
Problem 1

a) Prove Mattig’s formula:

dL =
2c

H0Ω2
m0

[
Ωm0z + (Ωm0 − 2)(

√
1 + Ωm0z − 1)

]

for any Ωm0 in a model with just non-relativistic matter. (Hint: This
involves quite a bit of work, but in the case Ωm0 = 1, you just need to
check that the formula reduces to the result for the EdS model. Next,
you may want to look at Ωm0 < 1 first. Rewrite the integrand slightly
and use the substitution u =

√
1 + Ωm0z. Finally, you should be able

to argue that the result for Ωm0 > 1 follows quite straightforwardly
from the result for ′Ωm0 < 1. )

b) Show that in the limit Ωm0 → 0 we get the result for the Milne universe.

Problem 2

a) Specialize the expression we derived for the luminosity distance in the
lectures to a spatially flat universe containing non-relativistic matter
and vacuum energy and show that it can be written as

dL =
c(1 + z)

H0

∫ z

0

dz′√
Ωm0(1 + z′)3 + 1− Ωm0

,

where Ωm0 is the density parameter for non-relativistic matter (dust).

b) Evaluate the integral for i) Ωm0 = 1 and ii) Ωm0 = 0.

c) Show that in the limit z � 1 dL is approximately given by

dL ≈
cz

H0

,

and is therefore independent of Ωm0.

d) Introduce s = [(1−Ωm0)/Ωm0]1/3, and use the substitution u = s/(1+z′)
to show that the integral in a) can be written as

H0dL
c

=
1 + z√
sΩm0

[
T (s)− T

(
s

1 + z

)]
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where

T (s) =
∫ s

0

du√
u4 + u

Fluxes in astronomy are (sadly) usually quoted in terms of magnitudes.
Magnitudes are related to fluxes via m = −5

2
log(F ) + constant, where log

denotes the logarithm with base 10. The apparent magnitude is the flux we
observe here on Earth, whereas the absolute magnitude is the flux we would
receive if the source was at a distance of 10 pc from us. They are related by

m−M = 5 log

(
dL

10 pc

)
,

If we know both m and M for a source, we can infer its luminosity distance.
Objects of known M are called standard candles. Supernovae of type Ia are
believed to be standard candles.

e) Supernova 1997ap was found at redshift z = 0.83 with apparent mag-
nitude m = 24.32, and Supernova 1992P was observed at low redshift
z = 0.026 with apparent magnitude m = 16.08. Assuming they both
have the same absolute magnitude, show that the luminosity distance
to Supernova 1997ap is given by

dL(z = 0.83) = 1.16
c

H0

.

f) Compare the result from d) with the two models considered in b).

g) Pen (U.-L. Pen, ApJS 120 (1999) 49) showed that a good approximation
to the function T in d) is given by

T (x) ≈ 2
√
x

(1 + a1x+ a2x2 + a3x3 + a4x4)1/8
,

with a1 = −0.1540, a2 = 0.4304, a3 = 0.19097, and a4 = 0.066941.
Use this to write a code which calculates the luminosity distance in the
spatially flat ΛCDM model for any Ωm0 and z, and find the value of
Ωm0 that reproduces the measured luminosity distance to Supernova
1997ap.
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h) Use Mattig’s formula from problem 1 to investigate whether there is
any value of Ωm0 in a universe without a cosmological constant that
will reproduce the luminosity distance to Supernova 1997ap. It may be
a good idea to do this numerically.

h) What does the empty Milne model predict for the value of H0dL(z =
0.83)/c?

i) Discuss: Based on this single measurement of dL, which model should
we prefer? Can we conclude that we need the cosmological constant?

Problem 3

Consider universe models with dust (non-relativistic matter) and a cosmo-
logical constant. Give a graphical argument for why, for fixed H0, increasing
Ωm0 will decrease t0, the present age of the Universe, while increasing ΩΛ0

will increase it. Hint: The second Friedmann equation is useful here.

Problem 4: Another bonus problem for those who are
interested

In the lectures we derived the de Sitter solution,

a(t) = a0e
H0(t−t0),

for a spatially flat universe dominated by the cosmological constant (ΩΛ0 =
1). In this model, a(t)→ 0 only in the limit t→ −∞, so this universe seems
to be infinitely old and has no beginning in time. But is this really so? We
will now go through the steps of an argument which shows that the answer
is no.

In the following we will only consider models with k = 0, so the RW line
element is given by

ds2 = c2dt2 − a2(t)(dr2 + r2dθ2 + r2 sin2 θdφ2).

The spatial part of the line element is now the line element of 3D Euclidean
space, written in spherical coordinates. We can just as well write it in Carte-
sian coordinates, and this will simplify the calculations in this problem. Fur-
thermore, to save some writing we will work in units where c = 1. The line
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element is therefore

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) = dt2 − a2(t)dx · dx. (1)

Note that x = (x1, x2, x3) = (x, y, z) are still co-moving coordinates, and
hence constant for observers who follow the expansion.

a) Proper time, τ , for an observer is the time measured on a clock following
her/his motion. Explain why τ = t for an observer who follows the
expansion.

Co-moving observers follow geodesics: trajectories of particles falling freely
(i.e., not subject to non-gravitational forces). These are, however, not the
only type of geodesics. We will now set up the geodesic equation, an equation
that describes freely falling particles and is the analogue in general relativity
to Newton’s second law in classical mechanics. First, I introduce the metric
tensor

gµν =


1 0 0 0
0 −a2(t) 0 0
0 0 −a2(t) 0
0 0 0 −a2(t)

 (2)

and write dxµ = (dt, dx, dy, dz) = (dt, dx), where the indices µ and ν can
have the values 0, 1, 2, 3. This means that g00 = 1, g11 = g22 = g33 = −a2(t),
and gµν = 0 when µ 6= ν. We will also use the Einstein summation convention
which says that repeated indices are to be summed over, so that, e.g.,

gµνdx
µdxν =

3∑
µ=0

3∑
ν=0

gµνdx
µdxν .

b) Show that ds2 = gµνdx
µdxν .

Let’s look at Newtonian mechanics for a while. A particle of mass m
moves along the x-axis and has potential energy V (x). Its kinetic energy is

T = 1
2
mv2 = 1

2
m
(
dx
dt

)2
. We now introduce the Lagrangian

L = L

(
x,
dx

dt

)
= T − V,

where x and dx
dt

are to be considered as independent variables.
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c) Show that the Lagrange equation

∂L

∂x
− d

dt

 ∂L

∂
(
dx
dt

)
 = 0

gives the Newtonian equation of motion

m
d2x

dt2
= −∂V

∂x
.

The equation of motion of freely falling particles, the geodesic equation,
in GR can also be derived from a Lagrangian. Recall that in GR, gravity is
not considered to be a force, so V = 0 in this case. Therefore L = T , but
now T is given by

T =
1

2
mgµν

dxµ

dτ

dxν

dτ
,

where τ is proper time along the geodesic. The Lagrange equation is

∂L

∂xµ
− d

dτ

 ∂L

∂
(
dxµ

dτ

)
 = 0,

so there will an equation for each value of µ = 0, 1, 2, 3, in total four equations.
The solution will be of the form xµ = xµ(τ) = (t(τ), x(τ), y(τ), z(τ)), i.e.,
each of the four coordinates given as a function of proper time.

d) For the RW metric, show that

L =
1

2
m


(
dt

dτ

)2

− a2(t)

(dx
dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2
 .

e) Show that the geodesic equations are

d2t

dτ 2
+ aȧ

dx

dτ
· dx
dτ

= 0 (3)

d2xi

dτ 2
+ 2H

dt

dτ

dxi

dτ
= 0

where i = 1, 2, 3, x1 = x, x2 = y, x3 = z, dx = (dx, dy, dz), and
H = ȧ/a = 1

a
da
dt

is the Hubble parameter.
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As in special relativity, we define the four-momentum of the particle as

P µ = (E,P) = m
dxµ

dτ
.

Note that

E = m
dt

dτ
,

so
d

dτ
=
dt

dτ

d

dt
=
E

m

d

dt
.

f) Show that equation (3) can be rewritten as

E
dE

dt
+ aȧP ·P = 0. (4)

g) Like in special relativity, the four-momentum satisfies

gµνP
µP ν = P µPµ = m2.

Let E =
√
p2 +m2, where p is the physical momentum, and show that

a2P ·P = E2 −m2 = p2.

This means that P is the co-moving momentum.

h) Show that equation (4) now can be written as

E
dE

dt
+

1

a

da

dt
(E2 −m2) = 0.

Solve this differential equation and show that it gives

p ∝ 1

a
.

The last result implies that we can write

p(t) =
a(tf )

a(t)
pf ,

where pf is the physical momentum at some reference time tf .

6



i) Start from

dτ =
m

E
dt,

Multiply by H(τ) = ȧ/a on both sides (we can consider the Hubble
parameter to be a function of τ since t = t(τ) along the geodesic), and
show that ∫ τf

τi
H(τ)dτ =

∫ af

ai

da√
a2 +

p2
f
a2
f

m2

, (5)

where ai is the value of the scale factor at some initial time ti, τi = τ(ti),
and τf = τ(tf ) (Hint: The relation ȧ = da

dt
is trivial, but very useful).

j) Evaluate the integral on the right-hand side in equation (5) and show
that ∫ τf

τi
H(τ)dτ ≤ ln

(
m+ Ef
pf

)
, (6)

where Ef =
√
p2
f +m2. (Hint: Use the substitution a =

afpf
m

sinhx.

You will also need the relation sinh−1 x = ln(x+
√
x2 + 1)

k) We define the time-averaged Hubble parameter as

Have ≡
1

τf − τi

∫ τf

τi
H(τ)dτ.

Equation (6) implies

Have ≤
1

τf − τi
ln

(
m+ Ef
pf

)
.

Explain why this means that τf − τi must be finite if Have > 0.

You have now shown that if the Universe has been on average expanding,
there will be geodesics that cannot be extended infinitely far back in proper
time, so they must end at some point in the past. Since the de Sitter solution
is of this type (H = H0 = constant > 0), this means that it cannot be truly
eternal, even though for observers following the expansion, cosmic time can
be extended back to t = −∞. For comparison: In a spacetime with a black
hole, there are geodesics that don’t end up at the singularity (just choose
the initial conditions so that they stay away from the event horizon), but
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the existence of geodesics that do end up at the singularity is enough to
ensure that this spacetime is singular. So the existence of some geodesics
that cannot be extended infinitely far back in time is enough to show that
the de Sitter universe is not eternal, or is past-incomplete to use more fancy
language.

The argument you have now worked your way through is taken from
A. Borde, A. H. Guth, and A. Vilenkin: ‘Inflationary spacetimes are not
past-complete’, Phys.Rev.Lett. 90 (2003) 151301, which you can also find at
https://arxiv.org/abs/gr-qc/0110012. They also give a much more general
proof, valid for spacetimes that do not obey the Cosmological Principle.
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