
Problem 1: Alternative form of the Hubble-Lemaitre
law

Consider light emitted by a galaxy at comoving radial coordinate r at time
te, received by us at the origin at time t0.

a) Show that the motion of the light satisfies the equation

∫ r

0

dr′√
1− kr′2

=
∫ t0

te

cdt

a(t)
.

b) Assume r � 1 and (t0 − te)/t0 � 1, and show that the equation in a)
becomes

r ≈ c(t0 − te)
a(te)

.

c) Taylor expand a(t) around t0 and show that

a(t) ≈ a(t0)[1−H0(t0 − te)].

d) Using c), show that the redshift of the galaxy satisfies

z ≈ H0(t0 − te).

e) Combine the results above to show that

cz ≈ H0dP(t0)

for z � 1.

f) Finally, argue that in this limit dP(t0) ≈ dL. Hence, for low redshift
the Hubble-Lemaitre law can be formulated in terms of measurable
quantities, without any reference to the speed of a galaxy.

Problem 2: The Einstein Universe

If the density of matter ρ0 is 10−27 kg m−3, how long would it take a ray of
light to travel once around Einstein’s static universe model?
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Problem 3: A negative cosmological constant

For the case Λ < 0 show that the first Friedmann equation has solutions
only if k = −1. Without solving the equation, show that the Universe will
expand to a maximum size, and then collapse. Find the solution a = a(t).
Make an informed guess about how old a universe must be in order to contain
intelligent life, and use this guess to find an upper bound on |Λ|.

Problem 4: Exploding universe?

‘Phantom energy’, a substance with equation of state parameter w < −1, has
been proposed as an alternative to the cosmological constant for explaining
the present accelerated phase of expansion. Assume that we live in a spatially
flat universe, dominated by phantom energy with w = −2.

a) Determine how the energy density of this component varies with the
scale factor a.

b) Integrate the Friedmann equation for ȧ/a from our present epoch t0
(a(t0) = a0) and into the future to find a(t) for t > t0.

c) What happens as t− t0 → 2
3H0

? Can you see why this is called ‘the Big
Rip’?

Problem 5 (just for fun, no need to do it if you don’t
find it interesting)

The Friedmann equations are probably not valid at very early times. When
the density becomes very high, we really need a quantum theory of gravity to
describe the situation. Although there are candidates, like string theory, for
such a theory, they are not understood in detail and lack a solid empirical
foundation. However, that doesn’t stop theorists from speculating about
what a quantum version of the history of the Universe might look like. In
this problem we will look at a simplified version of a speculation of this sort.

We will use units where h̄ = c = 1. This may be unfamiliar to you, but
it is a very convenient choice for the calculations we are going to carry out
here.

We will stick to one specific model of the Universe where the only con-
tribution to the energy density comes from the cosmological constant Λ, and
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where the spatial curvature k = +1. The first Friedmann equation can then
be written as (

ȧ

a

)2

+
1

a2
=

Λ

3
.

We will first consider some of the properties of this model.

a) Explain why the scale factor can never be smaller than

aΛ =

√
3

Λ
.

b) How old can the Universe be in this model?

c) Show that the scale factor can be written as

a(t) = aΛ cosh
(
t

aΛ

)
.

Quantum gravity was studied long before string theory came along. One
early approach to the problem is the so-called Wheeler-De Witt equation.
This is a Schrödinger-like equation for the wave function of the Universe.
The wave function of the Universe gives the probability density for observing
different metrics. If we restrict the space of possible metrics to those of the
Robertson-Walker form with a given spatial curvature k, the wave function
gives the probability amplitude for observing the Universe in a state with
a particular value of the scale factor a. There are many serious issues that
can be raised at this point, for example whether it makes sense at all to talk
about a wave function for the entire Universe. We will leave this and other
questions aside here.

The Wheeler-De Witt equation for the wave function ψ(a) for the model
we considered in a), b) and c) is

−d
2ψ(a)

da2
+

9π2

4G2

(
a2 − Λ

3
a4
)
ψ(a) = 0.

This looks exactly like the one-dimensional, time-independent Schrödinger
equation of a particle moving along the a-axis in a potential

V (a) =
9π2

4G2

(
a2 − Λ

3
a4
)

=
9π2a2

Λ

4G2

[(
a

aΛ

)2

−
(
a

aΛ

)4
]
.
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Note that understood this way, the equation corresponds to an energy eigen-
value equal to zero, making the wave function time-independent. Therefore,
time does not appear in the wave function of the Universe. This is not spe-
cific to the model we are considering, it is a general fact that the Wheeler-De
Witt equation does not contain time. This aspect of the formalism is not
easy to understand, but we will again leave this aside and carry out some
calculations instead.

d) Make a sketch of the potential V as a function of a. Mark classically
allowed and forbidden regions for the scale factor.

e) Change variable in the equation, from a to x = a/aΛ.

From quantum mechanics we know that a particle has a non-zero probabil-
ity for tunneling through a classically forbidden region. Analogously, the
Universe can tunnel from a state where the scale factor is zero to a state
where it is greater than aΛ. The potential above is a bit complicated to treat
analytically, but we can capture the most important qualitative aspects by
looking at a simplified model where the potential is given by

V (x) = ∞, x < 0

= 0, 0 < x < 1

= V0, 1 < x < 2

= −V1, x > 2

where

V0 =
9π2a4

Λ

16G2
,

and V1 is a positive constant.

e) Find the general solution of the equation for ψ in the four regions.

f) Use the conditions that ψ and its first derivative have to be continuous
to find equations for the unknown constants of integration.

g) Find an expression for the transmission probability amplitude, that is,
the probability amplitude for tunnelling from the region 0 < x < 1 to
x > 2.

h) Let V1 →∞ and show that the probability of tunneling is proportional
to e2

√
V0 .
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i) Why do you think the probability in h) is sometimes called ‘the prob-
ability of the Universe appearing from nothing’?
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