Minimal code example for solving AST3220 project 2

Jakob Borg
March 26, 2024

This is a minimal code example demonstrating a possible outline for the code you are
developing in this project. The general idea is that the number of particles we consider is
given as an input argument, so the system of equations are easily extended. This greatly
reduces the time required to debug and test the reaction equations as we can test the
code while gradually increasing the number of species one by one.

Note, this is not a functioning code and it will not run as some of the class methods
are missing, as well as the modules for the background equations and reaction rates.
I've tried to make the example as minimal and simple as possible to show of the design
regarding particle species, but still replicate the structure of my actual code.

Jakob Borg, UiO, AST3220 Cosmology I, 2023
import matplotlib.pyplot as plt

import numpy as np

from scipy.integrate import solve_ivp

Own imports:
from reaction_rates import ReactionRates # Module with the equations for each reaction
from background import Background, cgs # Module background functions and constants

class BBN:
nnn
General Big Bang nucleosynthesis class solving the Boltzmann equations for a collection
of particle species in the early universe.

nnn

def init__(self, NR_interacting_species: int = 2, #**background_kwargs) -> None:
mnimnn
The class takes NR_interacting_species as input on initialization. This is a number
between 2 and 8, determining the collection of particles to be considered:

Keyword Arguments:
NR_interacting_species {int} -- The number of particle species (default: {23}),
max = 8
background_kwargs {dict} -- Arguments passed to the background, e.g. Neff and
Omega_bO0

nmnn

self .NR_species = NR_interacting_species # The number of particle species

self.species_labels = ["n", "p", "D", "T", "He3", "He4", "Li7", "Be7"] # The
particle names

self .mass_number = [1, 1, 2, 3, 3, 4, 7, 7] # The particle atomic numbers

self .NR_points = 1001 # the number of points for our solution arrays

self .RR = ReactionRates() # Initiate the set of reaction rates equations

Initiate the background equations, e.g. equations for the Hubble parameter and
rho_b:

self .background = Background (**background_kwargs)

def get_0ODE(self, 1nT: float, Y: np.ndarray) -> np.ndarray:

numn

Computes the right hand side of the ODE for Boltzmanns equation
for elements/particle species in Y

Arguments:
1nT {float} -- natural log of temperature
Y {np.ndarray} -- array of relative abundance for each species.

With all included species Y takes the form:
n, p, D, T, He3, He4, Li7, Be7 =Y
T = np.exp(1lnT)
T9 = T / 1e9
Hubble = self.background.get_Hubble(T)
rho_b = self.background.get_rho_b(T)
dY = np.zeros_like(Y) # differential for each species following the shape of Y,
e.i. dY[0] corresponds to dY_n. Initialized to zero for all species.

Weak interactions, always included ~ (n <-> p) (a 1-3)
Y_n, Y_p = Y[0], Y[1]

lambda_n, lambda_p = self.RR.get_rate_weak(T9)

The change to particles on the left hand side:

change_LHS = Y_p * lambda_p - Y_n * lambda_n

dY[0] += change_LHS # Update the change to neutron fraction

dY[1] -= change_LHS # Update the change to proton fraction (opposite sign)
if self .NR_species > 2: # Include deuterium
YD = Y[2]

(n+p <-> D+gamma) (b.1)
Y_np = Y_n * Y_p

def

def

rate_np, rate_ D = self.RR.get_np_to_D(T9, rho_b)

change_LHS = Y_D * rate_D - Y_np * rate_np # left hand side changes
dY[0] += change_LHS # Update the change to neutron fraction

dY[1] += change_LHS # Update the change to proton fraction

dY[2] -= change_LHS # Update the change to deuterium fraction
if self.NR_species > 3: # Include tritium
Y_T = Y[3]

(n+D <-> T+gamma) (b.3)

Y nD = Y_n *x Y_D

rate_nD, rate_T = self.RR.get_nD_to_T(T9, rho_b)
change_LHS = Y_T * rate_T - Y_nD * rate_nD

dY[0] += change_LHS

dY[2] += change_LHS

dY[3] -= change_LHS

(D+D <-> p + T) (b.8)

Y_DD = Y_D * Y_D

Y_pT = Y_p * Y_T

rate_DD, rate_pT = self.RR.get_DD_to_pT(T9, rho_b)
change_LHS = 2 * Y_pT * rate_pT - Y_DD * rate_DD

change_RHS = 0.5 * Y_DD * rate_DD - Y_pT * rate_pT
dY[2] += change_LHS
dY[1] += change_RHS
dY[3] += change_RHS

if self.NR_species > 4: # Include He3

if séif.NR_species > 5: # Include He4

if séié.NR_species > 6: # Include Li7

if séié.NR_species > 7: # Include Be7

Each reaction equation above should be multiplied with (-1/Hubble) before return:
return -dY / Hubble

get_IC(self, T_init: float):

nmn

Defines the initial condition array used in solve_BBN.
The only nonzero values are for neutrons and protons, but the shape of self.Yinit is
determined by the number of particles included.

Arguments:
T_init {float} -- the initial temperature
miumn
Y_init = np.zeros(self.NR_species) # Initialize all species to zero

Yn_init, Yp_init = self.get_np_equil(T_init) # solves equations (16-17)
Y_init[0] = Yn_init
Y_init[1] Yp_init

return Y_init
solve_BBN(self, T_init: float = 100e9, T_end: float = 0.01e9):

Solves the BBN-system for a given range of temperature values

Keyword Arguments:

T_init {float} -- the initial temperature (default: {100e9})
T_end {float} -- the final temperature (default: {0.01e9})
sol = solve_ivp(# solve the ODE-system using scipy.solve_ivp

self .get_0ODE,

[np.log(T_init), np.log(T_end)], # our equations are defined over 1n(T),
yO=self.get_IC(T_init),

method="Radau",

rtol=1e-12,

atol=1e-12,

dense_output=True, # this allows us to extract the solvables following the
procedure below
)
Define linearly spaced logarithmic temperatures using points from the solver:
1nT = np.linspace(sol.t[0], sol.t[-1], self.NR_points)
self .Y_i = sol.sol(1nT) # use 1In(T) to extract the solved solutions
Use 1n(T) to create a corresponding logarithmically spaced T array
self . T = np.exp(1lnT) # array used for plotting, points corresponds to self.Y

if __name == "__main__":

Example use:
Initiate the system including 3 species (neutrons, protons and deuterium) :
bbn = BBN(NR_interacting_species=3)

bbn.solve_BBN(T_end=0.1e9) # solve the system until end temperature 0.1%10°9 K

Plot the mass fraction for each species:
fig, ax = plt.subplots ()
for i, y in enumerate(bbn.Y_i):
ax.loglog(bbn.T, bbn.mass_number[i] * y, label=bbn.species_labels[i])

