (1, 0, 0, 0) = δµ0 , (7.26)

and

uµ = gµνu
ν = gµνδ

µ
0 = gµ0 = δ0µ, (7.27)

so I get

Tµν = (ρ+ p)δ0µδ
0
ν − pgµν . (7.28)
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The Einstein equation (with c = 1) was

Gµν = Rµν −
1

2
gµνR = 8πGTµν . (7.29)

I am now going to add an extra term to this equation. You may recall that
the form of equation (7.29) was motivated by the fact that both the left-hand
side and the right-hand side have vanishing covariant divergence. It turns
out that there is an extra term we can add to the left-hand side without
screwing up this property. It is namely generally true that ∇µgµν = 0, so
we can add a term proportional to gµν to the left-hand side. Let us agree to
name the constant of proportionality Λ(Λ can be either positive or negative).
Our complete equation is therefore

Rµν −
1

2
gµνR+ Λgµν = 8πGTµν . (7.30)

Let us see what the Einstein equation can give us. I start with the case
µ = ν = 0. Then

R00 −
1

2
g00R+ Λg00 = −3

ä

a
− 1

2
(−6)

[

(

ȧ

a

)2

+
ä

a
+

k

a2

]

+ Λ

= 3

(

ȧ

a

)2

+
3k

a2
+ Λ, (7.31)

and
T00 = ρ+ p− p = ρ, (7.32)

so, after equating (7.31 and (7.32) and dividing through by 3, I get

(

ȧ

a

)2

+
k

a2
+

1

3
Λ =

8πG

3
ρ. (7.33)

This was fun, so I will do one more: µ = ν = 1. This turns out to be a
little bit messier:

R11 −
1

2
g11R+ Λg11 =

2ȧ2 + aä+ 2k

1− kr2
− 1

2

−a2
1− kr2

(−6)

[

(

ȧ

a

)2

+
ä

a
+

k

a2

]

+ Λ
−a2

1− kr2

= − a2

1− kr2

[

(

ȧ

a

)2

+ 2
ä

a
+

k

a2
+ Λ

]

, (7.34)

and

T11 = 0− pg11 =
a2

1− kr2
p, (7.35)

so after plugging these into the Einstein equation and multiplying through
by −(1− kr2), I get

(

ȧ

a

)2

+ 2
ä

a
+

k

a2
+ Λ = −8πGp. (7.36)
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Now this equation involves both ȧ andä, whereas the equation (7.33) just
involved ȧ. I would like to get an equation which just contains ä, and I can
get what I want by subtracting (7.33) from (7.36). This leaves me with

2
ä

a
+

2

3
Λ = −8πG

3
(ρ+ 3p), (7.37)

so, finally,
ä

a
+

1

3
Λ = −4πG

3
(ρ+ 3p). (7.38)

Equations (7.33) and (7.38) are differential equations for the scale factor a.
We could try to get more equations by plugging different values of µ and
ν into the Einstein equation, but it turns out that the results will always
be some linear combination of the equations we already have. They are
called the Friedmann equations after the Russian mathematician Alexander
Friedmann (1888-1925) who in two papers, published in 1922 and 1924, both
derived these equations and used them, for the first time, to study dynamical
models of the Universe. Sadly, he didn’t live long enough to see his work
recieve the recognition it deserved.

The Friedmann equations contain ρ and p, and if we want to find a, we
need to know how these evolve. We have assumed spatial homogeneity and
isotropy, so the pressure and density cannot vary in space, but they may
still be functions of time. As it turns out, we can get an equation for their
time evolution from the requirement ∇νT

µν = 0. I will consider the case
µ = 0:

∇νT
0ν = ∂νT

0ν + Γ0
βνT

βν + ΓνβνT
0β

= ∂0T
00 + Γ0

ννT
νν + Γν0νT

00

=
∂ρ

∂t
+ Γ0

11T
11 + Γ0

22T
22 + Γ0

33T
33

+ Γ1
01T

00 + Γ2
02T

00 + Γ3
03T

00

= ρ̇+
aȧ

1− kr2
p
1− kr2

a2
+ r2aȧp

1

a2r2
+ r2 sin2 θp

1

a2r2 sin2 θ
+ 3

ȧ

a
ρ

= ρ̇+ 3
ȧ

a
(ρ+ p), (7.39)

which gives

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (7.40)

It turns out that this equation can also be derived from the two Friedmann
equations, so it is not a new, independent equation. Deriving it from the
vanishing of the covariant divergence of the energy-momentum tensor makes
its physical meaning clear: The equation expresses the local conservation of
energy.
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To sum up this section, I give you again the three important equations
we have derived, but now with the cs reinstated:

(

ȧ

a

)2

+
kc2

a2
+

1

3
Λc2 =

8πG

3
ρ (7.41)

ä

a
+

1

3
Λc2 = −4πG

3

(

ρ+ 3
p

c2

)

(7.42)

ρ̇+ 3
ȧ

a

(

ρ+
p

c2

)

= 0. (7.43)
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Chapter 8

Bonus material: The

cosmological constant

The expansion of the Universe seems to be accelerating. We have seen that
the cosmological constant can describe this type of evolution. All observa-
tions are consistent with a model where the geometry is described by the
RW line element, and where the Universe is currently dominated by non-
relativistic matter (about 32 % of the energy density) and the cosmological
constant (about 68 % of the energy density.) So what is the problem? This
is topic of this chapter which is largely based upon a review article by J.
Martin, available at arxiv.org, article number 1205.3365.

8.1 The cosmological constant problem formulated

The Einstein equation with the cosmological constant added is

Gµν + Λgµν = 8πGTµν (8.1)

where I use units where c = 1. Einstein thought the Λ term ruined the
beauty of his original equation. In fact, he would have been wrong not to
include it. The Einstein equation can be derived from a so-called action
principle: The field equation above follows from demanding that a quantity
known as the action should be stationary under small variations of the the
metric gµν . When writing down the action, all terms that are consistent with
the underlying principles and symmetries of the theory should be included.
Equation (8.1) follows from this procedure when one restricts oneself to
actions which contain no higher than second-order derivatives of the metric.

All the contributions to the energy-momentum tensor on the right-hand
side of equation (8.1) are, at the most fundamental level, described by quan-
tum fields. Dark matter, radiation and baryonic matter are all states of their
respective underlying fields. The lowest energy state of a quantum field is
called the vacuum. It is a state where no particles are present. Quantum
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field theory leads, as we will see, to the conclusion that this ground state en-
ergy is not necessarily zero. The vacuum may have net energy. This vacuum
should be Lorentz invariant: You should not be able to detect the vacuum
by moving through it. The only tensor we have available in flat spacetime to
construct the energy-momentum tensor of the vacuum, is the metric tensor
ηµν . Thus T vac

µν = ρvηµν . The generalisation to curved spacetime is found
by replacing η with gµν , so

T vac
µν = ρvgµν . (8.2)

Treating the vacuum energy separately from the other contributions to the
energy-momentum tensor, I can write the Einstein equation as

Gµν + Λgµν = 8πGTµν + 8πGρvgµν , (8.3)

and I can either move the Λ term to the right-hand-side to get

Gµν = 8πGTµν + 8πG

(

ρv −
Λ

8πG

)

gµν , (8.4)

or the vacuum energy term to the left-hand-side and find

Gµν + (Λ− 8πGρv)gµν = 8πGTµν . (8.5)

This means that I can define an effective vacuum energy as

ρeffv = ρv −
Λ

8πG
, (8.6)

or an effective cosmological constant as

Λeff = Λ− 8πGρv . (8.7)

I will try to stick to the former, but the cosmological constant problem is
the same either way.

Our observations are best fitted by an effective vacuum energy density
amounting to about 70 % of the critical energy density. The critical energy
density presently has the value

ρc0 = 1.054 × 10−5 h2 GeV cm−3, (8.8)

where h is the dimensionless Hubble constant. As we will see in the following,
the expectation from quantum field theory is that the vacuum energy is
many, many order of magnitudes greater than the critical density. We can
get the correct value by adjusting the value of the cosmological constant
to cancel most of this contribution to the effective vacuum energy density,
because there is no known theoretical prediction for Λ, but this creates the
cosmological constant problem:
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• Why is Λ so finely adjusted to cancel (almost all of) the vacuum energy
density?

This is a real conundrum, because there is no obvious reason why these two
numbers should be so closely related.

In the popular (and even in the professional) literature you may have
seen the vacuum energy density claimed to be ∼ 120 orders of magnitude
greater than the critical energy density. This corresponds to calculating the
vacuum energy in a way which we will see is wrong. When done correctly, the
mismatch is about 55 orders of magnitude, which is still a huge mismatch.
This means that Λ must be equal to ρv to 55 decimal places, a strange
coincidence indeed.

Many attempts have been and are being made to understand this prob-
lem better and solve it, but the starting point has to be to learn how the
vacuum energy in quantum field theory is calculated.

8.2 The vacuum energy density of a scalar field

The simplest case we can consider is that of a scalar field φ, whose quanta
are spin-0 particles. A free scalar field with mass m has the potential energy
density

V (φ) =
1

2
m2φ2, (8.9)

(I am now using units where both h̄ and c are equal to 1) and the field is a
solution of the so-called Klein-Gordon equation

φ̈−∇2φ+m2φ = 0, (8.10)

where dots over a quantity denotes derivatives with respect to time. Note
that I am working in flat spacetime here and in the following. The solution
of this equation can be written as a Fourier transform

φ(t,x) =
1

(2π)3/2

∫

d3k
√

2ω(k)

[

cke
−iωt+ik·x + c∗ke

iωt−ik·x
]

, (8.11)

where ∗ denotes complex conjugation, and ω(k) =
√
k2 +m2. This is all at

the classical level. Quantisation proceeds by promoting the Fourier coeffi-
cients ck and c∗

k
to annihilation and creation operators with the commutator

relation
[ck, c

†
k′ ] = δ(3)(k− k′), (8.12)

where δ(3) is the delta function in three dimensions. The annihilation and
creation operators work in the same way as for a harmonic oscillator. Anal-
ogous to this more familiar system it can be shown that there is a lowest-
energy state |0〉 corresponding to no quanta being present, and that ck|0〉 = 0
for any k.
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Quantum field theory also provides an expression for the energy-momentum
tensor of the field, from which the expressions for the vacuum energy density
and the pressure can be read off:

ρv =
1

(2π)3
1

2

∫

d3kω(k) (8.13)

pv =
1

(2π)3
1

6

∫

d3k
k2

ω(k)
. (8.14)

Let me start by calculating the vacuum energy density:

ρv =
1

16π3

∫ ∞

0
4πk2dk

√

k2 +m2 =
1

4π2

∫ ∞

0
dkk2

√

k2 +m2. (8.15)

This integral is badly divergent. For the case of a massless scalar field it
diverges like k4. So formally the vacuum energy is infinite. In situations
where gravity is unimportant, that is to say in all particle physics experi-
ments to date, this is not a problem. All that matters in these situations are
energies relative to the vacuum, and they are well-defined. But when gravity
comes into play, the situation is different. At face value, the message of the
Einstein equation is that all sources of energy contribute on the right-hand
side of it, so having an infinite contribution from the vacuum is therefore a
highly non-negligible problem.

What can be done? A common argument is as follows: In equation (8.15)
I allow the momentum/frequency to take on arbitrarily high values. This
means that I trust my description of the field up to infinite energy. But we
have reason to suspect that the description should break down before that.
At the very least, we know that at some energy quantum gravity should
come into play, and my description of the field in flat spacetime is invalid.
With that in mind, I introduce a cut-off in the integral at the mass/energy
scale M where my theory breaks down:

ρv =
1

4π2

∫ M

0
dkk2

√

k2 +m2. (8.16)

I introduce the dimensionless variable x = k/m and get

ρv =
m4

4π2

∫ M/m

0
dxx2

√

x2 + 1. (8.17)

The integral is of a form which invites a hyperbolic substitution. With
x = sinh t, dx = cosh tdt and x2 + 1 = sinh2 t+ 1 = cosh2 t, I find

∫

x2
√

x2 + 1dx =

∫

(sinh t cosh t)2dt

=

∫ (

1

2
sinh 2t

)2

dt =
1

4

∫

sinh2 2tdt

=
1

8

∫

(cosh 4t− 1)dt =
1

32
sinh 4t− 1

8
t,
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where I have dropped to integration constant and have used sinh 2u =
2 sinhu coshu and sinh2(u/2) = (coshu− 1)/2. Now replace t by x:

t = sinh−1 x = ln(x+
√

x2 + 1),

and

sinh 4t = 2 sinh(2t) cosh(2t) = 4 sinh t cosh t(1+2 sinh2 t) = 4x
√

x2 + 1(1+2x2),

so that the final result is
∫

x2
√

x2 + 1dx =
1

8
x
√

x2 + 1(1 + 2x2)− 1

8
ln(x+

√

x2 + 1).

Now I have all I need to find ρv:

ρv =
m4

4π2

∫ M/m

0
dxx2

√

x2 + 1

=
m4

4π2

[

1

8
x
√

x2 + 1(1 + 2x2)− 1

8
ln(x+

√

x2 + 1)

]M/m

0

=
m4

32π2





M

m

√

M2

m2
+ 1

(

1 + 2
M2

m2

)

− ln





M

m
+

√

M2

m2
+ 1









=
m4

32π2





(

M

m

)4
√

1 +
m2

M2

(

m2

M2
+ 2

)

− ln





M

m
+

√

M2

m2
+ 1









=
M4

16π2





√

1 +
m2

M2

(

1 +
m2

2M2

)

− 1

2

m4

M4
ln





M

m
+
M

m

√

1 +
m2

M2









≈ M4

16π2





(

1 +
m2

2M2

)(

1 +
m2

2M2

)

−−1

2

m4

M4
ln





M

m
+
M

m

√

1 +
m2

M2









≈ M4

16π2

[

1 +
m2

M2
+ O

(

m4

M4

)]

(8.18)

Next I evaluate the pressure:

pv =
1

3

1

4π2

∫ M

0
dk

k4√
k2 +m2

=
m4

12π2

∫ M/m

0
dx

x4√
x2 + 1

,

where I again have substituted k = mx. The indefinite integral involved
here can again be evaluated using the hyperbolic substitution x = sinh t:

∫

x4√
x2 + 1

dx =

∫

sinh4 t

cosh t
cosh tdt

=

∫

(sinh2 t)2dt =
1

4

∫

(cosh 2t− 1)2dt
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=
1

4

∫

(cosh2 2t− 2 cosh 2t+ 1)dt

=
1

4

∫

cosh2 2tdt− 1

4
sinh 2t+

1

4
t

=
1

8

∫

(cosh 4t+ 1)dt− 1

4
sinh 2t+

1

4
t

=
1

32
sinh 4t+

1

8
t− 1

4
sinh 2t+

1

4
t

=
3

8
t− 1

4
sinh 2t+

1

32
sinh 4t, (8.19)

where I have used identities like sinh2 u = (cosh 2u − 1)/2 and cosh2 u =
(cosh 2u+ 1)/2. I express this result in terms of x:

t = sinh−1 x = ln(x+
√

x2 + 1) (8.20)

sinh 2t = 2 sinh t cosh t = 2x
√

x2 + 1 (8.21)

sinh 4t = 2 sinh 2t cosh 2t = 4x
√

x2 + 1(1 + 2x2) (8.22)

so the final result is

∫

x4√
x2 + 1

dx =
3

8
ln(x+

√

x2 + 1)− 1

2
x
√

x2 + 1 +
1

8
x
√

x2 + 1(1 + 2x2)

=
1

8

[

3 ln(x+
√

x2 + 1)− 4x
√

x2 + 1 + x
√

x2 + 1(1 + 2x2)
]

=
1

8

[

x
√

x2 + 1(2x2 − 3) + 3 ln(x+
√

x2 + 1)
]

. (8.23)

The pressure therefore becomes

pv =
m4

12π2

∫ M/m

0

x4dx√
x2 + 1

=
m4

12π2
1

8





M

m

√

M2

m2
+ 1

(

2
M2

m2
− 3

)

+ 3 ln





M

m
+
M

m

√

1 +
m2

M2









=
1

3

m4

16π2





M

m

√

M2

m2
+ 1

(

M2

m2
− 3

2

)

+
3

2
ln





M

m
+
M

m

√

1 +
m2

M2









=
1

3

M4

16π2





√

1 +
m2

M2

(

1− 3

2

m2

M2

)

+
3

2

m4

M4
ln





M

m
+
M

m

√

1 +
m2

M2









≈ 1

3

M4

16π2

[

1− m2

M2
+ O

(

m4

M4

)]

. (8.24)

On comparison with equation (8.18) it is clear that pv 6= −ρv. In fact,
for a massless scalar field the vacuum follows the equation of state of an
ultrarelativistic gas, pv = ρv/3. The source of this problem is the fact that
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this calculation does not respect the Lorentz invariance of the theory. I have
treated the spatial component of the four-momentum kµ = (ω,k) differently
from the timelike component by introducing a cutoff on k =

√
k · k. It is

clear that this leads to an unphysical result, and we must look for a better
way to handle the divergent integrals.

8.3 What should M be anyway?

The calculation of the vacuum energy density shown in the previous section
is the traditional way of presenting the cosmological constant problem. We
see that the leading term goes as M4, so it is clearly important for the
final result what we choose for the cut-off. At what energy do we expect
our quantum field theory for the scalar field to break down? While it may
certainly break down at even lower energies, there is a special energy where
we can be certain that our theory is inadequate: The energy where quantum
gravitational effects become significant, better known as the Planck energy.

By combining the three fundamental constants G (representing gravity),
c (representing relativity) and h̄ (representing quantum mechanics) one can
construct a complete system of units, the so-called Planck, or natural, units:

ℓP =

√

h̄G

c3
= 1.6× 10−35 m (8.25)

TP =

√

h̄G

c5
= 0.54 × 10−43 s (8.26)

MP =

√

h̄c

G
= 2.2× 10−8 kg (8.27)

EP = MP c
2 = 1.2× 1019 GeV (8.28)

At first sight there seems to be no reason why these quantities should have
any special significance. After all, they are just combinations of three con-
stants which happen to give quantities with units of length, time etc. But
the common wisdom is that they signify the scales where we should expect
the classical description of spacetime as a continuum to break down and
quantum gravity to be important. Here is an argument for this viewpoint,
taken from the paper ”Six easy roads to the Planck scale” by R. J. Adler,
published in 2010 in the American Journal of Physics, volume 78, page 925.

The Heisenberg uncertainty principle, which I will write in the approxi-
mate form ∆x∆p ∼ h̄, is a consequence of the axioms of quantum mechanics.
However, in his original paper Heisenberg also gave a heuristic derivation
of it, based on a though experiment where he tried to measure the position
and momentum of an electron by shining light on it and looking at the scat-
tered light in a microscope. The more accurately he wanted to locate the
electron, the shorter the wavelength of the light he had to use. But shorter
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wavelength means photons of higher energy, and therefore a greater ”kick”
imparted to the electron, and hence a greater uncertainty in its momentum.

For perfectly good reasons Heisenberg did not consider gravitational
forces in his thought experiment. But that is what I will do now. The
photon can be assigned an effective mass

Meff =
E

c2
=
hν

c2
=

h

cλ
. (8.29)

The photon will exert a gravitational force on the electron which will ac-
celerate it and cause an additional uncertainty in the position. I am only
interested in an order-of-magnitude estimate, so I allow myself to work with
Newtonian gravity. The gravitational acceleration is then

∆ag ∼
GMeff

r2eff
= G

h

cλ

1

r2eff
, (8.30)

where reff is the effective range at which the interaction takes place. The
uncertainty in the posistion is then of order

∆xg ∼ ∆agt
2
eff ∼ Gh

cλ

(

teff
reff

)2

, (8.31)

where teff is the effective time over which the interaction takes place. Now,
reff/teff has units of speed, and the only speed naturally associated with the
photon is c, so I take reff/teff ∼ c and find

∆xg =
Gh

c3
1

λ
∼ ℓ2P

λ
. (8.32)

This is presumably a sub-dominant effect, so we can estimate λ from the
original version of the uncertainty principle, λ ∼ h/∆p and get

∆xg ∼ ℓ2P
∆p

h
(8.33)

and add it to the uncertainty in x:

∆x ∼ h̄

∆p
+ ℓ2P

∆p

h̄
, (8.34)

where I have ignored the factor of 2π difference between h and h̄ (taking
2π ≈ 1 is also known as ”Feynman units”) since, again, I am only interested
in order-of-magnitude estimates. Dodgy though this derivation may seem,
a similar result appears in, e.g., string theory.

The uncertainty principle without gravity allows for a precise determi-
nation of the position (∆x = 0) if we are prepared to forego all information
about the momentum (∆p → ∞). With the gravitational term, however,
we see that there is a new situation. We have ∆x→ ∞ as ∆p→ 0, but also
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∆x → ∞ as ∆p → ∞. An absolutely precise measurement of the position
is now impossible, and there is a minimum uncertainty found by taking the
derivative of equation (8.34) and setting it equal to zero:

d(∆x)

d(∆p)
= − h̄

(∆p)2
+
ℓ2P
h̄

= 0,

which gives

∆p =
h̄

ℓP
,

and

(∆x)min =
h̄

h̄/ℓP
+ ℓ2P

h̄/ℓP
h̄

= 2ℓP . (8.35)

With gravity in the picture, it is no longer possible to measure positions with
accuracy greater than ∼ ℓP , and in a sense, therefore, the Planck length is
the shortest physically meaningful distance.

To resolve the smallest distance requires a probe of wavelength ∼ ℓP ,
momentum ∆p ∼ h̄/ℓP , and energy E ∼ h̄c/ℓP = h̄c

√

c3/h̄G =
√

h̄c5/G =
EP . A probe with this energy has mass MP = EP /c

2, and Schwarzschild
radius

Rs ∼
GMP

c2
=

√

h̄G

c3
= ℓP , (8.36)

So the probe has a wavelength equal to its Schwarzschild radius, and will
therefore form a black hole! In our estimate of the vacuum energy it there-
fore makes no sense to integrate to masses higher than the Planck mass. A
zero-point vibration with this energy/mass probes the shortest meaningful
distance and corresponds to a black hole. To describe this situation, we
clearly need a theory of quantum gravity. Hence, we should not trust quan-
tum field theory at energies above the Planck energy, and we should use
M =MP as a cut-off.

With the cutoff at the Planck mass, the leading contribution to the
vacuum energy density is

ρv =
MP

16π2
,

but this is in units where h̄ = c = 1, so MP has units of energy, and is
equal to the Planck energy. To compare with the observed value of the
effective cosmological constant, 0.7 times the present critical density, I must
convert to units of GeV cm−3. I note that h̄c = 197.326 MeV fm = 1.97326×
10−16 GeV cm, so by dividing the vacuum energy density by (h̄c)3 I get the
correct units:

ρv =
(1.2× 1019 GeV)4

(16π2)(1.97326 × 10−16 GeV cm)3
= 1.7 × 10115 Gev cm−3.
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I use h = 0.7 and find that the ratio of the theoretical estimate of the vacuum
energy to the observed value of the effective cosmological constant is

ρv
0.7ρc0

=
1.7 × 10115

3.6× 10−6
= 4.7× 10120,

a true mismatch if there ever was one.

8.4 Taming infinities respectfully: Dimensional reg-

ularization

Regardless of the choice of cut-off, my calculation of the vacuum energy
density and pressure was clearly wrong. The failure to produce the cor-
rect equation of state can, as I said, be traced to the fact that introduc-
ing a cut-off in momentum violates Lorentz symmetry. Infinities appear in
all quantum field theory calculations beyond the lowest order, and in the
process of isolating them (called regularization) and taming them (called
renormalization) it turns out to be vital to use procedures which preserve
symmetries like Lorentz invariance. I will use one of the most popular regu-
larization techniques to recalculate the vacuum energy density and pressure,
the method known as dimensional regularization. To introduce it to you, I
will first consider a simpler example from classical electromagnetism. The
following section follows the paper ”Regularization, renormalization, and di-
mensional analysis: Dimensional regularization meets freshman E&M” by F.
Olness and R. Scalise, published in 2011 in the American Journal of Physics,
volume 79, page 306.

I want to calculate the electrostatic potential from an infinitely long, thin
line of uniformly distributed electrical charge. This means that the linear
charge density λ = dQ/dy, where y is the spatial coordinate along the line,
is a constant. At a perpendicular distance x from the line, the contribution
to the potential from the charge element between y and y + dy is given by

dV =
1

4πǫ0

dQ

r
=

λ

4πǫ0

dy
√

x2 + y2
, (8.37)

so the total potential is found by integrating over the whole line to be

V (x) =
λ

4πǫ0

∫ +∞

−∞

dy
√

x2 + y2
=

λ

4πǫ0

[

sinh−1
(

y

x

)]+∞

−∞
= ∞, (8.38)

i.e., it diverges.
Note that the potential is scale invariant, that is, it doesn’t change under

the transformation x→ kx:

V (kx) =
λ

4πǫ0

∫ +∞

−∞

dy
√

k2x2 + y2
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=
λ

4πǫ0k

∫ +∞

−∞

dy
√

x2 + (y/k)2

=
λ

4πǫ0k

∫ +∞

−∞

kdz√
x2 + z2

=
λ

4πǫ0

∫ +∞

−∞

dz√
x2 + z2

= V (x) (8.39)

where I have substituted z = y/k. This, however, implies that V (x1) =
V (x2) for all x1 and x2, which again seems to imply that the electric field
E = −∇V = 0! Bear in mind, though, that V is a divergent quantity. When
we are dealing with infinities it is not necessarily true that ∞−∞ = 0. But
how do we make this subtraction? One way is to proceed like we tried to
with the vacuum energy and introduce a cut-off so that V is finite, make the
subtraction, and then let the cut-off approach infinity. If I take the cut-off
to be L, then

V (x) =
λ

4πǫ0

∫ +L

−L

dy
√

x2 + y2
=

λ

4πǫ0
ln

(

L+
√
L2 + x2

−L+
√
L2 + x2

)

. (8.40)

Note that the translational invariance is lost, V (kx) 6= V (x). In this case,
this is not disastrous. I find that the electric field is

E(x) = −∂V
∂x

=
λ

2πǫ0

1

x

L√
L2 + x2

→L→∞
λ

2πǫ0x
, (8.41)

which is the correct result (you should check this using Gauss’ law.) In
this case nothing bad happened even though I broke the symmetry of the
problem along the way. In quantum field theory, I would not have been
so lucky. Let me therefore introduce a better way of handling the infinity:
Dimensional regularization.

The idea is to calculate V (x) in n spatial dimensions (where n is not
necessarily an integer), and then let n → 1 (the situation I am considering
is essentially one-dimensional). I will generalize

∫ +∞

−∞
dy ≡

∫

dV1

to
∫

dVn =

∫

dΩn

∫ ∞

0
yn−1dy, (8.42)

where

Ωn =

∫

dΩn =
2πn/2

Γ
(n
2

) =
nπn/2

Γ
(n
2 + 1

) , (8.43)

is the n-dimensional solid angle, and Γ(x) is the gamma function which has
the property xΓ(x) = Γ(x+1). See appendix A for proof of equation (8.43).
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The generalised expression for the potential is

V (x) =
λ

4πǫ0

∫

dΩn

∫ ∞

0

yn−1

µn−1

dy
√

x2 + y2
, (8.44)

where µ is an a so-called auxiliary length scale which I must introduce to
ensure that the potential has the correct units. I use equation (8.43) to
proceed:

V (x) =
λ

4πǫ0

nπn/2

Γ
(n
2 + 1

)

1

µn−1

∫ ∞

0

yn−1dy
√

x2 + y2

=
λ

4πǫ0

nπn/2

Γ
(

n
2 + 1

)

(

x

µ

)n−1 ∫ ∞

0

zn−1dz√
1 + z2

(8.45)

where I have substituted y = xz. The integral I need to evaluate can be
related to the so-called beta function

B(p, q) =

∫ ∞

0

yp−1

(1 + y)p+q
=

∫ 1

0
xp−1(1− x)q−1dx =

Γ(p)Γ(q)

Γ(p + q)
(8.46)

which you can read more about in appendix B. To calculate the integral, I
substitute x = z2, z = x1/2, dz = 1

2x
−1/2dx and get

∫ ∞

0

zn−1

√
1 + z2

dz =

∫ ∞

0
x(n−1)/2 1

(1 + x)1/2
1

2
x−1/2dx

=
1

2

∫ ∞

0

xn/2−1

(1 + y)1/2
dy, (8.47)

Comparing with equation (8.46) I see that this corresponds to p = n/2,
q = 1/2 − p = (1− n)/2, so

∫ ∞

0

zn−1

√
1 + z2

dz =
1

2
B

(

n

2
,
1− n

2

)

=
1

2

Γ
(n
2

)

Γ
(

1−n
2

)

Γ
(

n
2 + 1−n

2

)

=
1

2

Γ
(

n
2

)

Γ
(

1−n
2

)

√
π

(8.48)

where I have used that Γ(1/2) =
√
π. The potential becomes

V (x) =
λ

4πǫ0

nπn/2

Γ
(

n
2 + 1

)

xn−1

µn−1

1

2

Γ
(n
2

)

Γ
(

1−n
2

)

√
π

=
λ

4πǫ0
(
√
π)n−1

(

x

µ

)n−1

Γ

(

1− n

2

)

, (8.49)
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where I have used that Γ(n/2 + 1) = n
2Γ(n/2).

The idea is now to let n → 1. To do this, I write n = 1 − 2ǫ, where
ǫ→ 0. The potentiall can then be written as

V (x) =
λ

4πǫ0

(

µ2ǫ

x2ǫ
Γ(ǫ)

πǫ

)

. (8.50)

V depends on the so-called regulator ǫ, which is dimensionless, and the aux-
illiary scale µ, which has dimensions of length. The translational invariance
is preserved, and physical quantities will turn out to be independent of ǫ
and µ.

I have now carried out what is known as regularization of V . What
remains to be done is to subtract the divergent part of the potential, and
this is known as renormalization. To do this, I need to expand the expression
around ǫ = 0. For small x, the gamma function can be expanded as (see
appendix C for the derivation)

Γ(x) ≈ −γE +
1

x
, (8.51)

where γE ≈ 0.577216 is known as Eulers constant. I can therefore write
Γ(ǫ) ≈ −γE + 1/ǫ. Furthermore, I have

(

µ2

x2

)ǫ

=

[

e
ln

(

µ2

x2

)

]ǫ

= e
ǫ ln

(

µ2

x2

)

≈ 1 + ǫ ln

(

µ2

x2

)

, (8.52)

and
π−ǫ = (elnπ)−ǫ = e−ǫ lnπ ≈ 1− ǫ lnπ. (8.53)

I can now multiply these factors to obtain V , bearing in mind that I want
to take the limit ǫ → 0, so I can discard all terms of order 1 or higher in ǫ.
This gives me

V (x) =
λ

4πǫ0

[

1 + ǫ ln

(

µ2

x2

)]

(1− ǫ lnπ)

(

−γE +
1

ǫ

)

≈ λ

4πǫ0

[

−γE +
1

ǫ
− lnπ + ln

(

µ2

x2

)]

=
λ

4πǫ0

[

1

ǫ
+ ln

(

e−γE

π

)

+ ln

(

µ2

x2

)]

. (8.54)

All physical quantities are invariant under a constant shift in V : V (x) →
V (x) + c. I can therefore subtract the 1/ǫ term, and this is what renormal-
ization means in this example:

VMS(x) =
λ

4πǫ0

[

ln

(

e−γE

π

)

+ ln

(

µ2

x2

)]

, (8.55)



166CHAPTER 8. BONUSMATERIAL: THE COSMOLOGICALCONSTANT

where MS stands for ”minimal scheme”. I can also choose to subtract all
constants in V , leaving me with

VMS(x) =
λ

4πǫ0
ln

(

µ2

x2

)

, (8.56)

where MS means ”modified minimal scheme”. What I cannot do, however, is
remove the auxilliary scale µ from the final result. It is needed to ensure that
the argument of the logarithm is dimensionless. However, it will disappear
when I calculate physical quantities like forces and potentail differences, for
example

VMS(x1)− VMS(x2) =
λ

4πǫ0
ln

(

x22
x21

)

= VMS(x1)− VMS(x2). (8.57)

Note also that the result does not depend on the renormalization scheme.

8.5 The vacuum energy done correctly

I now return to the vacuum energy of the scalar field to calculate the energy
density using dimensional regularization. To check that I get the correct
equation of state, I will also calculate the pressure.

The first thing to do is to calculate the vacuum energy density in d
spacetime dimensions. The expression for it is

ρv =
µ4−d

(2π)d−1

1

2

∫

dd−1kω(k)

=
µ4−d

(2π)d−1

1

2

∫

dd−2Ω

∫ ∞

0
ω(k), (8.58)

where the auxilliary momentum scale µ has to be included to make sure
that the energy density has the correct units. I know how to do the angular
integral:

∫

dd−2Ω = Ωd−1 =
(2π)(d−1)/2

Γ
(

d−1
2

) , (8.59)

and I rewrite the momentum integral using the dimensionless variable x
defined by k = mx:

∫ ∞

0
dkkd−2ω(k) =

∫ ∞

0
dkkd−2

√

k2 +m2

=

∫ ∞

0
mdxmd−2xd−2m

√

x2 + 1

= md
∫ ∞

0
xd−2

√

x2 + 1dx ≡ mdI. (8.60)
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I evaluate the integral I by relating it to the beta function introduced in
appendix B. To do this, I use the substitution x = tan θ, which gives 1+x2 =
1/ cos2 θ, dx = dθ/ cos2 θ, and

I =

∫ π/2

0

(sin θ)d−2

(cos θ)d−2

1

cos θ

dθ

cos2 θ

=

∫ π/2

0
(sin θ)d−2(cos θ)−d−1dθ. (8.61)

Comparing this with equation (8.93), I find that this integral is one half
times the beta function with p = (d− 1)/2, q = −d/2, so

I =
1

2

Γ
(

d−1
2

)

Γ
(

−d
2

)

Γ
(

d
2 − 1

2 − d
2

) =
1

2

Γ
(

d−1
2

)

Γ
(

−d
2

)

Γ
(

−1
2

) . (8.62)

The vacuum energy is therefore given by

ρv =
µ4−d

(2π)d−1

1

2

2π(d−1)/2

Γ
(

d−1
2

)

1

2
md

Γ
(

d−1
2

)

Γ
(

−d
2

)

Γ
(

−1
2

)

=
µ4

2(4π)(d−1)/2

Γ
(

−d
2

)

Γ
(

−1
2

)

(

m

µ

)d

. (8.63)

Before taking the limit d→ 4, I will check that I get the correct equation
of state, pv = −ρv. In d spacetime dimensions the expression for the pressure
becomes

pv =
µ4−d

(2π)d−1

1

2(d− 1)

∫

dd−1k
k2

ω(k)

=
µ4−d

(2π)d−1

1

2(d− 1)

∫

dd−2Ω

∫

dkkd−2 k2

ω(k)

=
µ4−d

(2π)d−1

1

2(d− 1)

2π(d−1)/2

Γ
(

d−1
2

)

∫ ∞

0

kd

ω(k)
. (8.64)

I rewrite the momentum integral using the substitution k = mx:

∫ ∞

0
dk

kd

ω(k)
=

∫ ∞

0
dk

kd√
k2 +m2

=

∫ ∞

0
mdx

mdxd

m
√
x2 + 1

= md
∫ ∞

0

xd√
x2 + 1

dx ≡ mdI, (8.65)
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and I then use the substitution x = tan θ to relate the integral I to the beta
function:

I =

∫ ∞

0

xd√
x2 + 1

dx

=

∫ π/2

0

( sin θ)d

(cos θ)d

1
cos θ

dθ

(cos θ)2

=

∫ π/2

0
(sin θ)d(cos θ)−d−1dθ, (8.66)

and comparing this with equation (8.93), I see that I is one half times the
beta function with p = (d+ 1)/2 and q = −d/2:

I =
1

2

Γ
(

d+1
2

)

Γ
(

−d
2

)

Γ
(

1
2

) . (8.67)

The pressure now becomes

pv =
µ4−d

(2π)d−1

1

4

2π(d−1)/2

d−1
2 Γ

(

d−1
2

)

1

2
md

Γ
(

d+1
2

)

Γ
(

−d
2

)

Γ
(

1
2

)

=
µ4

4(4π)(d−1)/2

Γ
(

−d
2

)

Γ
(

−1
2

)

(

m

µ

)d

, (8.68)

where I have used the fact that d+1
2 = d−1

2 +1 and Γ(x+1) = xΓ(x). Using
the latter identity again, I can write

Γ

(

1

2

)

= Γ

(

−1

2
+ 1

)

= −1

2
Γ

(

−1

2

)

, (8.69)

so I can write the pressure as

pv =
µ4

4(4π)(d−1)/2

Γ
(

−d
2

)

−1
2Γ
(

−1
2

)

(

m

µ

)d

= − µ4

2(4π)(d−1)/2

Γ
(

−d
2

)

Γ
(

−1
2

)

(

m

µ

)d

= −ρv, (8.70)

which shows that dimensional regularization, in contrast to using a cutoff,
reproduces the correct equation of state.

It is now time to take the limit d → 4. Similarly to he example with
the electrostatic potential in the previous section, I write d = 4 − ǫ and
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expand the vacuum energy in the small quantity ǫ. I start with the factor
Γ(−d/2) = Γ(−2 + ǫ/2), rewriting it in the not-so-obvious way:

Γ

(

1 +
ǫ

2

)

=
ǫ

2
Γ

(

ǫ

2

)

=
ǫ

2

(

ǫ

2
− 1

)

Γ

(

ǫ

2
− 1

)

=
ǫ

2

(

ǫ

2
− 1

)(

ǫ

2
− 2

)

Γ

(

ǫ

2
− 2

)

, (8.71)

so that

Γ

(

−2 +
ǫ

2

)

=
1

−2 + ǫ
2

1

−1 + ǫ
2

1
ǫ
2

Γ

(

1 +
ǫ

2

)

. (8.72)

The point of rewriting the gamma function in this way is that I can now use
the results from appendix C to Taylor expand it:

Γ

(

1 +
ǫ

2

)

≈ Γ(1) +
ǫ

2
Γ′(1)

= 1 +
ǫ

2
Γ(1)ψ1(1)

= 1− γE
ǫ

2
. (8.73)

I can now write

Γ

(

−2 +
ǫ

2

)

≈ 1

−2 + ǫ
2

1

−1 + ǫ
2

1
ǫ
2

Γ

(

1 +
ǫ

2

)

≈ −1

2

1

1− ǫ
4

(−1)
1

1 − ǫ
2

2

ǫ

(

1− γE
2
ǫ

)

≈ 1

ǫ

(

1 +
ǫ

4

)(

1 +
ǫ

2

)(

1− γE
2
ǫ

)

≈ 1

ǫ

(

1 +
3

4
ǫ

)(

1− γE
2
ǫ

)

≈ 1

ǫ
+

(

3

4
− γE

2

)

(8.74)

where I have used the approximation 1
1+x ≈ 1 − x and neglected all terms

of order ǫ and higher in the final result, since I eventually want to take the
limit ǫ→ 0. Furthermore, I write

(4π)−
d−1
2 = (4π)−3/2(4π)ǫ/2

= (4π)−3/2e
ǫ
2
ln 4π

≈ (4π)−3/2
[

1 +
ǫ

2
ln 4π

]

, (8.75)
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and

(

m

µ

)d

=

(

m

µ

)4 (m

µ

)−ǫ

=

(

m

µ

)4

e−ǫ ln(m/µ)

≈
(

m

µ

)4 [

1− ǫ ln

(

m

µ

)]

. (8.76)

With the additional note that Γ
(

−1
2

)

= −2Γ
(

1
2

)

= −2
√
π, I can now

expand ρv in ǫ:

ρv ≈ µ4

2

1

(4π)3/2

[

1 +
ǫ

2
ln 4π

]

1

−2
√
π

[

1

ǫ
+

(

3

4
− γE

2

)](

m

µ

)4 [

1− ǫ ln

(

m

µ

)]

= − m4

64π2

[

2

ǫ
+

3

2
− γE − ln

(

m2

4πµ2

)]

, (8.77)

where I again have neglected terms of order ǫ and higher. The divergence
is contained in the first term in the brackets. I subtract it along with the
other constant terms using the MS renormalization scheme, and find the
final result for the vacuum energy density:

ρv =
m4

64π2
ln

(

m2

µ2

)

. (8.78)

Two points are worth noting about this result. First of all, the vacuum
energy density depends on the mass m of the particle corresponding to the
scalar field as m4, in contrast with my first attempt at calculating ρv which
resulted in the vacuum energy density depending on the cutofff to the fourth
power. As a corollary, a massless field does not contribute to the vacuum
energy density. Photons have spin 1, so my calculation is not directly ap-
plicable to them, but the result turns out to have the same dependence on
the field mass for both spin-1 particles and for fermions, which means, for
example, that the electromagnetic field does not contribute to the vacuum
energy density.

Secondly, the vacuum energy density can be positive or negative, depend-
ing on whether the massm is greater than or smaller than the auxiliary scale
µ. Its numerical value depends on µ, but only logarithmically. In the review
by Jerome Martin it is suggested that the choice of µ should be guided by
the fact that we infer the observed value of the vacuum energy density from
observations of type Ia supernovae. With his choice, I find that the fields of
the Standard Model contribute 2.6 × 1041 GeV cm−3 to the vacuum energy
density. If this is the case, the ratio of the prediction to the observed value
is ”only” about 1047, which means that the cosmological constant must be
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tuned to 47 decimal places to give the observed value of the effective vacuum
energy density. This still represents a huge and unsatisfactory fine tuning,
but it is significantly less than 120 orders of magnitude.

To conclude: The often-heard statement that the mismatch between
theory and observations regarding the cosmological constant is 120 orders
of magnitude is simply wrong. It is based on a calculation which breaks
Lorentz invariance, resulting in the vacuum having the wrong equation of
state. When the calculation is done correctly, the mismatch is much smaller,
although still huge. The cosmological constant problem is still one of the
most important unsolved problems in physics, but knowing how big the
problem is, and understanding a bit more about how it arises are certainly
important first steps along the path to solving it.

8.6 Appendix A: Area and volume in n dimensions

In three dimensions we know that the volume of a sphere with radius R can
be written as

V3 =

∫

dΩ3

∫ R

0
r2dr

=

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ R

0
r2dr

=
4π

3
R3, (8.79)

and the surface area can be found by restricting the integration to points
where r = R:

S2 =

∫

dΩn

∫ R

0
drr2δ(r −R) = 4πR2. (8.80)

The generalization to n dimensions is

Vn =

∫

dΩn

∫ R

0
rn−1dr = Ωn

Rn

n
(8.81)

Sn−1 =

∫

dΩn

∫ R

0
drrn−1δ(r −R) = ΩnR

n−1. (8.82)

We see that
Vn
Sn−1

=
R

n
, (8.83)

and
dVn
dR

= Sn−1. (8.84)

What remains to be determined is Ωn. I can find it by using a trick (need-
less to say not of my own invention). I can write the volume in Cartesian
coordinates as

Vn =

∫

dVn =

∫

x2≤R2
dnx =

Ωn
n
Rn, (8.85)
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and from equations (8.84) and (8.82) I have

dVn = Sn−1dR = ΩnR
n−1dR. (8.86)

I know that
∫+∞
−∞ dxe−x

2
=

√
π, so

n
∏

i=1

∫ +∞

−∞
dxie

−x2i = πn/2

=

∫

dVne
−R2

= Ωn

∫ ∞

0
dRRn−1e−R

2
. (8.87)

I now substitute t = R2, dt = 2RdR, Rn−2 = t(n−2)/2 = tn/2−1 and get

πn/2 = Ωn
1

2

∫ ∞

0
dttn/2−1e−t

=
1

2
ΩnΓ

(

n

2

)

=
Ωn
n

n

2
Γ

(

n

2

)

=
Ωn
n

Γ

(

n

2
+ 1

)

(8.88)

where I have used the definition of the gamma function

Γ(x) =

∫ ∞

0
dttx−1e−t, (8.89)

and the property xΓ(x) = Γ(x+ 1). Solving equation (8.88) for Ωn, I find

Ωn =
nπn/2

Γ
(

n
2 + 1

) . (8.90)

8.7 Appendix B: The beta function

The beta function (the ”B” is a capital β) is defined as

B(p, q) =

∫ 1

0
xp−1(1− x)q−1dx, (8.91)

with p > 0, q > 0. An alternative form can be found by substituting x =
y/(1 + y). This makes dx = dy/(1 + y)2, 1− x = 1/(1 + y), and

B(p, q) =

∫ ∞

0

yp−1

(1 + y)p−1

1

(1 + y)q−1

dy

(1 + y)2

=

∫ ∞

0

yp−1

(1 + y)p+q
. (8.92)
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Yet another form can be obtained by substituting x = sin2 θ, 1−x = cos2 θ,
dx = 2 sin θ cos θ in equation (8.91):

B(p, q) =

∫ 1

0
xp−1(1− x)q−1dx

= 2

∫ π/2

0
(sin θ)2p−2(cos θ)2q−2 sin θ cos θdθ

= 2

∫ π/2

0
(sin θ)2p−1(cos θ)2q−1dθ. (8.93)

To express the beta function in terms of the gamma function, I start with
the definition of the latter:

Γ(p) =

∫ ∞

0
tp−1e−tdt (8.94)

and substitute t = y2:

Γ(p) = 2

∫ ∞

0
y2p−2e−y

2
ydy = 2

∫ ∞

0
y2p−1e−y

2
dy. (8.95)

I can therefore also write

Γ(q) = 2

∫ ∞

0
x2q−1e−x

2
dx, (8.96)

multiply by equation (8.95) and switch to polar coordinates in the xy plane,
bearing in mind that I integrate over the first, positive quadrant:

Γ(p)Γ(q) = 4

∫ ∞

0

∫ ∞

0
x2q−1y2p−1e−(x2+y2)dxdx

= 4

∫ ∞

0
rdr

∫ π/2

0
dθ(r cos θ)2q−1(r sin θ)2p−1e−r

2

= 4

∫ ∞

0
r2(p+q)−1e−r

2
dr

∫ π/2

0
(sin θ)2p−1(cos θ)2q−1dθ

= Γ(p+ q)2

∫ π/2

0
(sin θ)2p−1(cos θ)2q−1dθ (8.97)

where I have used equation (8.95) again in the last step. But the factor after
Γ(p+ q) is by equation (8.93) the beta function B(p, q), so I have

Γ(p)Γ(q) = Γ(p+ q)B(p, q), (8.98)

which means

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (8.99)
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8.8 Appendix C: The gamma function

In the example with the renormalization of the electrostatic potential and
in the renormalization of the vacuum energy, I have needed an expansion
of the gamma function for small values of the argument. Let me show how
this expansion can be derived.

The gamma function is defined as

Γ(x) =

∫ ∞

0
dttx−1e−t. (8.100)

I easily find that

Γ(1) =

∫ ∞

0
dte−t = [−e−t]∞0 = 1, (8.101)

and using integration by parts it is also quite easy to show that Γ(x+ 1) =
xΓ(x):

Γ(x+ 1) =

∫ ∞

0
txe−tdt

= [−txe−t]∞0 −
∫ ∞

0
(−e−t)xtx−1dt

= 0 + x

∫ ∞

0
tx−1e−tdt

= xΓ(x). (8.102)

I know define a new function ψ1(x) (also known as the digamma function)
as the logarithmic derivative of the gamma function:

ψ1(x) =
d(ln Γ(x))

dx
=

Γ′(x)
Γ(x)

, (8.103)

and its value at x = 1 defines the Euler constant,

ψ1(1) =
Γ′(1)
Γ(1)

≡ −γE. (8.104)

Taking the derivative of xΓ(x) = Γ(x+ 1) I get

Γ(x) + xΓ′(x) = Γ′(x+ 1), (8.105)

which gives

1 +
xΓ′(x)
Γ(x)

=
Γ′(x+ 1)

Γ(x)
=

Γ′(x+ 1)

Γ(x+ 1)/x
=
xΓ′(x+ 1)

Γ(x+ 1)
, (8.106)

which means
1 + xψ1(x) = xψ1(x+ 1), (8.107)
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so that

ψ1(x+ 1) =
1

x
+ ψ1(x). (8.108)

By repeated use of the last relation I find

ψ1(n+ 1) =
1

n
+ ψ1(n) =

1

n
+

1

n− 1
+ ψ1(n− 1)

=
1

n
+

1

n− 1
+

1

n− 2
+ · · ·+ ψ1(1)

= −γE +
n
∑

k=1

1

k
(8.109)

where n is an integer.

I want to take the limit n→ ∞, so I use Stirling’s approximation (to be
proven shortly) which says that for x≫ 1

ln Γ(x+ 1) =

(

x+
1

2

)

lnx− x+
1

2
ln 2π + O(x−1). (8.110)

This gives
d

dx
ln Γ(x+ 1) = lnx+

1

2x
+ O(x−2), (8.111)

which means that as x goes to infinity

ψ1(x+ 1) = lnx. (8.112)

Going back to equation (8.109) I find that in the limit n→ ∞

lnn = −γE +
∞
∑

k=1

1

k
, (8.113)

so I now have an expression for Euler’s constant:

γE = lim
n→∞

(

n
∑

k=1

1

k
− lnn

)

= 0.5772 . . . . (8.114)

I now Taylor expand Γ around x = 1:

Γ(1 + ǫ) = Γ(1) + ǫΓ′(1) + O(ǫ2)

= 1 + ǫΓ(1)ψ1(1) + O(ǫ2)

= 1− γEǫ+ O(ǫ2), (8.115)

and using Γ(1 + ǫ) = ǫΓ(ǫ), I finally arrive at

Γ(ǫ) =
1

ǫ
− γE + O(ǫ). (8.116)
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The final hole to plug is Stirling’s approximation. I start by showing
Laplace’s approximation:

∫ b

a
eMf(x)dx ≈

√

2π

M |f ′′(x0)|
eMf(x0), (8.117)

as M → ∞ if f has a global maximum at x = x0 in the interval [a, b]. If I
assume that the latter is the case, I can approximate f around x0 as

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2, (8.118)

and since f has a maximum at x0, I have f
′(x0) = 0 and f ′′(x0) < 0, so

f(x) ≈ f(x0)−
1

2
|f ′′(x0)|(x− x0)

2, (8.119)

The assumption that the maximum is global in ensures that eMf(x0) will be
more and more strongly peaked around x = x0 as M increases, so that all
significant contributions to the integral come from a small interval around
this point. For a function of the assumed form, this assumption is accurate
already for moderately large values of M . So for large M I can extend the
range of the integral from [a, b] to (−∞,+∞) without changing its value
significantly, since all important contributions will come from a small range
of values around x0, which lies in [a, b]. I can therefore write

∫ b

a
eMf(x)dx ≈

∫ +∞

−∞
eM[f(x0)− 1

2
|f ′′(x0)|(x−x0)2]dx

= eMf(x0)
∫ +∞

−∞
e−M |f ′′(x0)|(x−x0)2/2dx

=

√

2π

M |f ′′(x0)|
eMf(x0), (8.120)

where I have used the standard result for a Gaussian integral.
I now recall that

Γ(N + 1) = N ! =

∫ ∞

0
e−xxNdx, (8.121)

and substitute x = Nz:

N ! =

∫ ∞

0
e−NzNNzNNdz

= NN+1
∫ ∞

0
e−NzzNdz

= NN+1
∫ ∞

0
e−NzeN ln zdz

= NN+1
∫ ∞

0
eN(ln z−z)dz. (8.122)



8.8. APPENDIX C: THE GAMMA FUNCTION 177

The function f(z) = ln z − z goes to −∞ at both endpoints of the interval
[0,∞), and has a global maximum where f ′(z) = 1

z−1 = 0, that is, z = z0 =
1. The maximum value is f(z0) = ln 1− 1 = −1, and f ′′(z0) = −1/z20 = −1.
Plugging this into Laplace’s approximation gives

Γ(N + 1) = N ! ≈ NN+1

√

2π

N
e−N

=
√
2πNNNe−N , (8.123)

so I can write
Γ(x+ 1) ≈

√
2πxxxe−x, (8.124)

for x≫ 1. In the final step I take the logarithm of this relation:

ln Γ(x+ 1) ≈ ln
√
2π + lnx1/2 + lnxx + ln e−x

=
1

2
ln 2π +

1

2
lnx+ x lnx− x

=

(

x+
1

2

)

lnx− x+
1

2
ln 2π, (8.125)

and I have derived Stirling’s approximation.


