
Problem 1: The Copernican principle

The Copernican principle states that our location in the Universe is not
special. This principle can be everything from reasonable to obviously untrue,
depending on what is meant by ‘special’. Here we will take it to mean that
any observer in any other galaxy would find the Universe to have the same
large-scale properties as we do. Assume that the principle is valid, and
that the mass distribution in the Universe is isotropic as observed from our
location. Show that the mass distribution must then also be homogeneous.

Problem 2: Newtonian gravitational potential

energy of point masses

Look back at notes from your earlier courses and review the derivation of the
gravitational potential energy of two point masses, m1 and m2, separated by
a distance r:

V (r) = −Gm1m2

r
.

Problem 3: The gravitational force of a sphere

on a point particle

Show that the gravitational force exerted on a point particle of mass m by a
spherical mass distribution (of finite spatial extent) with mass M is the same
as if the whole mass M was concentrated in the centre. (Hint 1: Divide the
mass distribution into spherical shells and show the result first for one such
shell. Hint 2: Work with the potential energy instead of the force, and use
~F = −∇V to derive the force). What would the force between two spherical
mass distributions be? Why is this result important?

Problem 4: The gravitational force inside a

spherical shell

Show that a spherical shell of mass M exerts no force on a point mass m1

located inside it.
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Problem 5: An alternative law of gravity

Assume that you live in a universe where the gravitational potential energy
of two point masses m1 and m2 is given by

V (r) =
1

2
Km1m2r

2,

where r is their separation, and K is a constant. Show that the result from
Problem 3 still holds: The force between a spherical mass and a point particle
is the same as if the whole mass of the sphere was concentrated in its centre.

Problem 6: Closed planetary orbits

In this problem you will look at a planet of mass m orbiting our Sun with
mass M . Because the angular momentum is conserved in a central force field,
the motion is confined to a plane and you can use polar coordinates (r, φ)
where r is the distance bewteen the planet and the Sun.

a) Write down an expression for the angular momentum L of the planet.

b) Write down an expression for the total energy per mass, E/m of the
planet.

c) Show that
1

2
ṙ2 =

E

m
− Veff

m
,

where ṙ = dr/dt, and

Veff(r)

m
= −GM

r
+

(L/m)2

2r2

is known as the effective potential.

The square of the radial velocity must obviously be non-negative, so the
energy per mass must be at least equal to the minimum of the effective
potential Veff/m.

d) What will the orbit look like if E/m equals the minimum value of
Veff/m?
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For small deviations from the minimum, we can describe the motion of the
planet as a combination of radial and angular oscillations. The frequency of
the radial oscillations can be derived by approximating the effective potential
by a quadratic funtion near its minimum.

e) Show that the radial oscillation frequency is given by

ω2 =

(
d2(Veff/m)

dr2

)
r=r0

,

where r0 is the position of the minimum of the effective potential.

f) Show that L/m is given in terms of r0 by

(
L

m

)2

= GMr0

g) Find the frequency of the radial oscillations in terms of G, M , and r0.

h) Use the fact that L/m = r2ωφ, where ωφ is the frequency of the angular
oscillations, to find ωφ.

i) What is the ratio of the two frequencies? Is the orbit closed (i.e. the
planet returns to the same position after a finite number of oscilla-
tions)?

j) Carry out the same analysis if we replace the Newtonian gravitational
potential by V (r)/m = 1

2
KMr2, where K is a constant. Do we get

closed orbits in this case?

k) Repeat the analysis with V (r)/m = 1
3
Ar3. Are the orbits closed?

It can be shown that the only two potential energy functions for which all
bounded orbits are also closed, are V ∝ 1/r and V ∝ r2. This result is known
as Bertrand’s theorem. It can also be shown that the same two potentials
are the only ones with the property that the field outside a spherical mass
distribution is as if all its mass were concentrated in the centre. One lesson
to learn from this is that we can add a term linear in r (which gives a
potential energy quadratic in r) to Newton’s law of gravity without screwing
up important properties of gravity. This will be relevant when we will later
learn about the cosmological constant.
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Problem 7: Dark stars vs. black holes

a) Show that the radius of a star whose escape velocity from the surface
equals the speed of light c is given by

R ≡ Rs =
2GM

c2
,

and (without using a calculator) that this result can also be written as

Rs = 3
M

M�
km

where M� is the mass of the Sun.
By coincidence, the result in a) is identical with the Schwarzschild ra-

dius, which sets the size of a black hole. This coincidence is often exploited
in popular accounts of black holes to explain them as objects that have es-
cape velocity equal to the speed of light. Such objects were first speculated
about by John Michell in a paper in 1784 with the catchy title On the Means
of Discovering the Distance, Magnitude, & c. of the Fixed Stars, in Con-
sequence of the Diminution of the Velocity of Their Light, in Case Such a
Diminution Should be Found to Take Place in any of Them, and Such Other
Data Should be Procured from Observations, as Would be Farther Necessary
for That Purpose. He called these objects dark stars.

An important assumption in Michell’s paper (and in a)) is that motion
of light in a gravitational field can be treated like the motion of any other
particle, so the equation for purely radial motion of light is

d2r

dt2
= −GM

r2
.

b) Assume that light starts out at the surface of the star (with radius R,
not necessarily equal to Rs) with speed c and show that its speed at a
distance r from the centre of the star is given by

v2(r) = c2 + 2GM
(

1

r
− 1

R

)
.

c) Show that for R < Rs the light reaches a maximum distance from the
center of the star given by

rmax =
Rs

Rs

R
− 1

.
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d) Michell’s original dark star had the same mean mass density as the
Sun. Without using a calculator, estimate the mass and radius of this
dark star.

e) Based on this problem, would you say that the popular account of black
holes as objects with escape velocities exceeding the speed of light is a
good one?
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