
Using the FVis module

Lars Frogner

Applies to version 1.1.6

Contents

1 Introduction 1

2 Required packages 1

3 What the module can do 1

4 Getting started 1

5 Requirements on your solver 2

6 Saving data 4

7 Animating 5

8 Plotting time evolution of an average 6

9 Temporary visualisation 6

10 Adding more data 7

11 Argument descriptions 8
11.1 FluidVisualiser . 8
11.2 save data . 8
11.3 animate 1D . 9
11.4 animate 2D . 11
11.5 animate energyflux . 12
11.6 plot avg . 13
11.7 delete current data . 14
11.8 get last data . 14

12 Quantities that can be visualised 14

1 Introduction

This guide describes the usage of the Python module FVis.py, which provides
a simple way of saving and visualising the results of your fluid simulations. The
most important aspects of the module should be covered here, but any questions
or comments can be directed to lars.frogner@astro.uio.no.

2 Required packages

The module requires matplotlib and NumPy. If you experience problems, make
sure that both are updated to the latest version.

For generating an mp4 file from an animation, FFmpeg is required. Windows
users can download it from the linked site. In order for matplotlib to find the
FFmpeg executable, you must open the source code (FVis.py), and at the top
specify the path to the folder that FFmpeg was downloaded to (you’ll see where
to put it once you open the file). For the latest versions of Ubuntu, FFmpeg
should already be installed, and you can leave the path specification commented
out.

3 What the module can do

• Run your simulation for a given amount of time and save the resulting
data to binary files.

• Read data previously saved by the module.

• Add more simulation data to existing files.

• Show a 1D or 2D animation of a quantity that can be derived from the
stored data.

• Save the animation as an mp4 file.

• Plot the time evolution of the average value of a quantity (useful for check-
ing if something is conserved).

4 Getting started

Download FVis.py from https://github.com/lars-frogner/FVis and save
it to your working directory. At the top of your code, import the module by
calling

import FVis3 as FVis

1

mailto:lars.frogner@astro.uio.no
http://matplotlib.org/
http://www.numpy.org/
https://ffmpeg.org/
https://github.com/lars-frogner/FVis

Replace the 3 with 2 if you are using Python 2.x instead of Python 3.x. If
you are also importing matplotlib.pyplot, make sure that the import of FVis
comes first. Then, below all your simulation code, create an instance of the
visualisation class by writing

vis = FVis.FluidVisualiser()

FluidVisualiser is a class containing all the methods you need for saving
simulation data and creating animations, and you will be using the instance
vis for every action you perform with the module. You are now almost ready
to save some data, which is done with the method save data. This method will
advance your simulation for you and output the required simulation variables
(density, velocity etc.) to files with regular intervals. We will see how to do this
in a second, but first there are a few requirements on your solver implementation
that you need to know about.

5 Requirements on your solver

Suppose you have written a 1D solver for the Navier-Stokes equations with no
energy equation. Your primary variables would be density rho and velocity u,
with the pressure P as a secondary variable. All of these must be represented as
numpy arrays. You will provide the save data method with references to the
arrays that you want to save.

You will also need to have a function or method, let’s call it step, that can
advance the simulation by one time step and update the content of the arrays.
step can take no arguments; it must have access to the arrays either as class at-
tributes (highly recommended) or as global variables (not recommended). Here
are examples for both cases:

2

*** Class approach ***

def step(self):

<Calculate derivatives, find time step, set BCs etc..>

Update attributes

self.rho[:] = ...

self.u[:] = ...

self.P[:] = ...

Return time step

return dt

*** Global approach ***

def step():

global rho, u, P # Get access to the global variables

<Calculate derivatives, find time step, set BCs etc..>

Update global variables

rho[:] = ...

u[:] = ...

P[:] = ...

Return time step

return dt

step will also be provided to save data, which will call it in a loop to advance
the simulation. The length of the time step must be returned, so that save data

can keep track of the elapsed simulation time. Notice also the brackets after
rho, u and P. They are required for save data to work. Here’s why: Consider
the two statements

arr1 = arr2

and

3

arr1[:] = arr2

The first statement basically says to take the memory allocated to arr2 and
label it arr1. The second one says to take the memory allocated to arr2 and
copy it’s content into the memory allocated to arr1. See now why we have
to use the second approach? Otherwise the references provided to save data

initially will no longer point to the correct data after step is called. (Note that
it doesn’t have to be [:], you could for instance have to set the internal values
([1:-1]) and the boundary points ([0], [-1]) separately.)

6 Saving data

Say we now want to run our hypothetical 1D solver (implemented as a class) for
200 simulation seconds and save the contents of the arrays to file every other
second. The syntax for this would be something like this:

Create an instance of your solver class

solver = MySolver(<arguments>)

<Call any methods from solver required for setting initial

conditions>

Run simulation for 200 seconds and save rho, u and P

vis.save_data(200, solver.step, rho=solver.rho, u=solver.u, P=

solver.P, sim_fps=1.0)

The first argument to save data is the number of time units to simulate. The
second argument is the stepping function/method. Following that are a series of
keyword arguments for the references to the arrays that are to be saved. Finally
in this call we have specified the number of frames to save each time unit. A
higher value for sim fps thus gives a finer time resolution for the saved data. A
detailed list of possible arguments to save data can be found in the save data

section.

One particular keyword argument to save data is worth mentioning in a lit-
tle more detail here; the argument sim params. You can use it for storing the
values of all kinds of parameters that characterise your simulation run, like the
number of grid points, the size of the simulation box, the viscosity etc. You do
this by creating a dictionary where the keys are string representations of the pa-
rameter names, and the values are the numerical values used for the parameters.
This dictionary is then given to the save data method through the sim params

argument. There are two uses of this. The first is that you can have your pa-
rameters displayed on top of the animation, making it easier to analyse various

4

simulation runs. The other is that you can retrieve the parameters later and use
them for continuing the simulation from where it ended (see Adding more data).

For a 2D simulation you would also call save data almost like above, only
this time you would have a couple of additional variables in your simulation
(like internal energy and one more velocity component), and references to these
must be included in your call to save data.

By default, the binary files containing the output data are saved in a time
stamped folder inside your working directory, but you can also specify a custom
name with the keyword argument folder=’<My custom name>’.

Should you get tired of waiting and want to end the writing process earlier
than planned, just do a keyboard interrupt (ctrl-C), and the program will finish
up what it was doing and abort gracefully. Your data will be just fine.

7 Animating

Now that we have saved our precious data, it’s time to visualise it. This is done
with the method animate 1D (or the corresponding 2D version, animate 2D).
Here is a call that creates an animation of the density.

vis.animate_1D(’rho’, folder=’FVis_output_<yyyy_mm_dd_hh_MM>’)

The first argument is a string describing the quantity to show. This can be any
of the quantities that were saved (so rho, u or P for the case discussed above),
or a derived quantity like horizontal momentum (’ru’) or pressure contrast
(’dP’). A complete list of the possible quantities can be found in the Quantities
that can be visualised section.

The keyword argument folder in the above call specifies the name of the folder
to read the binary files from. In this example the data is read from some de-
fault time stamped folder. If you want to animate data that was saved with
the same FluidVisualiser instance (in the same running of the program), the
folder name doesn’t have to be specified since it is already known to the instance.

There are a number of other keyword arguments available, all listed in the
animate 1D section for animate 1D and the animate 2D section for animate 2D.

One thing to be aware of when creating 2D animations is that animate 2D by
default assumes that your arrays are indexed like matrices, in other words that
the first index specifies the row (and thus denotes height) and the second index
specifies the column (and thus denotes width). If you have done it the other
way around, add the keyword argument matrixLike=False in animate 2D so

5

that your arrays can get transposed before they are shown.

8 Plotting time evolution of an average

If we for instance want to check whether mass is conserved in our simulation,
we can use the plot avg method. It will calculate the average of some quantity
over the entire simulation region for each time step, and produce a plot of the
resulting time evolution. A call to it can look like this

vis.plot_avg(’rho’, folder=’FVis_output_<yyyy_mm_dd_hh_MM>’)

All quantities that can be used with one of the animation methods (listed in
the Quantities that can be visualised section) can also be used with plot avg.
See the plot avg section for additional keyword arguments.

9 Temporary visualisation

If we are doing some quick and dirty testing of parameters and don’t want
to keep the data that gets produced, the method delete current data is our
friend. As can be guessed from it’s name, it deletes the data that was saved
with the same instance of FluidVisualiser (again, in the same running of the
program). Below is an example of it’s usage.

<Instantiate classes etc..>

Save 200 seconds worth of data

vis.save_data(200, solver.step, rho=solver.rho, u=solver.u, P=

solver.P)

Animate the pressure

vis.animate_1D(’P’)

Delete the data after the animation window is closed

vis.delete_current_data()

You will be asked to confirm the deletion in the terminal window, so that you
don’t accidentally delete an hour’s worth of data just because you forgot to
comment out the deletion command.

6

10 Adding more data

It is usually hard to know beforehand how long the simulation must run for in
order to get to the interesting bits. If you have to start the simulation from
scratch when you just need to see what happens next, a lot of time is wasted
calculating the same things all over again.

One of the most handy features of this module is the ability to extend an
existing simulation by adding more data to it. The tool that allows us to do
this is the get last data method. A call to it looks like this:

arrs, params = vis.get_last_data(’FVis_output_<yyyy_mm_dd_hh_MM>’)

It takes as the only argument the name of the folder for the simulation we want
to extend. The first return value, arrs, is a dictionary with an entry for each
variable there is data for. The dictionary keys are just the string representations
of their names (’rho’, ’e’, ’P’ etc.), and the values are the corresponding ar-
rays that were last added to the files. So to retrieve e.g. the last temperature
array that was written in that simulation, we could write T last = arrs[’T’].
Provided that all the necessary variables were saved initially (at least as many
as the number of primary variables), you can use the content of arrs as initial
conditions for your solver to start from the point where the original simulation
ended.

The second return value is also a dictionary, in fact the same dictionary that
was provided to save data as the sim params argument when the data was first
written. As long as you included all the relevant parameters in the sim params

dictionary when you called save data, this information lets you make sure that
the solver uses the same set of parameter values as was used originally.

Now that your solver is all set, the final step is to call save data just like be-
fore, only this time with the keyword argument appendMode set to True. This
lets the method know that you don’t want to create new files for the upcoming
simulation data, but rather append it to the end of some old files. Since it also
needs to know which files to append the data to, you must specify this with the
folder argument.

You can more or less automate the process of resetting your solver to the correct
state by having it take all of it’s parameters in the form of a dictionary in the
first place. Then, when you create a new set of simulation data, use that dic-
tionary as the sim params argument to save data. If you later want to extend
that simulation, you can get the same dictionary back with get last data. Just
feed it directly into your solver, and all parameters will be set to the correct val-
ues. Then it is just a question of setting the arrays in arrs as initial conditions,

7

and you are good to go.

11 Argument descriptions

11.1 FluidVisualiser

Constructor.

• printInfo=True: Type: bool.
Whether to print info about execution to the terminal.

• fontsize=13: Types: int, float.
Font size to use in figures.

• blit=True: Type: bool.
Whether to use ”blitting” when rendering the animation. If activated, only
the parts of the figure that have actually changed since the last frame will
be updated when a new frame is rendered. This can lead to a significant
performance boost. Note that you should try to disable this feature if
they experience crashes when trying to generate an animation.

11.2 save data

Advances the simulation by a given amount of time and saves the relevant data
to binary files.

• First argument: Types: int, float.
Number of seconds to simulate.

• Second argument: Type: callable.
Function/method for advancing the simulation by a time step and updat-
ing arrays of the primary and secondary variables. Must take no input,
and return the time step length.

• rho=None, u=None, w=None, e=None, P=None, T=None: Type: ndarray.
Arrays that get updated by the function/method given in the second ar-
gument. Their content will be saved to binary files regularly during the
simulation run. They must all have the same shape. They specify den-
sity, horizontal velocity, vertical velocity, internal energy, pressure and
temperature, respectively.

• sim fps=1: Types: int, float.
The number of times per simulation time unit to add the array content to
file.

• useDblPrec=False: Type: bool.
Whether to save the data as 64 bit float values rather than 32 bit.

8

• sim params=None: Type: dict
Dictionary with names (as dict keys) and the corresponding values of any
parameters you use in your simulation. The key/value pairs will be stored
inside the output folder, and can be displayed with the animation. The
parameters can be retrieved later with the get last data method, so that
you can use them to reconstruct the particular settings of that simulation
should you decide to add more data to it.

• appendMode=False: Type: bool.
Whether to add the new simulation data to the end of the binary files
in the specified folder (the automatic folder name option (see below) will
thus not be accepted in append mode). The set of inputted arrays must
correspond exactly to the set of arrays in the specified folder, and the
shapes of course have to match. The specified precision and the dictionary
of simulation parameters will be ignored in append mode.

• folder=’auto’: Type: str.
Name of the folder to save the data in (or to append data in when ap-
pend mode is activated). By default the output folder will be named
’FVis output <yyyy mm dd hh MM>’, where the bracketed letters describe
the date and time when the folder was created.

11.3 animate 1D

Creates an animation of the time evolution of a 1D simulation.

• First argument: Type: str.
Which quantity to visualise. See list of quantities in the Quantities that
can be visualised section.

• folder=’default’: Type: str.
Name of the folder to save read the data from. The default value can only
be used when the same instance has already been used to save data. Then
the folder that the data was saved to will automatically be used.

• extent=[0, 1]: Type: list.
List specifying the spatial coordinate of the left and right edge of the
simulation area.

• anim fps=’auto’: Types: int, float.
The number of times per simulation second to show an animation frame.
Will not in practice be larger than the fps used to save the data, but any
value is accepted. Default uses the same fps as the data was saved with.

• showDeviations=True: Type: bool.
Whether to show labels with the relative difference between the current
total mass and/or energy (whatever is available) and the initial total mass
and/or energy.

9

• showParams=True: Type: bool.
Whether to display the simulation parameters that were given with the
sim params argument when the data was saved.

• height=6: Types: int, float.
The animation figure height.

• aspect=1.3: Types: int, float.
The aspect ratio of the animation window (width/height).

• title=’’: Type: str.
Figure title to use.

• save=False: Type: bool.
Whether to save the animation as an mp4 file rather than showing it.

• anim time=’auto’: Types: int, float.
The number of simulation seconds the animation will run for when saving
to an mp4 file. Default value uses the number of seconds spanned by the
saved data. If set to larger than this, the animation will restart from the
initial time.

• video fps=30: Types: int, float.
The fps to use for the mp4 video. The difference between this and the
animation fps option is that the latter describes the number of frames
to show per simulation time, while the former describes the number of
frames to show per real time. The length of the video in real seconds will
be anim time*anim fps/video fps.

• video name=’auto’: Type: str.
Name to use for saved mp4 file. Don’t include the .mp4 extension. Default
uses the name of the data folder.

• snapshots=None: Type: list.
Used for specifying a list of times (in seconds) for which to save snapshots
of the animation as PNG images. Note that the animation video will not
be shown or saved when such a list is specified.

• units={}: Type: dict
Dictionary used for specifying the units to use for various quantities. The
keys are quantity designations (like the ones listed in the Quantities that
can be visualised section), and the values are strings specifying the units.
SI-units are assumed by default for all quantities. This dictionary can also
be used for specifying the units for distance and time. For distance, the
designation is ’L’ (in 1D). For time, the designation is ’t’.

10

11.4 animate 2D

Creates an animation of the time evolution of a 2D simulation.

• First argument: Type: str.
Which quantity to visualise. See list of quantities in the Quantities that
can be visualised section.

• matrixLike=True: Type: bool.
Whether the 2D arrays are indexed like matrices or not. If [i, k] refers
to column i and row k in your arrays, set to false.

• backgrounds=None: Type: dict.
Used for specifying alternative initial states φ(r, 0) to use when visualising
any of the contrast quantities in the Quantities that can be visualised
section. If set to None, the earliest state in the current set of visualisation
data will be used. Otherwise, the argument must be a dictionary where
the keys are the names of the relevant quantities (like ’rho’, ’T’ etc.),
and the values are 2D arrays representing the corresponding initial states.

• folder=’default’: Type: str.
See animate 1D description.

• extent=[0, 1, 0, 1]: Type: list.
List specifying the spatial coordinate of the left, right, lower and upper
edge of the simulation area.

• anim fps=’auto’: Types: int, float.
See animate 1D description.

• showDeviations=True: Type: bool.
See animate 1D description.

• showParams=True: Type: bool.
See animate 1D description.

• showQuiver=True: Type: bool.
Whether to show a quiver plot of the velocity field on top of the animation.
Nothing will happen if not both velocity arrays are available.

• quiverscale=1: Types: int, float.
Scaling factor for the quiver arrows. An initial scaling is done based on an
estimation of the sound speed. This is a modifier for that scaling, so using
e.g. 2 will double the length of the arrows. The arrow scale is displayed to
the top right in the animation window. It shows the speed that an arrow
represents if it has a length of one distance unit.

• N arrows=20: Type: int.
The number of quiver arrows to use in the vertical direction. The number
in the horizontal direction is then found from the aspect ratio of the array

11

shape. Warning: Using a lot of arrows can have a significant impact on
performance.

• interpolation=’none’: Type: str.
The interpolation type to use for the animation frames. Examples are
bicubic and spline16. By default no interpolation will take place. Warn-
ing: Interpolating can significantly impact performance, and can also hide
useful information.

• cmap=’jet’: Type: str.
The color map to use for the animation frames. Examples are viridis

and gray.

• height=6: Types: int, float.
See animate 1D description.

• aspect=’equal’: Types: int, float.
The aspect ratio of the animation window (width/height). Default value
uses the same aspect ratio as the array shape.

• cbar aspect=0.02: Type: float.
The aspect ratio of the colorbar (width/height).

• title=’’: Type: str.
See animate 1D description.

• save=False: Type: bool.
See animate 1D description.

• anim time=’auto’: Types: int, float.
See animate 1D description.

• video fps=30: Types: int, float.
See animate 1D description.

• video name=’auto’: Type: str.
See animate 1D description.

• snapshots=None: Type: list.
See animate 1D description.

• units={}: Type: dict
See animate 1D description. In 2D, the designation for horizontal distance
is ’Lx’, and the designation for vertical distance is ’Lz’.

11.5 animate energyflux

Creates an animation of the horizontally averaged vertical energy flux.

• folder=’default’: Type: str.
See animate 1D description.

12

• extent=[0, 1, 0, 1]: Type: list.
See animate 2D description.

• anim fps=’auto’: Types: int, float.
See animate 1D description.

• showParams=True: Type: bool.
See animate 1D description.

• height=7: Types: int, float.
See animate 1D description.

• aspect=1.1: Types: int, float.
See animate 1D description.

• title=’’: Type: str.
See animate 1D description.

• save=False: Type: bool.
See animate 1D description.

• anim time=’auto’: Types: int, float.
See animate 1D description.

• video fps=30: Types: int, float.
See animate 1D description.

• video name=’auto’: Type: str.
See animate 1D description.

• snapshots=None: Type: list.
See animate 1D description.

• units={}: Type: dict
See animate 2D description.

11.6 plot avg

Plots the time evolution of the average of a given quantity.

• First argument: Type: str.
Which quantity to measure average of. See list of quantities in the Quan-
tities that can be visualised section.

• folder=’default’: Type: str.
See animate 1D description.

• measure time=’auto’: Types: int, float.
The number of seconds of simulation time that will be included in the plot.
Default value uses the number of seconds spanned by the saved data. If
set to larger than this, the measuring will stop automatically.

13

• title=’’: Type: str.
See animate 1D description.

• showTrendline=False: Type: bool.
Whether to show a simple, linear trend line for the time evolution.

• relative=False: Type: bool.

• units={}: Type: dict
See animate 2D description.

11.7 delete current data

Deletes the data saved by save data in this instance.

11.8 get last data

Reads the last arrays in the files of the given folder and returns them in a
dictionary.

• First argument: Type: str.
Name of the folder to return data from.

12 Quantities that can be visualised

• ’rho’: Mass density, ρ(r, t), [kg/m3].

• ’drho’: Mass density contrast, (ρ(r, t)− ρ(r, 0))/ρ(r, 0), [unitless].

• ’u’: Horizontal velocity, u(r, t), [m/s].

• ’w’: Vertical velocity, w(r, t), [m/s].

• ’e’: Internal energy density, e(r, t), [J/m3].

• ’de’: Internal energy density contrast, (e(r, t)−e(r, 0))/e(r, 0), [unitless].

• ’es’: Specific internal energy, e(r, t)/ρ(r, t), [J/kg].

• ’P’: Pressure, P (r, t), [Pa].

• ’dP’: Pressure contrast, (P (r, t)− P (r, 0))/P (r, 0), [unitless].

• ’T’: Temperature, T (r, t), [K].

• ’dT’: Temperature contrast, (T (r, t)− T (r, 0))/T (r, 0), [unitless].

• ’v’: Speed,
√
u(r, t)2 + w(r, t)2, [m/s].

• ’ru’: Horizontal momentum density, ρ(r, t)u(r, t), [kg/sm2].

14

• ’rw’: Vertical momentum density, ρ(r, t)w(r, t), [kg/sm2].

• ’rv’: Momentum density, ρ(r, t)
√
u(r, t)2 + w(r, t)2, [kg/sm2].

• ’eu’: Horizontal energy flux, e(r, t)u(r, t), [W/m2].

• ’ew’: Vertical energy flux, e(r, t)w(r, t), [W/m2].

• ’ev’: Energy flux, e(r, t)
√
u(r, t)2 + w(r, t)2, [W/m2].

15

	Introduction
	Required packages
	What the module can do
	Getting started
	Requirements on your solver
	Saving data
	Animating
	Plotting time evolution of an average
	Temporary visualisation
	Adding more data
	Argument descriptions
	FluidVisualiser
	save_data
	animate_1D
	animate_2D
	animate_energyflux
	plot_avg
	delete_current_data
	get_last_data

	Quantities that can be visualised

