
Part 2 of project 3 in AST3220, 2024

Please write your solutions of the following problems in LaTeX, and hand
them in as a pdf file. As usual, you are only allowed to use real intelligence,
no AI.

Miscellaneous problems

Problem 1 (10 points)

In this problem you can assume that the Universe is described by the Einstein-
de Sitter model.

a) Write down the expression for the scale factor as a function of time.
Use this expression to show that the age of the Universe at redshift z
is given by

t(z) =
t0

(1 + z)3/2
,

where t0 is the present age of the Universe.

b) Assume that we at the present epoch observe two objects, one with
redshift z1 = 3 and another with redshift z2 = 8. When, in units of t0,
was the light we observe today emitted by these objects?

c) Determine the comoving radial coordinates of the two objects.

d) The light we receive now from the object with z = z2 = 8 was emitted
at a time we can call te. Determine the comoving radial coordinate of
the light ray heading towards us at an arbitrary later time t.

e) Imagine that there was an observer situated at the object with z =
z1 = 3. What redshift did she measure for the light from the object we
observe today with redshift z2 = 8?

Problem 2 (10 points)

a) Use the Friedmann equations to explain why there must be a time
in the past when the scale factor vanished in models where the total
density and pressure satisfy ρ+ 3p/c2 > 0, the density decreases faster
with a than 1/a2, and H0 > 0.
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b) We seem to be living in a universe where the expansion is presently
accelerating, Ωm0 = 0.3, and ΩΛ0 = 0.7. Was there a time in the past
when a = 0 in this model? Why/why not?

Problem 3 (10 points)

The proper distance to the particle horizon at time t is given by

dP,PH(t) = a(t)
∫ t

0

cdt′

a(t′)

a) Show that the proper distance to the particle horizon at redshift z is

dP,PH(z) =
c

1 + z

∫ ∞
z

dz′

H(z′)

b) Calculate dP,PH(z) for a matter-dominated universe with

H(z) = H0

√
Ωm0(1 + z)3/2,

and for a radiation-dominated universe with

H(z) = H0

√
Ωr0(1 + z)2

Show that in both cases,

dP,PH(z) ∼ c

H(z)

A typical neutron star has a radius of around 10 kilometers, and a mass
around 1.5 solar masses. Take the radius of the observable universe at any
given time to be equal to the proper distance to the particle horizon at that
time.

c) At what redshift was the radius of the observable universe equal to
that of a typical neutron star? What was the mass density of the
universe at that redshift? What was the radiation density (use units
of kilograms per cubic meter)? Assume Ωm0 = 0.3 and Ωr0 = 10−4.
Compare with the average density of a typical neutron star. Assume
that the dimensionless Hubble constant h = 0.7.
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d) What was the CMB temperature at that time?

e) Show that the age of the Universe at redshift z is given by

t(z) =
∫ ∞
z

dz′

(1 + z′)H(z′)
,

and that for the radiation-dominated universe

t(z) =
1

2H(z)

How old was the Universe at the redshift found in c)?

On inflation

The following problems are all about inflation, and we will use units where
h̄ = 1 and c = 1.

Problem 4 (5 points)

Give brief descriptions of the horizon problem and the flatness problem.

Problem 5 (5 points)

Assume inflation is driven by a scalar field with the potential

V (φ) = λφp,

where λ is a positive constant and p ≥ 2. Show that the total number of
e-foldings during inflation is guaranteed to be large if the slow-roll conditions
are fulfilled.

Problem 6 (5 points)

a) Is inflation possible if V (φ) = 0 for all φ?

b) Is inflation possible if the dynamics of the scalar field is such that we
always have φ̇2 = 2V (φ)?
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Problem 7 (10 points)

We will look at inflation driven by a scalar field with the potential V (φ) =
V0e

−λφ, where V0 and λ are positive constants. In addition to taking h̄ = 1 =
c, we will also simplify the equations by introducing the so-called reduced
Planck mass MP = 1/

√
8πG.

a) Write down the equations for φ and H in the slow-roll approximation
with this potential.

b) Solve the equations from a) and find φ(t) and a(t).

c) The full equations, without the slow-roll approximation, are

φ̈+ 3Hφ̇+ V ′(φ) = 0 (1)

H2 =
1

3M2
P

[
1

2
φ̇2 + V (φ)

]
(2)

and in the case of the exponential potential we consider in this problem
it turns out that they have an exact analytical solution. The solution
you found in b) suggests the ansatz

a(t) = Ctα

φ(t) =
2

λ
ln(Bt)

Determine the constants α and B that make this ansatz an exact solu-
tion, and show that you regain the slow-roll solution in the appropriate
limit.

d) What is the main problem with this potential as a model of inflation?

Problem 8 (20 points)

The slow-roll approximation turns the second-order differential equation for
the scalar field into a first-order equation. This can only work if the dynamics
of the field makes the precise initial conditions on the field (apart from the
fact that the field must start out somewhere on the potential where the slow-
roll conditions are satisfied) redundant. In this problem you are going to
set up an argument for why this will usually be the case. Without loss of
generality, you can assume that φ̇ > 0 during inflation.
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a) Use equations (1) and (2) from problem 7 to show that

φ̇ = −2M2
PH
′(φ),

where H ′(φ) = dH/dφ.

b) Use the result from a) to show that the first Friedmann equation can
be written as

[H ′(φ)]2 − 3

2M2
P

H2(φ) = − 1

2M4
P

V (φ) (3)

The scalar field φ is in itself not directly observable, the important phys-
ical quantity is the Hubble parameter. If we can show that we end up on the
same curve in the φ-H plane regardless of the initial conditions on the scalar
field, we have the result we want.

Consider a linear perturbation around a solution of equation (3):

H(φ) = H0(φ) + δH(φ)

where H0 is a solution of equation (3) (and not the Hubble constant!)

c) Assume that H is also a solution of equation (3) and show that to first
order in the perturbation we have

H ′0δH
′ =

3

2M2
P

H0δH,

where ’ again denotes derivatives with respect to φ.

d) Show that the equation in c) has the general solution

δH(φ) = δH(φi) exp

[
3

2M2
P

∫ φ

φi

H0(ϕ)

H ′0(ϕ)
dϕ

]

where φi is the initial value of the scalar field, and ϕ is just a dummy
integration variable. Use this result to explain why the perturbation
δH quickly dies out.
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