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1 Moral speech

This project consists of a set of tasks, some analytical, some numerical. It is important that you explain how
you think, just writing down a bunch of equations with no explanations will not give you a maximum score.
I recommend that you write your answers using LaTeX. Posting handwritten lecture notes and solutions to
problems is a privilege that belongs to the lecturer alone.

Your figures should have a clear layout with proper axis labels and units, and with a caption explaining
what the figure shows. The figures should be referenced in the main text. You are also required to hand
in your source code in a form that can be easily compiled. If you use python, use python 3 as this makes
testing your codes easier for us.

VERY IMPORTANT: Use your candidate number, and nothing else, to identify yourself in the report.
In previous years we have seen several examples of students handing in reports with their full name and/or
e-mail address. The evaluation process is supposed to be anonymous. Therefore, if we find your full name
in the report, we will deduct 5 points from your score.

2 General Parameters

Unless stated otherwise, the following values are used for these parameters (which will be defined later in
the text):

h = 0.7,

Neff = 3,

Ωb0 = 0.05.

The Hubble parameter is
H0 = 100h km s−1Mpc−1,

where Mpc = 3.09× 1022m, and the critical energy density of the universe today is given by

ρc0 =
3H2

0

8πG
≈ 9.2× 10−27 kgm−3.

The paper that this project is based on uses CGS units instead of SI units, i.e. it uses grams and centimeters
instead of kilograms and meters. Make sure you use these units in your code, otherwise your reaction rates
will be incorrect.

3 Big Bang Nucleosynthesis - Predicting the abundance of light
elements

Big Bang Nucleosynthesis (BBN) describes the production of the lightest elements in the first few moments
after the Big Bang. At this time the universe was very hot (T ∼ 109K − 1010K) and much denser than
today, with all the four fundamental forces of nature playing a major role. In this project we will use the
Boltzmann equation to compute the abundances of the lightest elements; hydrogen/free proton (H or p),
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deuterium (H2 or D), tritium (H3 or T), helium-3 (He3), helium-4 (He4), lithium (Li7), and beryllium (Be7),
as well as the free neutron (n).

Before BBN starts, the baryonic matter in the universe is almost entirely in the form of free protons and
neutrons (and an equal number of the much lighter electrons, such that the universe is electrically neutral,
but we will largely neglect these in this project). These interact via the weak nuclear force, with protons
transforming into neutrons and vice verse;

n+ νe ⇀↽ p+ e−, (1)

n+ e+ ⇀↽ p+ ν̄e, (2)

n ⇀↽ p+ e− + ν̄e. (3)

Here e− and e+ are the electron and its antiparticle, the positron, and νe and ν̄e are the electron neutrino
and its antiparticle. Initially, the neutrons and protons are in equilibrium, with a preference for protons
because it is slightly lighter,

n
(0)
n

n
(0)
p

=
(mp

mn

)3/2

e−(mn−mp)c
2/kBT , (4)

where n(0) denotes the equilibrium number densities. At very high T we see that n
(0)
n ≈ n

(0)
p , whereas for

temperatures below the mass difference kBT < (mn −mp)c
2, the neutron fraction drops and would in time

fall to zero had they followed this equilibrium distribution indefinitely. They do not, however, and at some
point the rate at which these particles interact becomes lower than than the rate at which the universe
expands, due to both decreasing temperature and densities. When this happens, the protons and neutrons
fall out of equilibrium, and the total number of protons and neutrons ”freezes out”. The free neutrons still
spontaneously decay into protons via reaction (3), and the neutron fraction eventually decreases anyway.

To describe the change in proton and neutron number densities via reactions (1), (2), and (3), both in
and out of equilibrium, we must use the Boltzmann equation, which for a particle specie ”i” is of the form

dni

dt
+ 3Hni = Ji. (5)

The term 3Hni is the dilution of number density due to expansion, where H = a−1da/dt, while Ji is the
rate of change due to all reactions that particle i participates in. If there are no reactions, Ji = 0, then we
simply get ni ∼ a−3, i.e. the number density decreases solely due to expansion. The first type of reaction
that we must consider are decays,

Ji ⊃
∑
j ̸=i

[njΓj→i − niΓi→j ], (6)

where Γi→j is the decay rate, and is essentially the fraction of particle i per unit time that is converted into
particle j. The ”⊃” is the superset symbol, to indicate that the given reaction terms are part of Ji. Note
that decays of both i into other j, and from other j into i, are included, and that in general Γi→j ̸= Γj→i.
The second type of reaction we must include are two-body interactions of the form i + j ⇀↽ k + l. These
contribute to the change in number densities as

Ji ⊃
∑
jkl

[nknlγkl→ij − ninjγij→kl], (7)

which depends on the interaction rates γkl→ij and the product of the particle densities nknl. Note that both
directions of the interaction is included, and again we have in general that γkl→ij ̸= γij→kl.

In the following we will model all the weak force reactions between p and n as decays, with the effect of
the electrons and neutrinos included in the decay rates. We therefore have

dnn

dt
+ 3Hnn = npΓp→n − nnΓn→p, (8)

dnp

dt
+ 3Hnp = nnΓn→p − npΓp→n. (9)
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It is advantageous to define the relative number densities Yn = nn/nb and Yp = np/nb, where nb = nb0a
−3 =

ρb0a
−3/mp is the total baryon nucleon number density, and ρb0 = Ωb0ρc0 the total baryon mass density. It

will also be easier to use the logarithm of the temperature T = T0a
−1 as our time variable.

a) [5 points]

Show that the equations for dYn/d(lnT ) and dYp/d(lnT ), starting from from eqs. (8) and (9), are

dYn

d(lnT )
= − 1

H
[YpΓp→n − YnΓn→p], (10)

dYp

d(lnT )
= − 1

H
[YnΓn→p − YpΓp→n]. (11)

The decay rates Γp→n and Γn→p can be computed from quantum field theory, but this is an exercise far
outside the scope of this course. Instead we will use the results from Table 2 in ref. [1];

Γn→p(T, q) =
1

τ

[∫ ∞

1

(x+ q)2(x2 − 1)1/2x

[1 + exZ ][1 + e−(x+q)Zν ]
dx

+

∫ ∞

1

(x− q)2(x2 − 1)1/2x

[1 + e−xZ ][1 + e(x−q)Zν ]
dx

]
,

(12)

Γp→n(T, q) = Γn→p(T,−q), (13)

where τ = 1700s is the free neutron decay time, q = (mn −mp)/me = 2.53, Z = mec
2/kBT = 5.93/T9, and

Zν = mec
2/kBTν = 5.93/T9ν

1. We have also defined the quantities T9 = T/109 and T9ν = Tν/10
9 for ease.

We must also know what the expansion rate of the universe was at the time of BBN, as well as the
temperature of the cosmic plasma T , and of the decoupled neutrinos Tν . The cosmic microwave background
has given us precise measurements of T = T0/a today, T0 = 2.725K, and the neutrino temperature is related
to T as Tν = (4/11)1/3T . Furthermore, at the time of BBN our universe was completely dominated by
radiation, and the Friedmann equations is simply

H =
1

a

da

dt
= H0

√
Ωr0a

−2, (14)

where Ωr0 = ρr0/ρc0 is the fraction of energy in the form of radiation in our universe today.

Bonus question [5 points]

Make an order-of-magnitude estimate of the baryon mass density at the time of BBN, e.g. at T ∼
109K. How does this compare to the mean density of the Sun?
Make a similar order-of-magnitude estimate for the ratio ρb/ρr between the baryon and radiation
energy densities at the time of BBN, with Ωr0 ∼ 10−4.

b) [5 points]

Show why the relation Tν = (4/11)1/3T holds.
What assumption have we made if we take this relation to be true throughout our treatment of BBN?
Hint: Consider the conservation of total entropy before and after electrons and positrons have become
non-relativistic and annihilate.

1Note that we have set ϕν = 0 compared to [1]
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c) [5 points]

Assuming that photons and Neff number of neutrino species make up all of the radiation in our
universe, show that

Ωr0 =
8π3

45

G

H2
0

(kBT0)
4

h̄3c5

[
1 +Neff

7

8

( 4

11

)4/3]
. (15)

d) [5 points]

Integrate the Friedmann eq. (14) to get a(t), as well as t(T ). Use the latter to find how old the
universe was at T = 1010K, T = 109K, and T = 108K.

e) [5 points]

Assuming that all of the baryonic mass ρb at the initial temperature Ti is in neutrons and protons,
and that they are in thermal equilibrium at this temperature, show that

Yn(Ti) = [1 + e(mn−mp)c
2/kBTi ]−1, (16)

and
Yp(Ti) = 1− Yn(Ti). (17)

Use that mp ≈ mn outside of exponentials.

f) [10 points]

Write a code that solves eqs. (10) and (11) from Ti = 100× 109K to Tf = 0.1× 109K, with the initial
conditions from e). Use this code to reproduce Figure 1.
Hint: In Python, you can use scipy’s quad integrator for eq. (12), and solve ivp for the the set of
differential equations, with method=”Radau”, rtol=1e-12, atol=1e-12. The code might be a bit slow,
using a few minutes per run, at least when we include more elements and reactions later. Increasing
rtol and atol will speed things up when testing, but might yield solutions that are not very ”nice”
looking.
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Figure 1: The solution of Yn and Yp from eqs. (10) and (11), shown in solid lines, as well as the equilibrium
values from eqs. (16) and (17), shown in dotted lines.

We have up to this point given a description of the processes that lead up to where BBN really gets
going, i.e. when nuclides heavier than hydrogen is produced. This doesn’t happen until the temperature
falls to around T ≈ 9× 108K. At temperatures above this there are enough high-energy photons present to
instantaneously disintegrate any deuterium that forms. This is called the deuterium bottleneck, since BBN
cannot proceed until deuterium survives for long enough to participate in further reactions.

To proceed we will need the general Boltzmann equation for a particle i that interacts with any number
of other particles j, both through decays and two-body reactions;

dni

dt
+ 3Hni =

∑
j ̸=i

[njΓj→i − niΓi→j ] +
∑
jkl

[nknlγkl→ij − ninjγij→kl]. (18)

g) [5 points]

Show that the equation for dYi/d(lnT ), starting from eq. (18), is

dYi

d(lnT )
= − 1

H

{∑
i ̸=j

[YjΓj→i − YiΓi→j ] +
∑
jkl

[YkYlΓkl→ij − YiYjΓij→kl]

}
, (19)

where we have defined Γij→kl = nbγij→kl.

The reactions we need are given in ref. [1], which uses a slightly different notation compared to what
we have used so far. For instance, if we write down the Boltzmann equations for n, p and D with reactions
1)-3) in part a), and 1) in part b) of Table 2, we get

dYn

d(lnT )
= − 1

H

{
− λw(n)Yn + λw(p)Yp + λγ(D)YD − [pn]YnYp

}
, (20)

dYp

d(lnT )
= − 1

H

{
− λw(p)Yp + λw(n)Yn + λγ(D)YD − [pn]YnYp

}
, (21)
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dYD

d(lnT )
= − 1

H

{
− λγ(D)YD + [pn]YnYp

}
, (22)

where λw(n) = Γn→p, λw(p) = Γp→n, λγ(D) = ΓD→n = ΓD→p, and [pn] = Γnp→Dγ .

h) [10 points]

Write a code that solves the Boltzmann equations for n, p, D, up to the deuterium bottleneck using
reactions 1)-3) from part a), and 1) from part b) of Table 2 in ref. [1], i.e. eqs. (20), (21), and (22).
Integrate from Ti = 100× 109K to Tf = 0.1× 109K, with the initial conditions from e) for Yn and Yp,
and YD = 0. Use this code to reproduce Figure 2, and give a short description of what is happening
in the figure as the temperature decreases.

Figure 2: The solution of Yn, Yp, and 2YD from eqs. (20), (21), and (22), shown in solid, as well as the
equilibrium values from eqs. (16) and (17), shown in dotted. We have included the mass number Ai of
particle i (i.e. number of neutrons pluss protons), such that the fraction of the total baryon mass in the
different particle species is shown.

We are now in a position to write a code that implements all the reactions necessary for accurately
computing the abundance of elements up to Li7. The reactions that we must include are 1)-3) from part a),
and 1)-11) + 15)-18) + 20) + 21) from part b) of Table 2 in ref. [1]. Adding all of these can, understandably,
result in an unwieldy set of equations if written out in full. From a coding point of view, it might be easier
to add the contribution of each reaction one at a time. In Python, the first few reactions might therefore be
written as

# Code snippet from a function that computes the ODE for BBN elements.

# dYi corresponds to d(Yi)/d(lnT), and the contributions are

# added one reaction at a time.

# Lets add contribution from the various reactions

# From "ON THE SYNTHESIS OF ELEMENTS AT VERY HIGH TEMPERATURES"

# by R.V.Wagoner et al, 1967
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### Table 2:

### a) Weak interactions

# 1) n + nu <-> p + e-

# 2) n + e- <-> p + nu_bar

# 3) n <-> p + e- + nu_bar

rate_lambda_w_n, rate_lambda_w_p = cmpt_n_to_p(T9, Tnu9, rhob)

dYp = dYp - 1/H*(-Yp*rate_lambda_w_p + Yn*rate_lambda_w_n)

dYn = dYn - 1/H*( Yp*rate_lambda_w_p - Yn*rate_lambda_w_n)

### b) Strong and electromagnetic interactions

# 1) p + n <-> D + gamma

rate_pn, rate_lambda_gamma_D = cmpt_pn_to_Dgamma(T9, Tnu9, rhob)

dYp = dYp - 1/H*(-Yp*Yn*rate_pn + YD*rate_lambda_gamma_D)

dYn = dYn - 1/H*(-Yp*Yn*rate_pn + YD*rate_lambda_gamma_D)

dYD = dYD - 1/H*( Yp*Yn*rate_pn - YD*rate_lambda_gamma_D)

# 2) p + D <-> He3 + gamma

rate_pD, rate_lambda_gamma_He3 = cmpt_pD_to_He3gamma(T9, Tnu9, rhob)

dYp = dYp - 1/H*(-Yp*YD*rate_pD + YHe3*rate_lambda_gamma_He3)

dYD = dYD - 1/H*(-Yp*YD*rate_pD + YHe3*rate_lambda_gamma_He3)

dYHe3 = dYHe3 - 1/H*( Yp*YD*rate_pD - YHe3*rate_lambda_gamma_He3)

The two-body reactions in the Boltzmann equations actually include some extra factors when there are two
particles of the same type, which has not been included in eq. (18) for notational ease. We state here what
these factors are: For reactions that produce two particles of the same type, such as k + l→ i+ i, an extra
factor 2 must be included in the production of i in the equation for i, and a factor 1/2 must be added in the
production of k and l in the equations for k and l, i.e. for the opposite reaction k + l← i+ i. For example,
for reaction 20) in part b) of Table 2 in ref. [1], p + Li7 ⇀↽ He4 +He4, we would get

# 20) p + Li7 <-> He4 + He4

rate_pLi7_He4, rate_He4He4_p = cmpt_pLi7_to_He4He4(T9, Tnu9, rhob)

dYp = dYp - 1/H*( -Yp*YLi7*rate_pLi7_He4 + 0.5*YHe4*YHe4*rate_He4He4_p)

dYLi7 = dYLi7 - 1/H*( -Yp*YLi7*rate_pLi7_He4 + 0.5*YHe4*YHe4*rate_He4He4_p)

dYHe4 = dYHe4 - 1/H*(2*Yp*YLi7*rate_pLi7_He4 - YHe4*YHe4*rate_He4He4_p)

i) [20 points]

Write a code that solves the Boltzmann equations for n, p, D, T, He3, He4, Li7, and Be7, using
reactions 1)-3) from part a), and 1)-11) + 15)-18) + 20) + 21) from part b) of Table 2 in ref. [1].
Integrate from Ti = 100× 109K to Tf = 0.01× 109K, with the initial conditions from e) for Yn and
Yp, and Yi = 0 for the remaining elements. Use this code to reproduce Figure 3.
Hint: A very simple test that might help you catch some errors when writing out all the reactions
is to check if

∑
AiYi = 1, i.e. that the total number of nucleons is conserved throughout your BBN

simulation. Ai is the particle mass number.
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Figure 3: The mass fractions AiYi, where Ai is the mass number of particle i (i.e. number of neutrons pluss
protons).

Lets pause for a moment to appreciate what we have achieved so far: We have accurately computed
the production of elements through nuclear reactions involving all the fundamental forces of nature, which
happens in the first few seconds after the Big Bang and the life of our universe. This is quite a feat, and we
can now use BBN to learn more about the content of our universe by comparing our theoretical predictions to
observations. The observables that we will use are the abundance fractions of D and Li7 relative to hydrogen,
YD/Yp and YLi7/Yp, and the mass fraction of He4, 4YHe4 . The half-life of tritium and beryllium is sufficiently
short that nothing of these survive until today, but they decay to He3 and Li7, respectively. The final values
of YT and YBe7 that we get from our calculations must therefore be added to the final number fractions of
He3 and Li7 to get what we would observe today; YHe3(today) = YHe3 + YT, and YLi7(today) = YLi7 + YBe7 .
Note, however, that we do not use He3, since inferring the primordial abundance of He3 from observations
has proven to be problematic, and is therefore not a good probe for BBN. The observed values that we will
use are

YD/Yp = (2.57± 0.03)× 10−5, (23)

4YHe4 = 0.254± 0.003, (24)

YLi7/Yp = (1.6± 0.3)× 10−10. (25)

Given a choice of parameters, such as the baryon fraction Ωb0 and the effective number of neutrino
species Neff , we would like to know the probability of the model given the data. There is no unique recipe
for calculating this probability, but a result known as Bayes’ theorem says that

P (model|data) = P (data|model)P (model)

P (data)
. (26)

The second factor in the numerator is the probability we would assign to the model before obtaining the
data, and it is called the prior. The factor in the denominator is known as the evidence. We will, as is quite
common, consider both of these factors to be constants, and we then have the result

P (model|data) ∝ P (data|model). (27)

The probability on the right-hand side is known as the likelihood, and the point is that it is possible to
work out how to calculate it. For example, we will assume that the observations are drawn from a Gaussian
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distribution, and that the measurements are uncorrelated. This means we assume that if we measure some
set of observables di with measurement error σi, then we can write

P (data|model) =
1√

2
∏

i σ
2
i

exp

[
−
∑
i

(di(p⃗)− di)
2

σ2
i

]
, (28)

where di(p⃗) are the predicted values for the observables given the model parameters p⃗. We can infer the most
probable values for the model parameters by maximizing eq. (28) as a function of the model parameters, or
equivalently, by minimizing

χ2(p⃗) =
∑
i

(di(p⃗)− di)
2

σ2
i

. (29)

In principle we could try to fit all the parameters of the model at the same time in this way, but in this
project we will only do one at a time.

j) [15 points]

Compute the relic abundances in the range Ωb0 = [0.01, 1], and compare against the measurements
(23), (24), and (25). Reproduce Figure 4, and find the most probable value for Ωb0, i.e. the best fit
given the data.
The total matter content of the universe is around Ωm0 = 0.3, where a significant fraction of this is
in the form of some unknown and unseen (dark) matter. What does the value for Ωb0 that we infer
from BBN tell us about what this dark matter can, or cannot, be?
Hint: The code is probably quite slow, so we can use a trick to speed things up. Since the functions are
quite smooth in log-space, we can use scipy’s interp1d with kind=”cubic” on lnYi(lnT ) to interpolate
from around 10 to 20 computed points to as many as we need to make a smooth plot and find a
reasonably accurate value for the best-fit value of Ωb0. To avoid possible numerical errors when taking
the log of Yi, we can put a lower bound on Yi, e.g. 10−20.
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Figure 4: The relic abundance of elements are shown as a function of the baryon density Ωb0, along with
measurements (23), (24), and (25) (horizontal shaded regions). In the lower plot the normalized probability
eq. (28) is shown. The best-fit value of Ωb0 is indicated by the dotted line.

k) [15 points]

Compute the relic abundances in the range Neff = [1, 5], and compare against the measurements (23),
(24), and (25). Reproduce Figure 5, and find the most probable value for Neff , i.e. the best fit given
the data.
How does the best-fit value for the effective number of neutrino species Neff compare to your expec-
tations?
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Figure 5: The relic abundance of elements are shown as a function of the effective number of neutrino
species Neff , along with measurements (23), (24), and (25) (horizontal shaded regions). In the lower plot the
normalized probability eq. (28) is shown. The best-fit value of Neff is indicated by the dotted line.
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