
Problem 1: The QCD phase transition

In the lectures I talked briefly about the epoch when quarks become con-
fined inside hadrons like protons and neutrons. Quantum Chromodynamics
(QCD) is the quantum field theory describing how quarks interact through
the exchange of gluons. When the quarks have very high energies, scattering
processes etc. can be calculated perturbatively. At low energies, however, the
interactions between quarks become so strong that they cannot be treated as
small perturbations. This is related to the property of confinement: at low
energies, quarks (and gluons) are trapped inside hadrons (protons, neutrons,
π mesons,...) and do not exist as free particles.

Physicists are interested in when and how this transition from a state
with individual, essentially free quarks, to a state where they are confined
within hadrons takes place. To investigate this, one must treat QCD non-
perturbatively, and this is usually done in large numerical simulations, in an
approximation known as lattice QCD.

However, simpler, phenomenlogical models are also used in order to gain
physical understanding. One of the simplest models of quark confinement is
the MIT Bag Model. In this model, the hadrons are treated like bags. Inside
a bag, the quarks can move freely, but they cannot get out of the bag. The
confinement is modelled by a so-called bag constant, B, in the region of free
quarks, simulating a pressure exerted by the vacuum.

Let us model a hadron as a sphere of radius R. The contribution from
the bag pressure to the energy of the hadron is then BV = 4πR3B/3.

a) Explain why a free, relativistic quark in the bag has energy ∝ 1/R.

Let us therefore write the energy of a hadron as

EH =
4π

3
R3B +

C

R
,

where C is a constant.

b) Make a qualitative sketch of EH as a function of R and convince yourself
that it has a minimum. Use this to show that

C = 4πBR4,

and that the minimum energy is

EH,min =
16π

3
R3B.
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c) Equate this to the rest-mass energy of a nucleon, ∼ 103 MeV, and find
a value for B if R = 1 fm = 10−15 m

d) Particle physicists like to use so-called natural units, where h̄ = c = 1,
and in applications of the bag model they also often use the value

B1/4 = 200 MeV.

Translate this value for B to ”normal” units, and find out which value
of R this corresponds to. (The combination h̄c = 197.327 MeV · fm is
useful here.)

We will use the value for B from d) in the following.
To model the phase transition from free quarks (often called a quark-

gluon plasma) to hadrons, consider the confined and deconfined phases of
quarks separately. Assume only u and d quarks are present (the 2nd and
3rd generations of quarks are much heavier, so they have already become
non-relativistic and annihilated). Assume that these quarks are relativistic
and essentially massless. Near the phase transition, the lightest hadrons
dominate, and they are the three spin-0 π mesons: π± and π0. Finally,
assume that all particles have zero chemical potential.

e) Explain why the bag pressure is

PB = − ∂

∂V
(BV ) = −B,

and show that in the hadronic phase the pressure is

PH =
π2

30

(kBT )4

(h̄c)3
,

while in the deconfined quark-gluon plasma phase the pressure is

PQGP =
37π2

90

(kBT )4

(h̄c)3
−B.

(Hint: Count the degrees of freedom in each phase, remember the dif-
ference between fermions and bosons, and don’t forget the gluons!)
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f) Equate the two pressures and show that the critical temperature is

kBTc ≈ 140 MeV.

(Note: This means that we treat the transition as a 1st order phase
transition. Lattice QCD simulations show that the transition is more
likely to be of 2nd order, or a crossover).

g) Estimate how long after the Big Bang this transition took place.

Problem 2: Cosmological horizons and entropy

This problem is based on a paper by P. C. W. Davies in Classical and Quan-
tum Gravity, volume 5, page 1349 (1988).

We saw in the lectures that we can associate an entropy with a black hole,
and that the entropy is proportional to the area of the event horizon. The
background leading up to the notion of black hole entropy was a series of
results obtained in the late 1960s by Stephen Hawking and others, establish-
ing that in all processes the area of the event horizon of a black hole never
decreases.

We have seen that there are horizons in cosmology as well, so one could
ask whether an entropy can be associated with those as well. The situation
is more complicated in the cosmological case than in the black hole case,
but you will now prove that the area of the event horizon, if it exists, never
decreases in an expanding universe provided p ≥ −ρc2 and a→∞ as t→∞.
We will restrict ourselves to the spatially flat case, but the result is also valid
when there is spatial curvature.

a) Define the variable η by

η = −
∫ ∞
t

cdt′

a(t′)
.

Show that the proper distance to the event horizon is given by dEH(t) =
−a(t)η, that η ≤ 0, and dη

dt
> 0.

b) Argue that in order to show that the area of the event horizon is non-

decreasing, it suffices to show that d(dEH)
dη
≥ 0.
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c) Use the first Friedmann equation and the continuity equation to show
that

Ḣ = −4πG
(
ρ+

p

c2

)
d) Introduce K = 1

a
da
dη

= a′

a
(so ′ will denote derivatives with respect to η)

and show that the result in c) implies

K ′ −K2 = −4πGa2(ρc2 + p),

and therefore
K ′ −K2 ≤ 0

e) Show that d′EH ≥ 0 implies a′η + a ≤ 0, and since η < 0, this in turn
gives

K ≥ −1

η

f) Integrate K ′ −K2 ≤ 0 from η < 0 to 0 and show that

1

K0

− 1

K
≥ η

where K0 = K(η = 0) = K(t =∞).

g) If we can show that K > 0 and K0 = ∞. The first follows from the
definition of K and the assumption of an expanding universe. To show
the latter, show that ∫ ∞

t

cdt′

a(t′)
=
∫ ∞
a

da

aK

and therefore it follows from the assumption that the event horizon
exists that the last integral is finite. Now assume 1/|K| is bounded
from below so that

1

[K|
> ε > 0

for a→∞, t→∞. Show that this implies∫ ∞
a

da

aK
=∞,

contradicting the existence of an event horizon. Hence ε = 0, and
K0 = ∞, and the result that the area of the event horizon is non-
decreasing follows.

4



h) Show by direct calculation that this general results holds in the special
case of a spatially flat model with a(t) = a0(t/t0)

2.
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