
Stellar convection

Term project 3

The third term project involves using chapters 5 and 6 from the lecture notes
to model convection in a star. This time we model convection in 2 dimensions
and we move beyond the classic approach of treating convection in 1D like in
chapter 5 and project 2. To achieve that, this project will entail writing a 2D
hydrodynamics code, implementing the continuity equation with no sources
or sinks (1), the momentum equation for both x and y, excluding the viscous
stress tensor but including gravity (2)1, and the energy equation (3).

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇P + ρg (2)

∂e

∂t
+∇ · (eu) = −P∇ · u (3)

In order to solve this project, you need to write a code that solves the above
equations using an explicit numerical scheme. We will take a closer look at
what this means in the next section. The code should be written as modular
as possible, and the python script skeleton.py is available at the course
web page. Use this skeleton script for creating your hydrodynamics solver.

1Note that the vector product ⊗ in the momentum equation is not a dot product, but
an outer product.

1



General theory

Hydrodynamics is the science of fluids. In this case it also includes gasses
and plasma with short enough collisional mean free path. To model such a
fluid, we generally split a volume into cells where each cell carries only one
value for the used variables (ρ, u, T etc.). In this case, we are dealing with a
fluid which moves, and so we need to include the development in time while
treating the whole volume (the collection of cells). To make everything as
simple as possible, we will split our volume into identical cubic cells (think
LEGOTM bricks) that each have a size ∆x and ∆y. The computational
volume becomes Nx×∆x and Ny×∆y, where Nx, Ny are the number of cells
in each direction. The total number of cells are then Nx ×Ny, and they are
each located at (x, y) = (i∆x, j∆y) where i ∈ [0, Nx − 1] and j ∈ [0, Ny − 1].

In order to solve the hydrodynamic equations on such a computational
grid, we need to approximate the derivatives in equations (1)–(3) using finite
difference methods. These methods are explicit, meaning that we use pa-
rameters at the present time n to calculate the parameter at time n+ 1. We
show this by introducing the Forward Time Centred Space (FTCS) numerical
scheme. Consider the two-dimensional advection equation (1)

∂ρ

∂t
= −∇ · (ρu) = −u∇ρ = −u∂ρ

∂x
− w∂ρ

∂y
(4)

where the flow u = (u,w)2 is assumed to be constant. Constant flow means
that the ∂u

∂x
and ∂w

∂y
terms equal to zero. We divide space and time into

discrete positions and instants

xi = x0 + i∆x yj = y0 + j∆y tn = t0 + n∆t (5)

and define
ρni,j ≡ ρ(xi, yj, tn) (6)

2Note that we here use u for the velocity along the x direction and w for the y direction.
In the lecture notes, we use ux and uy.

2



The derivatives are then discretised into[
∂ρ

∂t

]n
i,j

≈
ρn+1
i,j − ρni,j

∆t
(7)[

∂ρ

∂x

]n
i,j

≈
ρni+1,j − ρni−1,j

2∆x
(8)[

∂ρ

∂y

]n
i,j

≈
ρni,j+1 − ρni,j−1

2∆y
(9)

The FTCS numerical scheme can now be written as

ρn+1
i,j − ρni,j

∆t
= −uni,j

(
ρni+1,j − ρni−1,j

2∆x

)
− wni,j

(
ρni,j+1 − ρni,j−1

2∆y

)
(10)

Note that forward differencing means taking the difference with the next in-
stance or position (therefore Forward Time in FTCS) and central differencing
means taking the difference between neighbouring cells (therefore Centred
Space in FTCS).

The FTCS algorithm is simple and easy to implement, but a severe draw-
back is that it is unconditionally unstable. Therefore, one must consider other
numerical schemes in order to avoid numerical errors. Upwind differencing
can be used to model the transport properties of the system better. The first
order upwind scheme considers the direction of the flow (u,w), where the
spatial derivatives are discretised as[

∂ρ

∂x

]n
i,j

≈

{
ρni,j−ρni−1,j

∆x
if uni,j ≥ 0

ρni+1,j−ρni,j
∆x

if uni,j < 0
(11)

[
∂ρ

∂y

]n
i,j

≈

{
ρni,j−ρni,j−1

∆y
if wni,j ≥ 0

ρni,j+1−ρni,j
∆y

if wni,j < 0
(12)

For a system of constant, positive flow (u,w), the first order upwind scheme
is written as

ρn+1
i,j − ρni,j

∆t
= −uni,j

(
ρni,j − ρni−1,j

∆x

)
− wni,j

(
ρni,j − ρni,j−1

∆y

)
(13)

In this project you will discretise the hydrodynamic equations using both
numerical algorithms presented in this section.

3



Algorithm

The 2D hydrodynamical equations have to be solved in a specific way in order
to obtain stability in the numerical solution. We leave the implementation
on the different methods to you, but will in this section provide you with
the algorithms. First, we write the hydrodynamic equations by splitting
them into components in x and y. The continuity, momentum and energy
equations are then written as

∂ρ

∂t
= −∂ρu

∂x
− ∂ρw

∂y
(14)

∂ρu

∂t
= −∂ρu

2

∂x
− ∂ρuw

∂y
− ∂P

∂x
(15)

∂ρw

∂t
= −∂ρw

2

∂y
− ∂ρuw

∂x
− ∂P

∂y
+ ρgy (16)

∂e

∂t
= −∂eu

∂x
− ∂ew

∂y
− P

(
∂u

∂x
+
∂w

∂y

)
(17)

where (15) and (16) are the horizontal and vertical momentum equations,
respectively. Each partial derivative has to be discretised in a specific way
in order to solve the equations numerically. Common for all the equations is
that the left-hand side is discretised using forward time.

Continuity equation

In this project, the flow (u,w) is not assumed to be constant. Therefore, the
continuity equation in (14) is split into additional terms

∂ρ

∂t
= −ρ

(
∂u

∂x
+
∂w

∂y

)
− u∂ρ

∂x
− w∂ρ

∂y
(18)

The spatial derivatives of u and w are approximated using a central scheme,
while the spatial derivatives of ρ are approximated using upwind differencing.
In order to avoid long expressions (which often lead to errors), the calculation
is split into two parts. First, the left-hand side is kept as it is (not discretised),
while the right-hand side is calculated as[

∂ρ

∂t

]n
i,j

= −ρni,j
([

∂u

∂x

]n
i,j

+

[
∂w

∂y

]n
i,j

)
− uni,j

[
∂ρ

∂x

]n
i,j

− wni,j
[
∂ρ

∂y

]n
i,j

(19)

4



where [
∂u

∂x

]n
i,j

≈
uni+1,j − uni−1,j

2∆x[
∂w

∂y

]n
i,j

≈
wni,j+1 − wni,j−1

2∆y[
∂ρ

∂x

]n
i,j

≈

{
ρni,j−ρni−1,j

∆x
if uni,j ≥ 0

ρni+1,j−ρni,j
∆x

if uni,j < 0[
∂ρ

∂y

]n
i,j

≈

{
ρni,j−ρni,j−1

∆y
if wni,j ≥ 0

ρni,j+1−ρni,j
∆y

if wni,j < 0

Then, the primary variable is advanced in time by rewriting (7) as

ρn+1
i,j = ρni,j +

[
∂ρ

∂t

]n
i,j

∆t (20)

and then for
[
∂ρ
∂t

]n
i,j

use the right-hand side of (19).

Note that in this equation with the time derivative of ρ on the left-hand
side, it is the terms with spatial derivatives of ρ that needs to be treated with
the upwind scheme in the direction of the derivative. Which neighboring
point is used depends on the sign of the prefactor to the spatial derivative,
e.g. uni,j for

[
∂ρ
∂x

]n
i,j

in Eq. (19). The first two terms on the right-hand side of

Eq. (19), on the other hand, can be treated with central space as in FTCS.

Momentum equation

The horizontal momentum equation in (15) is split into additional terms

∂ρu

∂t
= −ρu

(
∂u

∂x
+
∂w

∂y

)
− u∂ρu

∂x
− w∂ρu

∂y
− ∂P

∂x
(21)

which is further expressed as[
∂ρu

∂t

]n
i,j

=− [ρu]ni,j

([
∂u

∂x

]n
i,j

+

[
∂w

∂y

]n
i,j

)
− uni,j

[
∂ρu

∂x

]n
i,j

− wni,j
[
∂ρu

∂y

]n
i,j

−
[
∂P

∂x

]n
i,j

(22)

5



All spatial derivatives are approximated using upwind differencing, except
for the vertical velocity gradient and the pressure gradient which are approx-
imated using central differencing. The various spatial terms are discretised
as [

∂u

∂x

]n
i,j

≈

{
uni,j−uni−1,j

∆x
if uni,j ≥ 0

uni+1,j−uni,j
∆x

if uni,j < 0[
∂w

∂y

]n
i,j

≈
wni,j+1 − wni,j−1

2∆y[
∂ρu

∂x

]n
i,j

≈

{
[ρu]ni,j−[ρu]ni−1,j

∆x
if uni,j ≥ 0

[ρu]ni+1,j−[ρu]ni,j
∆x

if uni,j < 0[
∂ρu

∂y

]n
i,j

≈

{
[ρu]ni,j−[ρu]ni,j−1

∆y
if wni,j ≥ 0

[ρu]ni,j+1−[ρu]ni,j
∆y

if wni,j < 0[
∂P

∂x

]n
i,j

≈
P n
i+1,j − P n

i−1,j

2∆x

The left-hand side of (22) is discretised using forward time[
∂ρu

∂t

]n
i,j

≈
[ρu]n+1

i,j − [ρu]ni,j
∆t

(23)

Since ρn+1
i,j has already been calculated, we only concern ourselves with ad-

vancing u in time. Rewriting (23) gives

un+1
i,j =

[ρu]ni,j +
[
∂ρu
∂t

]n
i,j

∆t

ρn+1
i,j

(24)

Based on the information given in this subsection, you can now discretise
and calculate the vertical component of the momentum equation.

Energy equation

To correctly simulate convection, it is necessary to include an energy equa-
tion. The energy we are interested in is the internal energy of the gas, and

6



it is in units of energy per volume. The previous subsections show how
to discretise and find numerical algorithms to solve the continuity equation
and the horizontal component of the momentum equation. Use the meth-
ods described in these subsection to find an algorithm for solving the energy
equation in (17). Keep in mind that the flow (u,w) is non-constant, hence
some of the spatial terms need to be split into additional terms.

Time step length

After the time derivatives of the primary variables (ρ, u, w and e) have been
calculated, they can be used to determine the optimal time step length. This
length is found by insisting that none of the primary variables get to change
by more than a given percentage. For each primary variable φ, calculate the
relative change ∆φ/φ per time step ∆t:

rel(φ) =
∆φ

φ
· 1

∆t
=

∣∣∣∣∂φ∂t · 1

φ

∣∣∣∣ (25)

Another requirement is that a fluid particle doesn’t move so fast that our
time step will move it past a whole grid point. This will be satisfied by
calculating the relative change of position as well:

rel(x) =

∣∣∣∣∂x∂t · 1

∆x

∣∣∣∣ =

∣∣∣∣ u∆x
∣∣∣∣ (26)

rel(y) =

∣∣∣∣∂y∂t · 1

∆y

∣∣∣∣ =

∣∣∣∣ w∆y
∣∣∣∣ (27)

(Here the change is calculated relative to the grid element size.) The above
quantities are calculated for every grid point. We must use their maximum
values on the grid to make sure that all grid points satisfy our condition.

We are then left with one value, max(rel(φ)), for each primary variable
φ (as well as for position) describing the largest relative change on the grid
for that variable (per time step length unit). To make sure that all the
quantities satisfy our condition, we then choose the largest of these values,
δ =max(max(rel(φ))). We have thus determined the largest relative change
per time step for any of the quantities at any point on the grid.

The time step length ∆t is then found by insisting that the maximum
relative change during the time step has to be equal to some small number,
that is

δ ·∆t = p ⇒ ∆t =
p

δ
(28)

7



where p is typically around 0.1. This requirement is called the Courant-
Friedrichs-Lewy (CFL) condition, and p depends on the order of your nu-
merical method. Higher order methods can usually bring p up to higher
values. Since the velocity fields typically will have stationary points, these
must be excluded from the calculation of relative change in (25), to avoid
division by zero. In fact, it might be a good idea to also exclude points with
very small, nonzero velocities, since they can result in unnecessarily small
time steps.

2D convection simulation

Your final code should produce a cross-section of the solar interior that is a
rectangular box with x along the horizontal direction and y along the vertical
direction (considering that a star is a sphere, the vertical direction can also
be referred to as the radial direction). The y-direction should enclose 4 Mm
with the upper boundary at the solar surface (and lower boundary inside the
Sun). The x-axis should encompass 12 Mm. The size of your computational
box should be Nx = 300 and Ny = 100. You can assume an ideal gas with
µ = 0.61. The internal energy is

e =
1

(γ − 1)
nkBT =

1

(γ − 1)

ρ

µmu

kBT (29)

where e has the units of energy per volume. The equation of state for an
ideal gas is then given by

P = (γ − 1)e (30)

You can also assume that gravity is constant in the box, so the gravitational
acceleration can be assumed to be |g| = GM�/R

2
� (make sure your gravity

is in the right direction).

Initial conditions

The initial conditions for the temperature, pressure, density and energy fol-
lows from the following two requirements:

• The gas needs to be in hydrostatic equilibrium.

8



• The double logarithmic gradient

∇ =
∂ lnT

∂ lnP
(31)

must be just slightly larger than 2/5.

From this gradient, and the fact that the gas needs to be in hydrostatic
equilibrium, you will be able to calculate the temperature and pressure in
the box (for the first time step) given the values at the top of the box.
The top of the box must have temperature and pressure given by the values
for the photosphere in Appendix B in the lecture notes. It is wise to find
an expression for the temperature in terms of the gradient, before finding
an expression for the pressure. Then, the density and internal energy are
calculated based on the initial conditions for temperature and pressure in
the box. The initial condition for the velocity is zero everywhere.

Boundary conditions

At the end points of the numerical grid (i = 0, j = 0, i = Nx − 1 and
j = Ny − 1), the discretised hydrodynamic equations cannot be solved. This
is because we do not have φn−1,j, φ

n
Nx,j

, φni,−1 and φni,Ny
, hence we need to

apply boundary conditions that set the value of φ or the derivative of φ on
the boundaries.

Since gravity is given, there is now an up- and a down-direction in the
computational box. The boundaries will be called horizontal (x) and vertical
(y). The boundary conditions are as follows:

Horizontal boundary

The horizontal boundary conditions are periodic, meaning that we set

φn−1,j = φnNx−1,j

φnNx,j = φn0,j

for each primary variable φ. The numpy.roll function is very useful for this.

Vertical boundaries

The vertical boundary conditions are the following:

9



Vertical boundary: Vertical velocity

The boundary conditions for the vertical component of the velocity should
be zero both at the upper and lower boundary.

Vertical boundary: Horizontal velocity

The vertical gradient of the horizontal component of the velocity should be
zero at the boundary.

Vertical boundary: Density and energy

The boundary conditions for density and energy are coupled (as seen from
(29)), which means that you need to be careful when implementing them into
your code. A requirement for the boundary conditions is that hydrostatic
equilibrium must be fulfilled, meaning that the pressure gradient is given. A
good starting place is to identify the pressure gradient, and use that to find
the boundary conditions for ρ and e. Think about what parameter you need
to calculate first.

Hint

Useful relations regarding the boundary conditions are given by the 3-point
forward difference approximation[

∂φ

∂y

]n
i,j

=
−φni,j+2 + 4φni,j+1 − 3φni,j

2∆y
(32)

and the 3-point backward difference approximation[
∂φ

∂y

]n
i,j

=
3φni,j − 4φni,j−1 + φni,j−2

2∆y
(33)

This is a second-order scheme that allows more accuracy by including 3 data
points.

Visualisation

A module has been written to help you create movies and figures. It is
available along with its user guide. It is important that you read the docu-
mentation, as minor mistakes in the implementation can cause serious errors
in the visualisation.

10

https://www.uio.no/studier/emner/matnat/astro/AST3310/v23/fvis_user_guide.pdf


Sanity test

In order to verify that your calculations and implementations are correct,
you should check that your system is in hydrostatic equilibrium. Run your
code with the visualisation module for 60 s. If there are no changes in the
computational box, the system is in hydrostatic equilibrium. If you are using
numpy.zeros, you must exercise caution as the sanity test passes when the
elements of the velocity arrays are zero (which they are initially). Make sure
that you are filling these arrays with values as the system evolves in time.
You do not need snapshots from this run in your report, but you need to
include the movie when submitting your project. 10 points

Code

The code has to be written using the python 3 programming language. You
can use this skeleton code to get started. The way your code is written
impacts the number of points you get for this project. It should be easy to
read, well commented and logically structured. The instructors should be
able to run your code. 10 points

The report

You are required to write a report in this exercise. The report should discuss
problems you have had underway and what you have found out while solving
this exercise (such as numerical problems, resolution problems and problems
with the physics). How the report is written impacts the amount of points
you get on this project. All figures should have a reference in the main text
and their content should be discussed.

You should include answers and explanations to the following bullet
points. Try to include the answers to the points in the report, in the or-
der they are given here. Some of the bullet points require you to complete
the previous ones, but some are possible to complete independently. This is
important to remember if you start to run out of time.

1. Show equations (14)–(17) using the continuity equation in (1), momen-
tum equation in (2) and internal energy equation in (3). Why is gravity
in the y-direction only? 5 points

11

https://www.uio.no/studier/emner/matnat/astro/AST3310/v23/skeleton.py


2. Write out the algorithms used to calculate wn+1
i,j and en+1

i,j , and include
the discretisations. Which terms are calculated using upwind differenc-
ing, and why? 10 points

3. Explain how you calculated the initial conditions for T and P , and the
vertical boundary conditions for u, ρ and e. 15 points

4. Explain your code and how it has been put together. Was there any-
thing in particular you needed to think about when updating the vari-
ables? When did you call the boundary conditions function? 10
points

5. After your code is stable in hydrostatic equilibrium (run sanity test
to verify), provoke the gas to become convectively unstable by imple-
menting a 2D Gaussian perturbation in the initial temperature. When
do you add the perturbation in order to get convective motions? It
should be possible to turn the perturbation on and off. You are free to
use any library for the Gaussian, but you need to give and explain the
analytical function in the report. 10 points

6. Include movies of your 2D convection simulation for different parame-
ters. One movie should have velocity visible as vectors and temperature
shown in colour. In the additional movie(s) you are free to choose the
parameter(s) you want. Use snapshots at different run times to explain
how the system changes over time. 15 points

7. Your report should be well structured and easy to read. After the
conclusion, you should write a “Reflection” section where you explain
what you have learned from this exercise and what you have struggled
with. 15 points

The project is delivered at http://devilry.ifi.uio.no. Before deliv-
ery, you should make a tarball that includes your report, code (and all files
needed to run it) and movies. This is done by typing the following in a
terminal (works on Linux/MacOS machines):

$ ta r −cv f name . ta r /path/ to / d i r e c t o r y

12

http://devilry.ifi.uio.no


There will be no extensions to the deadline, except in case of documented
medical circumstances. If you cannot solve the project, write the report
anyway, explaining your problems and what you tried in order to solve them.

13


