AST52IO
 Stellar Atmospheres I
 Mats Carlsson
 Institute of Theoretical Astrophysics
 University of Oslo

- Basic concepts

- Formal solution
- Numerical integration, scattering problem, lambda iteration, shooting, finite difference methods, Feautrier's method, accelerated lambda iteration, convergence acceleration
- MULTI non-LTE code
- Exercises
- $\mathrm{Na}-\mathrm{D}, \mathrm{Mg}-\mathrm{b}, \mathrm{Ca}-\mathrm{H}$, Hinode BFI continua
- getting input data - building atomic models
- non-LTE effects for abundance determinations of stars

- non-LTE

- Linearization, rate equations, Scharmer operator, local operator
- 3D
- Long characteristics, short characteristics
- Energy equation
- ODF, multi-group opacities
- Exercises (contd)
- $\mathrm{Na}-\mathrm{D}, \mathrm{Mg}-\mathrm{b}, \mathrm{Ca}-\mathrm{H}$, Hinode BFI continua
- getting input data - building atomic models
- non-LTE effects for abundance determinations of stars
- contribution and response functions
- non-LTE effects for abundance determinations in stars
- other non-LTE examples
- non-equilibrium ionization
- Exercises (contd)
- $\mathrm{Na}-\mathrm{D}, \mathrm{Mg}$-b, Ca-H, Hinode BFI continua
- getting input data - building atomic models
- non-LTE effects for abundance determinations of stars
- Line formation in dynamical media
- 3D chromospheric simulations
- Exercises
- 3D column-by-column with MULTI

Basic concepts

Basic definitions

I_{ν} Intensity. erg cm ${ }^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1}$
η_{ν} Emissivity
χ_{ν} Opacity
Intensity gives the amount of energy per unit area perpendicular to the ray in a given direction per unit time per solid angle and per frequency bin. The intensity is constant with distance in the absence of emission and absorption/scattering processes.
Emissivity gives the addition of energy to the ray through emission processes.
Opacity gives the removal of energy from the ray through absorption and scattering processes.

Transfer equation

$$
d I_{\nu}=-\chi_{\nu} I_{\nu} d s+\eta_{\nu} d s
$$

Coronal approximation: $\chi_{\nu}=0$

$$
\begin{array}{cl}
\begin{array}{l}
\overline{n_{j} A_{j i} \nmid n_{i} C_{i j}} \\
{ }_{i}
\end{array} & \eta_{\nu}=\frac{h \nu}{4 \pi} n_{j} A_{j i} \\
n_{j i}=n_{i} C_{i j}
\end{array}
$$

Emissivity and rates set by local conditions.

Transfer equation

$$
d I_{\nu}=-\chi_{\nu} I_{\nu} d s+\eta_{\nu} d s
$$

Opacity non-zero case

$$
\begin{gathered}
d \tau_{\nu} \equiv \chi_{\nu} d s \quad S_{\nu} \equiv \frac{\eta_{\nu}}{\chi_{\nu}} \\
\frac{d I_{\nu}}{d \tau_{\nu}}=S_{\nu}-I_{\nu}
\end{gathered}
$$

Transfer equation

$$
I_{\nu}\left(\tau_{\nu}\right)=I_{\nu}(0) e^{-\tau_{\nu}}+\int_{0}^{\tau_{\nu}} S_{\nu}\left(\tau_{\nu}^{\prime}\right) e^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right)} d \tau_{\nu}^{\prime}
$$

Homogeneous slab, small optical depth:

$$
I_{\nu}\left(\tau_{\nu}\right)=I_{\nu}(0)+\tau_{\nu}\left(S_{\nu}-I_{\nu}(0)\right)
$$

Intensity (wavelength dependent!) is then an interpolation between the incoming intensity and the source function and thus always between the two. For $I(0)>S$ we get an absorption line, for $l(0)<S$ we get an emission line.

Homogeneous slab

Transfer equation

$$
\xrightarrow[\substack{\mathrm{s}_{\nu}^{s+d \mathrm{~s}} \\ I_{\nu}^{\prime}\left(\tau_{\nu}\right)=I_{\nu}(0) e^{-\tau_{\nu}^{\prime}}+\int_{0}^{\tau_{\nu}} S_{\nu}\left(\tau_{\nu}^{\prime}\right) e^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right)} d \tau_{\nu}^{\prime}}]{\longrightarrow}
$$

$$
\begin{aligned}
& \text { Semi-infinite atmosphere, ID: } \\
& I_{\nu}(0)=\frac{1}{\mu} \int_{0}^{\infty} S_{\nu}\left(\tau_{\nu}^{\prime}\right) e^{-\tau_{\nu}^{\prime} / \mu} d \tau_{\nu}^{\prime}
\end{aligned}
$$

where mu is the cosine of the angle between the ray and the normal of the atmosphere

Eddington Barbier relation

Assuming a linear source function:

$$
S_{\nu}\left(\tau_{\nu}^{\prime}\right)=a+b \tau_{\nu}^{\prime}
$$

Optically thick line formation I

Optically thick line formation

Optically thick line formation

Optically thick line formation 2

Optically thick line formation

Optically thick line formation

Optically thick line formation 3

Optically thick line formation

Numerical integration

Numerical integration (quadrature)

$$
\begin{aligned}
& \int_{0}^{9} f(x) d x \sim \sum_{i=0}^{8}\left(x_{i+1}-x_{i}\right) \frac{1}{2}\left(f\left(x_{i+1}+f\left(x_{i}\right)\right)=\right. \\
& \frac{1}{2}\left(x_{1}-x_{0}\right) f\left(x_{0}\right)+\sum_{i=1}^{7} \frac{1}{2}\left(x_{i+1}-x_{i-1}\right) f\left(x_{i}\right)+ \\
& \frac{1}{2}\left(x_{9}-x_{8}\right) f\left(x_{9}\right)
\end{aligned}
$$

In general:

$$
\int_{a}^{b} f(x) d x \sim \sum_{i=0}^{N-1} w_{i} f\left(x_{i}\right)
$$

Simpson: parabolic between points
Higher accuracy but risk of overshoot

2. Integration method can determine points:

Gaussian quadratures
$\int_{a}^{b} f(x) g(x) d x \sim \sum_{i=0}^{N-1} w_{i} f\left(x_{i}\right)$
$g(x)=1 \quad$ Gauss (-Legendre)
$g(x)=e^{-x} ; a=0 ; b=\infty$ Gauss-Laguerre

Mean intensity: Gaussian quadrature

$$
\begin{gathered}
J_{\nu}\left(\tau_{\nu}\right)=\frac{1}{2} \int_{-1}^{1} I_{\nu}\left(\tau_{\nu}, \mu\right) d \mu=\int_{0}^{1} \frac{1}{2}\left(I_{\nu}^{+}\left(\tau_{\nu}, \mu\right)+I_{\nu}^{-}\left(\tau_{\nu}, \mu\right)\right) d \mu= \\
\sum_{i=0}^{N_{\mu}-1} w_{i} \frac{1}{2}\left(I_{\nu}^{+}\left(\tau_{\nu}, \mu_{i}\right)+I_{\nu}^{-}\left(\tau_{\nu}, \mu_{i}\right)\right) \\
N_{\mu}=3 \\
w_{i}
\end{gathered} \mu_{i},
$$

Intensity: Gauss-Laguerre quadrature

$$
\begin{aligned}
& I_{\nu}(0)=\frac{1}{\mu} \int_{0}^{\infty} S_{\nu}\left(\tau_{\nu}\right) e^{-\tau_{\nu} / \mu} d \tau_{\nu} \\
& d \tau_{\nu \mu} \equiv \frac{1}{\mu} d \tau_{\nu} \quad \tau_{\nu \mu}=\frac{1}{\mu} \tau_{\nu} \\
& I_{\nu}(0)=\int_{0}^{\infty} S_{\nu}\left(\tau_{\nu \mu}\right) e^{-\tau_{\nu \mu}} d \tau_{\nu \mu} \\
& N_{\tau_{\nu, \mu}}=1 \\
& \begin{array}{lll}
\left(\tau_{\nu \mu}\right)_{i} & w_{i} \\
N_{\tau_{\nu \mu \mu}}=2 & 1.0 \quad= & 0.58579 \\
3.41421 & 0.85355 \\
0.14645
\end{array}
\end{aligned}
$$

Source function with scattering

Source function with scattering

$$
\begin{aligned}
& \eta_{\nu}=\kappa_{\nu} B_{\nu}+\sigma_{\nu} J_{\nu} \\
& \chi_{\nu}=\kappa_{\nu}+\sigma_{\nu}
\end{aligned}
$$

$$
\begin{gathered}
S_{\nu} \equiv \frac{\eta_{\nu}}{\chi_{\nu}}=\frac{\kappa_{\nu}}{\kappa_{\nu}+\sigma_{\nu}} B_{\nu}+\frac{\sigma_{\nu}}{\kappa_{\nu}+\sigma_{\nu}} J_{\nu} \\
S_{\nu}=B_{\nu}+\frac{\sigma_{\nu}}{\kappa_{\nu}+\sigma_{\nu}}\left(J_{\nu}-B_{\nu}\right) \\
\rho_{\nu} \equiv \frac{\sigma_{\nu}}{\kappa_{\nu}+\sigma_{\nu}} \\
S_{\nu}=B_{\nu}+\rho_{\nu}\left(J_{\nu}-B_{\nu}\right)
\end{gathered}
$$

Transfer equation, plane parallel atmosphere

$$
\mu \frac{d I_{\nu}}{d \tau_{\nu}}=I_{\nu}-S_{\nu}
$$

Boundary conditions:

$$
\lim _{\tau_{\nu} \rightarrow \infty}\left(I_{\nu} e^{-\tau_{\nu} / \mu}\right)=0 \quad I_{\nu}^{-}(0)=0
$$

$$
\begin{aligned}
& I_{\nu}^{+}\left(\tau_{\nu}\right)=\frac{1}{\mu} \int_{\tau_{\nu}}^{\infty} S_{\nu}\left(\tau_{\nu}^{\prime}\right) e^{-\left(\tau_{\nu}^{\prime}-\tau_{\nu}\right) / \mu} d \tau_{\nu}^{\prime} \\
& I_{\nu}^{-}\left(\tau_{\nu}\right)=\frac{1}{\mu} \int_{0}^{\tau_{\nu}} S_{\nu}\left(\tau_{\nu}^{\prime}\right) e^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right) / \mu} d \tau_{\nu}^{\prime}
\end{aligned}
$$

$$
J_{\nu}\left(\tau_{\nu}\right)=\frac{1}{2} \int_{-1}^{1} I_{\nu}\left(\tau_{\nu}, \mu\right) d \mu=\int_{0}^{1} \frac{1}{2}\left(I_{\nu}^{+}\left(\tau_{\nu}, \mu\right)+I_{\nu}^{-}\left(\tau_{\nu}, \mu\right)\right) d \mu \equiv \Lambda_{\nu}\left[S_{\nu}\right]
$$

$J_{\nu}\left(\tau_{\nu}\right)=\Lambda_{\nu}\left[S_{\nu}\right]=\Lambda_{\nu}\left[B_{\nu}\right]+\Lambda_{\nu}\left[\rho_{\nu}\left(J_{\nu}-B_{\nu}\right)\right]$
Λ-iteration:
$\begin{cases}J_{\nu}^{(n+1)}\left(\tau_{\nu}\right) & =\Lambda_{\nu}\left[B_{\nu}\right]+\Lambda_{\nu}\left[\rho_{\nu}\left(J_{\nu}^{(n)}-B_{\nu}\right)\right] \\ J^{(0)}\left(\tau_{\nu}\right) & =B_{\nu}\end{cases}$
If $\rho_{\nu} \sim 1$ this scheme won't work
Cases when scattering dominates: Hot stars, opacity dominated by electron scattering Cool stars, low [Fe/H]: Rayleigh scattering dominates Spectral lines: $1-\rho_{\nu} \sim 10^{-8}$

Alternative form

$$
\begin{gathered}
S_{\nu}=\left(1-\epsilon_{\nu}\right) J_{\nu}+\epsilon_{\nu} B_{\nu} \\
S_{\nu}=\left(1-\epsilon_{\nu}\right) \Lambda_{\nu}\left[S_{\nu}\right]+\epsilon_{\nu} B_{\nu}
\end{gathered}
$$

Λ-iteration:

$$
\begin{cases}S_{\nu}^{(n+1)} & =\left(1-\epsilon_{\nu}\right) \Lambda_{\nu}\left[S_{\nu}^{(n)}\right]+\epsilon_{\nu} B_{\nu} \\ S_{\nu}^{(0)} & =B_{\nu}\end{cases}
$$

Lambda-iteration in practice, 100 iterations

$$
S_{\nu}=\epsilon_{\nu} B_{\nu}+\left(1-\epsilon_{\nu}\right) J_{\nu} \quad ; \quad B_{\nu}=1
$$

Lambda-iteration in practice, 100 iterations

$$
S_{\nu}=\epsilon_{\nu} B_{\nu}+\left(1-\epsilon_{\nu}\right) J_{\nu} \quad ; \quad B_{\nu}=1
$$

Lambda-iteration in practice, 100 iterations

$$
S_{\nu}=\epsilon_{\nu} B_{\nu}+\left(1-\epsilon_{\nu}\right) J_{\nu} \quad ; \quad B_{\nu}=1
$$

Lambda-iteration in practice, 100 iterations

$S_{\nu}=\epsilon_{\nu} B_{\nu}+\left(1-\epsilon_{\nu}\right) J_{\nu} \quad ; \quad B_{\nu}=1$

Lambda-iteration in practice

- OK if scattering is small
- Disaster for small epsilon
- Stabilizes instead of converging when epsilon is small (0.5% correction at iteration 100 for $\varepsilon=10^{-6}$ when solution is a factor of 55 from correct solution)

Shooting

Principles

Guess I^{-}at bottom

Shooting

Shooting

Shooting

Shooting

Now we've found the solution!

Shooting
Realistic case
Guess I^{-}at bottom

Shooting

Shooting

Shooting

Shooting

Shooting

Guess I^{-}at bottom

Information about correct solution lost because of parasitic solutions of type $e^{\tau_{\nu}}$

Why is there a problem?

- Boundary condition partially given at one boundary, partially at the other
- Need to solve for whole atmosphere and take into account bouth boundaries at the same time

Feautrier's method

Feautrier's method

We drop index ν and location τ_{ν} :

$$
\mu \frac{d I_{\mu}}{d \tau}=I_{\mu}-S
$$

We write separately for outgoing and incoming rays:

$$
\begin{aligned}
\mu \frac{d I_{\mu}^{+}}{d \tau} & =I_{\mu}^{+}-S^{+} \\
-\mu \frac{d I_{\mu}^{-}}{d \tau} & =I_{\mu}^{-}-S^{-}
\end{aligned}
$$

Multiplying by $\frac{1}{2}$, assuming $S^{+}=S^{-}$ and adding and subtracting we get

$$
\begin{aligned}
\mu \frac{d \frac{1}{2}\left(I_{\mu}^{+}-I_{\mu}^{-}\right)}{d \tau} & =\frac{1}{2}\left(I_{\mu}^{+}+I_{\mu}^{-}\right)-S^{+} \\
\mu \frac{d \frac{1}{2}\left(I_{\mu}^{+}+I_{\mu}^{-}\right)}{d \tau} & =\frac{1}{2}\left(I_{\mu}^{+}-I_{\mu}^{-}\right)
\end{aligned}
$$

Using the second equation in the first and introducing

$$
P \equiv \frac{1}{2}\left(I_{\mu}^{+}+I_{\mu}^{-}\right) \quad R \equiv \frac{1}{2}\left(I_{\mu}^{+}-I_{\mu}^{-}\right)
$$

we get

$$
\mu^{2} \frac{d^{2} P}{d \tau^{2}}=P-S
$$

We discretize: $\quad \tau_{\nu} \rightarrow \tau_{i} \quad \mu \rightarrow \mu_{j}$
Define differences:

$$
\begin{align*}
& {[\Delta \tau]_{i+1 / 2} \approx \tau_{i+1}-\tau_{i} \equiv \Delta \tau_{i}} \tag{5.20}\\
& {[\Delta \tau]_{i-1 / 2} \approx \tau_{i}-\tau_{i-1} \equiv \Delta \tau_{i-1}} \tag{5.21}
\end{align*}
$$

Replace derivatives with differences

$$
\begin{aligned}
{\left[\frac{\mathrm{d} P\left(\tau, \mu_{j}\right)}{\mathrm{d} \tau}\right]_{i+1 / 2} } & \equiv \lim _{\Delta \tau \rightarrow 0} \frac{\left[\Delta P\left(\tau, \mu_{j}\right)\right]_{i+1 / 2}}{[\Delta \tau]_{i+1 / 2}} \\
& \approx \frac{P\left(\tau_{i+1}, \mu_{j}\right)-P\left(\tau_{i}, \mu_{j}\right)}{\tau_{i+1}-\tau_{i}}=\frac{P_{i+1}-P_{i}}{\Delta \tau_{i}},
\end{aligned}
$$

2nd derivative replaced by difference between Ist derivatives:

$$
\begin{aligned}
{\left[\frac{\mathrm{d}^{2} P\left(\tau, \mu_{j}\right)}{\mathrm{d} \tau^{2}}\right]_{i} } & \approx \frac{\left[\Delta P\left(\tau, \mu_{j}\right) / \Delta \tau\right]_{i+1 / 2}-\left[\Delta P\left(\tau, \mu_{j}\right) / \Delta \tau\right]_{i-1 / 2}}{[\Delta \tau]_{i}} \\
& \approx \frac{\left[\Delta P\left(\tau, \mu_{j}\right) / \Delta \tau\right]_{i+1 / 2}-\left[\Delta P\left(\tau, \mu_{j}\right) / \Delta \tau\right]_{i-1 / 2}}{\frac{1}{2}\left([\Delta \tau]_{i+1 / 2}+[\Delta \tau]_{i-1 / 2}\right)} \\
& \approx \frac{2}{\Delta \tau_{i-1}+\Delta \tau_{i}}\left[\frac{P_{i+1}}{\Delta \tau_{i}}-\frac{P_{i}}{\Delta \tau_{i}}-\frac{P_{i}}{\Delta \tau_{i-1}}+\frac{P_{i-1}}{\Delta \tau_{i-1}}\right] \\
& =\frac{2 P_{i-1}}{\Delta \tau_{i-1}\left(\Delta \tau_{i-1}+\Delta \tau_{i}\right)}-\frac{2 P_{i}}{\Delta \tau_{i} \Delta \tau_{i-1}}+\frac{2 P_{i+1}}{\Delta \tau_{i}\left(\Delta \tau_{i-1}+\Delta \tau_{i}\right)}
\end{aligned}
$$

With these (5.17) can be written as:

$$
\begin{equation*}
\mu^{2}\left[\frac{\mathrm{~d}^{2} P}{\mathrm{~d} \tau^{2}}\right]_{i}-P_{i}=A_{i} P_{i-1}-B_{i} P_{i}+C_{i} P_{i+1}=-S_{i} \tag{5.22}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{i}=\frac{2 \mu^{2}}{\Delta \tau_{i-1}\left(\Delta \tau_{i-1}+\Delta \tau_{i}\right)} \tag{5.23}
\end{equation*}
$$

Numerically unstable for small
$\Delta \tau_{i}$ (use Stein's trick)

$$
\begin{align*}
\longrightarrow B_{i} & =1+\frac{2 \mu^{2}}{\Delta \tau_{i} \Delta \tau_{i-1}} \tag{5.24}\\
C_{i} & =\frac{2 \mu^{2}}{\Delta \tau_{i}\left(\Delta \tau_{i-1}+\Delta \tau_{i}\right)}
\end{align*}
$$

2 level atom with coherent scattering:

$$
\begin{align*}
\mu^{2} \frac{\mathrm{~d}^{2} P(\tau, \mu)}{\mathrm{d} \tau^{2}} & =P(\tau, \mu)-\varepsilon(\tau) B(\tau)-(1-\varepsilon(\tau)) J(\tau) \tag{5.27}\\
& =P(\tau, \mu)-\varepsilon(\tau) B(\tau)-(1-\varepsilon(\tau)) \sum_{j=1}^{m} a_{j} P_{j}\left(\tau, \mu_{j}\right) \tag{5.28}
\end{align*}
$$

Source function thus introduces all angles for the equation of a given angle

Structure of matrix:

Solve for all depths at the same time Boundaries at both ends taken into account simultaneously

Note that Feautrier's method assumes

$$
S^{+}=S^{-}
$$

With velocities in the atmosphere this
condition is not fulfilled!!
If the absorption profile of a line is symmetric, we can redefine P (and R):

$$
P_{\mu}(\tau, \Delta \nu) \equiv \frac{1}{2}\left(I_{\mu}^{+}(\tau, \Delta \nu)+I_{\mu}^{-}(\tau,-\Delta \nu)\right)
$$

Feautrier's method is fast and accurate (2nd order) and is the method of choice for the formal solution, even when there is no scattering.

There are versions that are 3rd and 4th order accurate (spline and Hermite forms)

Cannot be used if we have both velocity fields and blends!

Velocity fields and blends

Integral methods

- Treat outgoing and incoming rays separately
- Fit source function with a function (e.g. cubic spline)
- Integrate fitting function analytically

MULTI

MULTI

http://folk.uio.no/matsc/mul23

Also: ~carlsson/mul23.tar on sagami

- ID
- Statistical equilibrium
- given atmosphere $\{\mathrm{T}, \mathrm{Ne}, \mathrm{Vz}, \mathrm{Vmic}\}(\mathrm{x})$
- one element at a time
- continuum opacity in LTE
- Complete Redistribution
- Hydrostatic equilibrium can be solved for

MULTI documentation

in http://folk.uio.no/matsc/mul23

multi_manual.pdf
report33.pdf
mul23.pdf
idldoc.pdf
multi_exercises.pdf exercises
quick start manual
version I. 0 documentation
version 2.3 documentation
IDL routines documentation

MULTI

Input files
ATMOS atmospheric structure
DSCALE depth discretization
ABUND abundances
ABSDAT background opacities
ATOM atomic data
INPUT switches, run-parameters
Output
IDL files
JOBLOG
OUT

ATMOS

```
    VAL3C
    MASS SCALE
*
* LG G
    4.44
*
* NDEP
    52
*
*LG CMASS
    -5.279262E+00
\begin{tabular}{lcl} 
TEMPERATURE & NE & \\
\(4.470000 \mathrm{E}+05\) & \(1.205000 \mathrm{E}+09\) & 0. \\
\(1.410000 \mathrm{E}+05\) & \(3.839000 \mathrm{E}+09\) & 0. \\
\(8.910000 \mathrm{E}+04\) & \(5.961000 \mathrm{E}+09\) & 0. \\
\(5.000000 \mathrm{E}+04\) & \(9.993000 \mathrm{E}+09\) & 0.
\end{tabular}
V
VTURB
-5.270430E+00
-5.269783E+00
-5.268492E+00
*
* HYDROGEN POPULATIONS
\begin{tabular}{llllll} 
* \(N H(1)\) & \(N H(2)\) & \(N H(3)\) & \(N H(4)\) & \(N H(5)\) & \(N P\) \\
\(2.3841 \mathrm{E}+03\) & \(7.9839 \mathrm{E}-04\) & \(2.0919 \mathrm{E}-04\) & \(2.3110 \mathrm{E}-04\) & \(2.9470 \mathrm{E}-04\) & \(1.0030 \mathrm{E}+09\) \\
\(5.3401 \mathrm{E}+04\) & \(1.8790 \mathrm{E}-02\) & \(7.4560 \mathrm{E}-03\) & \(8.1751 \mathrm{E}-03\) & \(1.0430 \mathrm{E}-02\) & \(3.1990 \mathrm{E}+09\) \\
\(2.4030 \mathrm{E}+05\) & \(7.5740 \mathrm{E}-02\) & \(2.9400 \mathrm{E}-02\) & \(3.1550 \mathrm{E}-02\) & \(4.0101 \mathrm{E}-02\) & \(5.0310 \mathrm{E}+09\)
\end{tabular}
```


DSCALE

```
* DEPTH SCALE FROM DSCAL2
    DSCAL2 ON equidistant
    MASS SCALE
* NDEP lg(Tau_500[1])
    80 -6.672232
        -5.225000
        -5.213486
```


ABUND

```
H 1.000E+00
HE 1.000E-01
SI 3.548E-05
MG 3.802E-05
AL 2.951E-06
FE 4.677E-05
C 3.631E-04
NA 1.514E-06
S 1.622E-05
K 1.122E-07
CA 2.138E-06
NI 1.202E-07
CR 2.951E-07
N 8.511E-05
O 5.888E-04
NE 3.236E-04
SC 1.259e-09
TI 9.772e-08
V 1.000e-08
MN 2.455e-07
CO 8.318e-08
from Grevesse 1989
```


ABUND

```
H 12.00 abundances from
HE 10.93 Asplund, Grevesse, Sauval, Scott 2009, ARAA 47, 481
SI 7.51
MG 7.60
AL 6.45
FE 7.50
C 8.43
NA 6.24
S 7.12
K 5.03
CA 6.34
NI 6.22
CR 5.64
N 7.83
O 8.69
NE 7.93
SC 3.15
TI 4.95
V 3.93
MN 5.43
CO 4.99
```


ABSDAT

ATOM

```
CA II
* ABUND AWGT
    6.36 40.08
*NK NLINE NCONT NRFIX
    6 5 5 0
* G LABEL ION
    0.00000 2.00000 'CA II 3P6 4S 2SE ' 2
    13650.248 4.00000 'CA II 3P6 3D 2DE 3/2' 2
    13710.900 6.00000 'CA II 3P6 3D 2DE 5/2' 2
    25191.535 2.00000 'CA II 3P6 4P 2PO 1/2' 2
    25414.465 4.00000 'CA II 3P6 4P 2PO 3/2' 2
    95785.470 1.00000 'CA III GROUND TERM ' 3
* J I F NQ QMAX Q0 IW GA GVW GS
    4 1 3.1600E-01 101 300. 3. 0 1.42E08 234.223 3.0E-06
    5 1 6.3700E-01 101 300. 3. 0 1.46E08 234.223 3.0E-06
    4 2 4.7300E-02 101 150. 1. 0 1.42E08 2.04 3.0E-06
    5 2 9.6000E-03 101 150. 1. 0 1.46E08 2.01 3.0E-06
    5 3 5.7400E-02 101 150. 1. 0 1.46E08 2.01 3.0E-06
* UP LO F NQ QMAX QO
        6 1 2.036E-19 5 -1. 0.0
    1044.2 2.0360E-19
        911.7 2.1400E-19
        850.0 2.1720E-19
        750.0 2.1030E-19
        600.0 1.8200E-19
*
GENCOL
TEMP
    7 2000. 3000. 6000. 12000. 24000. 48000. 96000.
OHMEGA
    2 1
OHMEGA
```


INPUT

$\mathrm{DIFF}=2.0, \mathrm{ELIM} 1=0.1, \mathrm{ELIM} 2=0.001, \mathrm{QNORM}=12.85, \mathrm{THIN}=0.1$, IATOM2 $=0, I C O N V=1, I H S E=0, I L A M B D=2, I O P A C=1, I S T A R T=1, I S U M=0$, ITMAX $=40, I T R A N=0, N M U=5$,
IWABND $=0$, IWATMS $=0, I W A T O M=0, I W C H A N=0, I W D A M P=0, I W E M A X=1, I W E Q W=0$, IWEVEC $=0, I W H E A D=0, I W H S E=0, I W L G M X=1, I W L I N E=0, I W L T E=0, I W N=0, I W N I I T=0$, IWOPAC $=0, I W R A D=0, I W R A T E=0, I W S T R T=0, I W T A U Q=0, I W T E S T=0, I W W M A T=0$, $I W J F I X=0, I W A R N=0, I O P A C L=0, I S C A T=0, I N C R A D=0, I N G A C C=0, I C R S W=0$, IOSMET=0, EOSMET=0.5,
$I D L 1=1, I D L N Y=1, I D L C N T=1, I D L O P C=1$

ALI

Split the lambda operator into an approximate part and a correction

$$
\begin{gather*}
\boldsymbol{\Lambda}_{\nu}=\boldsymbol{\Lambda}^{*}+\left(\boldsymbol{\Lambda}_{\nu}-\boldsymbol{\Lambda}^{*}\right) \tag{5.39}\\
J_{\nu}=\boldsymbol{\Lambda}_{\nu}^{*}[S]+\left(\boldsymbol{\Lambda}_{\nu}-\boldsymbol{\Lambda}_{\nu}^{*}\right)[S] \tag{5.40}
\end{gather*}
$$

Classical lambda-iteration: $\quad S^{(n+1)}=(1-\varepsilon) \boldsymbol{\Lambda}\left[S^{(n)}\right]+\varepsilon B, \quad$ then becomes

Classical lambda-iteration: $\quad S^{(n+1)}-S^{(n)}=S^{\mathrm{FS}}-S^{(n)}$,

Accelerated lambda-iteration:

$$
\begin{equation*}
S^{(n+1)}-S^{(n)}=\left(1-(1-\varepsilon) \boldsymbol{\Lambda}^{*}\right)^{-1}\left[S^{\mathrm{FS}}-S^{(n)}\right] \tag{5.45}
\end{equation*}
$$

Different choices of approximate lambda operator

Core saturation

Scharmer modified core saturation

Scharmer operator: one point quadrature formula

$$
\begin{equation*}
I_{\nu}\left(\tau_{\nu \mu}, \mu\right) \equiv I_{\nu \mu}^{ \pm}=\Lambda_{\nu \mu}^{*}\left[S_{\nu}\left(\tau_{\nu \mu}\right)\right] \approx W_{\nu \mu}^{ \pm}\left(\tau_{\nu \mu}\right) S_{\nu}\left(f_{\nu \mu}^{ \pm}\left(\tau_{\nu \mu}\right)\right) \tag{5.52}
\end{equation*}
$$

Use a linear test source function to deduce the W and f

$$
\begin{array}{ll}
\mu>0 & \begin{array}{l}
W_{\nu \mu}^{+} \\
f_{\nu \mu}^{+}
\end{array}=1 \\
\hline \hline & =\tau_{\nu \mu}+1 \tag{5.62}
\end{array} \quad=\text { EB }
$$

Olson-Auer-Buchler (OAB) operator

The diagonal of the full lambda operator

- Easy to construct (Rybicki-Hummer I991)
- Easy to "invert" (diagonal matrix)
- Easy to adopt to 3D geometry
- Slow convergence - needs acceleration steps

Convergence acceleration

Ng -acceleration

We use M previous iterations to extrapolate \mathbf{x}

$$
\begin{gathered}
\mathbf{x}=\left(1-\sum_{m=1}^{M} \alpha_{m}\right) \mathbf{x}^{(n)}+\sum_{m=1}^{M} \alpha_{m} \mathbf{x}^{(n-m)} \\
=\alpha_{0} \text { because } \sum_{m=0}^{M} \alpha_{m}=1
\end{gathered}
$$

Same coefficients applied to one iteration back

$$
\mathbf{x}^{\prime}=\left(1-\sum_{m=1}^{M} \alpha_{m}\right) \mathbf{x}^{(n-1)}+\sum_{m=1}^{M} \alpha_{m} \mathbf{x}^{(n-m-1)}
$$

α_{m} determined by minimizing distance between vectors \mathbf{x} and \mathbf{x}^{\prime} with weights w

$$
\operatorname{minimize} \quad r^{2}=\sum w_{d}\left(x_{d}-x_{d}^{\prime}\right)^{2}
$$

$$
\begin{gathered}
\frac{\partial}{\partial \alpha_{i}}\left[r^{2}\right]=0, \forall i \quad \text { gives } \\
0=\sum_{d=1}^{N} w_{d}\left(x_{d}-x_{d}^{\prime}\right)\left(\frac{\partial x_{d}}{\partial \alpha_{i}}-\frac{\partial x_{d}^{\prime}}{\partial \alpha_{i}}\right), \forall i \\
0=\sum_{d=1}^{N} w_{d}\left[\left(1-\sum_{j=1}^{M} \alpha_{j}\right) x_{d}^{(n)}+\sum_{j=1}^{M} \alpha_{j} x_{d}^{(n-j)}-\left(1-\sum_{j=1}^{M} \alpha_{j}\right) x_{d}^{(n-1)}-\sum_{j=1}^{M} \alpha_{j} x_{d}^{(n-j-1)}\right] \times \\
\times\left[-x_{d}^{(n)}+x_{d}^{(n-i)}+x_{d}^{(n-1)}-x_{d}^{(n-i-1)}\right] \\
\text { introducing } \\
\Delta x_{d}^{(n)} \equiv x_{d}^{(n)}-x_{d}^{(n-1)} \\
\text { we get }
\end{gathered}
$$

$$
\begin{gathered}
\sum_{d=1}^{N} w_{d} \sum_{j=1}^{M} \alpha_{j}\left(-x_{d}^{(n)}+x_{d}^{(n-j)}+x_{d}^{(n-1)}-x_{d}^{(n-j-1)}\right)\left[\Delta x_{d}^{(n-i)}-\Delta x_{d}^{(n)}\right]= \\
-\sum_{d=1}^{N} w_{d}\left[x_{d}^{(n)}-x_{d}^{(n-1)}\right]\left[\Delta x_{d}^{(n-i)}-\Delta x_{d}^{(n)}\right]
\end{gathered}
$$ we thus get a matrix equation

$$
A \alpha=b
$$

$$
\begin{gathered}
A_{i j}=\sum_{d=1}^{N} w_{d}\left(\Delta x_{d}^{(n)}-\Delta x_{d}^{(n-j)}\right)\left(\Delta x_{d}^{(n)}-\Delta x_{d}^{(n-i)}\right) \\
b_{i}=\sum_{d=1}^{N} w_{d} \Delta x_{d}^{(n)}\left(\Delta x_{d}^{(n)}-\Delta x_{d}^{(n-i)}\right)
\end{gathered}
$$

Linearization

$$
\begin{aligned}
& x^{2}=2 \\
& \left(x^{(n)}\right)^{2}=2+E^{(n)} \\
& \left(x^{(n)}+\delta x^{(n)}\right)^{2}=2 \\
& \left(x^{(n)}\right)^{2}+2 x^{(n)} \delta x^{(n)}+\left(\delta x^{(n)}\right)^{2}=2 \\
& 2 x^{(n)} \delta x^{(n)}=-E^{(n)} \\
& \delta x^{(n)}=\frac{-E^{(n)}}{2 x^{(n)}}=\frac{2-\left(x^{(n)}\right)^{2}}{2 x^{(n)}}
\end{aligned}
$$

Newton-Raphson

Convergence radius

Figure 5.3: Newton-Raphson iteration to find the x for which $f(x)=c$. Find the tangent to $f(x)$ at the first estimate $x=x_{1}$, find its intersection $x=x_{2}$ with the constant c, find the tangent to $f(x)$ there, locate its intersection at $x=x_{3}$, and so on. It works well at left but won't find either solution at right. The convergence region around the solution is small.

Systems of equations

$$
\left\{\begin{aligned}
4 x^{2}+x y+y^{2}-16 & =0 \\
2 x+x y^{2}-9 & =0
\end{aligned}\right.
$$

$$
\left(\begin{array}{cc}
8 x^{(n)}+y^{(n)} & x^{(n)}+2 y^{(n)} \\
2+\left(y^{(n)}\right)^{2} & 2 x^{(n)} y^{(n)}
\end{array}\right)\binom{\delta x^{(n)}}{\delta y^{(n)}}=\binom{-4\left(x^{(n)}\right)^{2}-x^{(n)} y^{(n)}-\left(y^{(n)}\right)^{2}+16}{-2 x^{(n)}-x^{(n)}\left(y^{(n)}\right)^{2}+9}
$$

non-LTE

Transfer equation

The intensity depends on the opacity and the source function. The opacity depends on population densities.

Local Thermodynamic Equilibrium (LTE):

- Source function: Planck function
- Population densities: $f(\mathrm{~T}, \mathrm{Ne})$ (Saha, Boltzmann) non-LTE:

Source function and population densities depend on the non-local radiation field

non-LTE

$$
\begin{gathered}
\frac{d I}{d \tau}=S-I \\
S_{l}=\frac{n_{j} A_{j i} \Psi}{n_{i} B_{i j} \Phi-n_{j} B_{j i} \Psi_{s e}} \\
\frac{D n_{i}}{D t}=\sum_{j \neq i}^{N} n_{j} P_{j i}-n_{i} \sum_{j \neq i}^{N} P_{i j}
\end{gathered}
$$

$P_{i j}$ is the probability for a transition from level i to level j

non-LTE (CRD)

$$
\begin{aligned}
P_{i j} & =R_{i j}+C_{i j} \\
R_{j i} & =A_{j i}+B_{j i} \bar{J}_{i j} \\
R_{i j} & =B_{i j} \bar{J}_{i j}
\end{aligned}
$$

with $A_{j i}, B_{i j}$ and $B_{j i}$ the Einstein coefficients for spontaneous emission, absorption and stimulated emission, respectively. All these are given by atomic physics. $\bar{J}_{i j}$ is the absorption profile ($\phi_{\nu \mu}$) weighted integrated mean intensity:

$$
\bar{J}_{i j}=\frac{1}{2} \int_{-1}^{1} \int_{0}^{\infty} \phi_{\nu \mu} I_{\nu \mu} d \nu d \mu
$$

non-LTE

$$
\frac{D n_{i}}{D t}=\sum_{j \neq i}^{N} n_{j} P_{j i}-n_{i} \sum_{j \neq i}^{N} P_{i j}
$$

$P_{i j}$ contains the intensities and thus an integral of the source function over the whole atmosphere. The source function depends on the population densities. We thus have a non-local, non-linear problem to solve.

Statistical equilibrium, particle conservation and radiative transfer equations are to be solved together through linearization

(Equation numbers from Uppsala Report 33)

$$
\begin{gather*}
n_{i} \sum_{j \neq i}^{n_{l}} P_{i j}-\sum_{j \neq i}^{n_{l}} n_{j} P_{j i}=0 \tag{2.1}\\
\sum_{j=1}^{n_{l}} n_{j}=n_{t o t} \tag{2.2}\\
\mu \frac{d I_{\nu \mu}}{d z}=-\kappa_{\nu \mu} I_{\nu \mu}+j_{\nu \mu} \tag{2.3}
\end{gather*}
$$

Rates are the sum of radiative and collisional rates

$$
\begin{equation*}
P_{i j}=R_{i j}+C_{i j} \tag{2.4}
\end{equation*}
$$

Radiative (bb) and (bf) rates can be written in general form

$$
R_{i j}= \begin{cases}\frac{1}{2} \int_{-1}^{1} \int_{0}^{\infty} \frac{4 \pi}{h \nu} \alpha_{j i} G_{j i}\left(I_{\nu \mu}+\frac{2 h \nu^{3}}{c^{2}}\right) d \nu d \mu & \text { if } i>j \tag{2.5}\\ \frac{1}{2} \int_{-1}^{1} \int_{0}^{\infty} \frac{4 \pi}{h \nu} \alpha_{i j} I_{\nu \mu} d \nu d \mu & \text { if } i<j\end{cases}
$$

$$
\begin{gather*}
\alpha_{i j}= \begin{cases}B_{i j} \frac{h \nu_{i j}}{4 \pi} \phi_{\nu \mu} & (\mathrm{b}-\mathrm{b}) ; \\
\alpha_{c}(\nu) & (\mathrm{b}-\mathrm{f}) .\end{cases} \tag{2.6}\\
G_{i j}= \begin{cases}g_{i} / g_{j} & (\mathrm{~b}-\mathrm{b}) ; \\
\frac{n_{i}^{*}}{n_{j}^{\star}} e \frac{-h \nu}{k T} & (\mathrm{~b}-\mathrm{f}) .\end{cases} \tag{2.7}
\end{gather*}
$$

For bb transitions this simplifies to the familiar form:

$$
\begin{gather*}
R_{i j}= \begin{cases}A_{i j}+B_{i j} \bar{J}_{i j}, & \text { if } i>j ; \\
B_{i j} \bar{J}_{i j}, & \text { if } i<j .\end{cases} \tag{2.8}\\
\bar{J}_{i j}=\frac{1}{2} \int_{-1}^{1} \int_{0}^{\infty} \phi_{\nu \mu} I_{\nu \mu} d \nu d \mu \tag{2.9}\\
\frac{1}{2} \int_{-1}^{1} \int_{0}^{\infty} \phi_{\nu \mu} d \nu d \mu=1
\end{gather*}
$$

Opacity and emissivity in general form:

Background (continuum) contribution

$$
\begin{gather*}
\kappa_{\nu \mu}=\kappa_{\nu c}+\alpha_{i j}(\nu, \mu)\left(n_{i}-G_{i j} n_{j}\right) \tag{2.10}\\
j_{\nu \mu}=\overbrace{\nu c}+\frac{2 h \nu^{3}}{c^{2}} G_{i j} \alpha_{i j}(\nu, \mu) n_{j} \tag{2.11}\\
S_{\nu \mu}=j_{\nu \mu} / \kappa_{\nu \mu} \tag{2.12}
\end{gather*}
$$

(Equation numbers from Scharmer \& Carlsson 1981)

$$
\begin{gather*}
n_{i}^{(n)} \sum_{j \neq i}^{n_{l}} P_{i j}^{(n)}-\sum_{j \neq i}^{n_{l}} n_{j}^{(n)} P_{j i}^{(n)}=E_{i}^{(n)} \tag{3.1}\\
n_{i}^{(n+1)}=n_{i}^{(n)}+\delta n_{i}^{(n)} \tag{3.2}\\
P_{i j}^{(n+1)}=P_{i j}^{(n)}+\delta P_{i j}^{(n)} \tag{3.3}\\
n_{i}^{(n+1)} \sum_{j \neq i}^{n_{l}} P_{i j}^{(n+1)}-\sum_{j \neq i}^{n_{l}} n_{j}^{(n+1)} P_{j i}^{(n+1)}=0 \tag{3.4}
\end{gather*}
$$

We insert 3.2 and 3.3 in 3.4 , subtract 3 .I and neglect non-linear terms

$$
\begin{gather*}
\delta n_{i}^{(n)} \sum_{j \neq i}^{n_{l}} P_{i j}^{(n)}+n_{i}^{(n)} \sum_{j \neq i}^{n_{l}} \delta P_{i j}^{(n)}-\sum_{j \neq i}^{n_{l}} \delta n_{j}^{(n)} P_{j i}^{(n)} \tag{3.5}\\
-\sum_{j \neq i}^{n_{l}} n_{j}^{(n)} \delta P_{j i}^{(n)}=-E_{i}^{(n)} \\
\delta P_{i j}^{(n)}=B_{i j} \delta \bar{J}_{i j}^{(n)}=B_{i j} \frac{1}{2} \int_{-1}^{1} \int_{0}^{\infty} \phi_{\nu \mu} \delta I_{\nu \mu}^{(n)} d \nu d \mu \tag{3.6}
\end{gather*}
$$

We need to express $\delta I_{\nu \mu}^{(n)}$ in terms of $\delta n_{i}^{(n)}$ and $\delta n_{j}^{(n)}$
We use the transfer equation:

$$
\begin{gather*}
\mu \frac{d I_{\nu \mu}^{(n)}}{d z}=-\kappa_{\nu \mu}^{(n)} I_{\nu \mu}^{(n)}+j_{\nu \mu}^{(n)} \tag{3.7}\\
\mu \frac{d}{d z} \delta I_{\nu \mu}^{(n)}=-\kappa_{\nu \mu}^{(n)} \delta I_{\nu \mu}^{(n)}-I_{\nu \mu}^{(n)} \delta \kappa_{\nu \mu}^{(n)}+\delta j_{\nu \mu}^{(n)} \tag{3.8}
\end{gather*}
$$

Usual definition of optical depth along a ray

$$
\begin{equation*}
d \tau_{\nu \mu}^{(n)}=-\kappa_{\nu \mu}^{(n)} d z / \mu \tag{3.9}
\end{equation*}
$$

We define an equivalent source function perturbation:

$$
\begin{equation*}
\delta S_{\nu \mu}^{(n)}=\delta j_{\nu \mu}^{(n)} / \kappa_{\nu \mu}^{(n)}-I_{\nu \mu}^{(n)} \delta \kappa_{\nu \mu}^{(n)} / \kappa_{\nu \mu}^{(n)} \tag{3.10}
\end{equation*}
$$

This gives the usual transfer equation, now for the perturbations

$$
\begin{equation*}
\frac{d}{d \tau_{\nu \mu}^{(n)}} \delta I_{\nu \mu}^{(n)}=\delta I_{\nu \mu}^{(n)}-\delta S_{\nu \mu}^{(n)} \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
\kappa_{\nu \mu}=\kappa_{\nu c}+\alpha_{i j}(\nu, \mu)\left(n_{i}-G_{i j} n_{j}\right) \tag{2.10}
\end{equation*}
$$

$$
\begin{align*}
& j_{\nu \mu}=j_{\nu c}+\frac{2 h \nu^{3}}{c^{2}} G_{i j} \alpha_{i j}(\nu, \mu) n_{j} \tag{2.11}\\
& \delta S_{\nu \mu}^{(n)}=\delta j_{\nu \mu}^{(n)} / \kappa_{\nu \mu}^{(n)}-I_{\nu \mu}^{(n)} \delta \kappa_{\nu \mu}^{(n)} / \kappa_{\nu \mu}^{(n)} \tag{3.10}
\end{align*}
$$

Gives

$$
\begin{gather*}
\delta S_{\nu \mu}^{(n)}=c_{l}^{(n)} \delta n_{i}^{(n)}+c_{u}^{(n)} \delta n_{j}^{(n)} \tag{3.13}\\
c_{l}^{(n)}=-\alpha_{i j}(\nu, \mu) I_{\nu \mu}^{(n)} / \kappa_{\nu \mu}^{(n)} \tag{3.14}\\
c_{u}^{(n)}=G_{i j} \alpha_{i j}(\nu, \mu)\left(\frac{2 h \nu^{3}}{c^{2}}+I_{\nu \mu}^{(n)}\right) / \kappa_{\nu \mu}^{(n)} \tag{3.15}
\end{gather*}
$$

We have thus expressed $\delta S_{\nu \mu}^{(n)}$ in $\delta n_{i}^{(n)}$ and $\delta n_{j}^{(n)}$

$$
\begin{equation*}
\delta I_{\nu \mu}^{(n)}=\Lambda_{\nu \mu}^{(n)}\left[\delta S_{\nu \mu}^{(n)}\right] \tag{3.12}
\end{equation*}
$$

completes the task of expressing

$$
\delta I_{\nu \mu}^{(n)} \text { in terms of } \delta n_{i}^{(n)} \text { and } \delta n_{j}^{(n)}
$$

We now have a non-local but linear system of equations for the unknowns $\delta \mathbf{n}$
For $\Lambda_{\nu \mu}^{(n)}$ we may choose
Exact operator: slow to construct, slow to invert Scharmer's operator: faster and global Local operator (OAB): fast to construct, invert, but slow convergence.

Coefficient matrix for Scharmer operator

Convergence properties

CRSW

Collisional-Radiative Switching

Multiply collisional rates with a factor that is changed from iteration to iteration

2D-3D

In ID all rays pass through all grid "points" (planes).

Long characteristics through all grid-points

Many rays: slow

Long characteristics through one plane

Fast but may miss localized sources

Short characteristics

Approximate S through 3 points ($\mathrm{U}, \mathrm{O}, \mathrm{D}$), integrate analytically

Diffusive

Short characteristics in 3D

Parallelization strategies
over rays: SMP OK

MPI: massive communication

Parallelization strategies

MPI: simple communication, complicated admin

Short characteristics

Order: passive processors multiple sweeps

Energy equation

Radiative equilibrium

$$
F_{\mathrm{rad}}=\sigma T_{\mathrm{eff}}^{4}
$$

$$
\nabla F=0
$$

$$
\mu \frac{d I_{\nu}}{d z}=\chi_{\nu}\left(S_{\nu}-I_{\nu}\right)
$$

integrate over angle

$$
\frac{d F_{\nu}}{d z}=2 \pi \int_{-1}^{1} \chi_{\nu}\left(S_{\nu}-I_{\nu}\right) d \mu
$$

integrate over frequency

$$
\begin{gathered}
\frac{d F}{d z}=2 \pi \int_{-1}^{1} \int_{0}^{\infty} \chi_{\nu}\left(S_{\nu}-I_{\nu}\right) d \nu d \mu=0 \\
\text { isotropic } \chi_{\nu}, S_{\nu} \text { gives } \\
\int_{0}^{\infty} \chi_{\nu}\left(S_{\nu}-J_{\nu}\right) d \nu=0
\end{gathered}
$$

NB! flux not specified, only its constancy

We thus need to solve the transfer equation at many frequencies throughout the spectrum

OS: Opacity sampling. Sample throughout the spectrum, enough points to get a statistically good representation of the integral ~ 10000 points.
ODF: Opacity distribution function. Reorder frequency points to get smoother function. Fewer points needed ~ 1000 points. Assumes that high opacity line up.

Multi group opacities. As ODF but average also the source function. ~ 4 points.

ODF

Multi-group opacities

$$
\int Y_{\lambda} d \lambda=\sum_{\lambda} Y_{\lambda i j} w_{i j}=\sum_{i} \sum_{j} Y_{\lambda i j} w_{i j}
$$

Linearization

We used to have:

$$
\delta j_{\nu \mu}=\frac{\partial j_{\nu \mu}}{\partial n_{i}} \delta n_{i}+\frac{\partial j_{\nu \mu}}{\partial n_{j}} \delta n_{j}
$$

If the atmosphere is not given we get extra variables to solve for:

$$
\delta \rho, \delta T, \delta n_{e}
$$

and extra derivatives with respect to these variables

$$
\begin{gathered}
\delta j_{\nu \mu}=\frac{\partial j_{\nu \mu}}{\partial \rho} \delta \rho+\frac{\partial j_{\nu \mu}}{\partial T} \delta T+\frac{\partial j_{\nu \mu}}{\partial n_{e}} \delta n_{e}+\sum_{i=1}^{N_{L}} \frac{\partial j_{\nu \mu}}{\partial n_{i}} \delta n_{i} \\
\frac{\partial j_{\nu c}}{\partial x}, \frac{\partial \kappa_{\nu c}}{\partial x}, \frac{\partial \alpha_{i j}}{\partial x}, \frac{\partial G_{i j}}{\partial x}, \frac{\partial C_{i j}}{\partial x} \\
\text { are no longer zero }
\end{gathered}
$$

Extra equations: Hydrostatic equilibrium
Energy equation, charge conservation

Examples, non-LTE

- non-local, non-linear
- ID:Accelerated Lambda Iteration (ALI)
- 500-1000 atomic levels possible
- codes available (MULTI, RH (Uitenbroek),...)
- 3D:ALI + long or short characteristics
- 20-30 levels possible
- not as easy to use as black-box (convergence problems, discretization issues etc) (RH (Uitenbroek), MULTI3D)

Examples

- Contribution \& response functions
- non-LTE abundance determinations
- non-LTE modeling of Si I
- non-LTE modeling of O I resonance lines
- intensity from 3D model atmosphere
- non-Statistical equilibrium
- Formation of spectrum in a dynamic chromosphere
- 3D simulations from convection zone to corona

Contribution functions

$$
\begin{gathered}
I_{\nu \mu}(0)=\int C_{I}(x) d x \\
C_{I}\left(\tau_{\nu}\right)=\frac{1}{\mu} S_{\nu}\left(\tau_{\nu}\right) e^{-\tau_{\nu} / \mu} \\
C_{I}(z)=\frac{1}{\mu} S_{\nu}\left(\tau_{\nu}\right) e^{-\tau_{\nu} / \mu} \chi_{\nu}
\end{gathered}
$$

Contribution functions give the contributions from different layers of the atmosphere to a given quantity.

Rewrite of contribution function

$$
C_{I}(z)=\frac{1}{\mu} S_{\nu}\left(\tau_{\nu}\right) e^{-\tau_{\nu} / \mu} \chi_{\nu}
$$

$$
C_{I}(z)=S_{\nu}\left(\tau_{\nu}\right) \frac{1}{\mu} \tau_{\nu} e^{-\tau_{\nu} / \mu} \frac{\chi_{\nu}}{\tau_{\nu}}
$$

G-band vs Ca H filtergram

Synthetic spectrum

LaPalma CaH filters

Contribution to $\mathrm{Ca}-\mathrm{H}$ filter intensity

Response functions

$$
\frac{\Delta I}{I}=\int_{-\infty}^{\infty} R(z) \frac{\Delta T}{T}(z) d z
$$

Numerical calculation of a response function

$$
\begin{aligned}
\frac{\Delta T}{T}(z) & =C, z \leq z^{\prime} \\
& =0 \quad z>z^{\prime} \\
\frac{\Delta I}{I}\left(z^{\prime}\right) & =C \int_{-\infty}^{z^{\prime}} R(z) d z \\
R\left(z^{\prime}\right) & =\frac{1}{C} \frac{d}{d z^{\prime}} \frac{\Delta I}{I}\left(z^{\prime}\right)
\end{aligned}
$$

Response functions of Hinode wide band filters

non-LTE abundances of Li

Carlsson, Rutten, Bruls, Shchukina, I994,A\&A 288,860

Atmospheric models

departure coefficients

Ground state (2s) overpopulated, with respect to LTE

source function

Source function (solid) below Planck function (dashed) Overpopulated lower level gives tau=I (square) in non-LTE further out than in LTE (star)

Intensity

Lower source function and formation further out give stronger line in non-LTE (solid) than in LTE (dashed). Opposite for subordinate line (lower panel)

Line blanketing

Curve of growth

non-LTE abundance correction

non-LTE abundance corrections for stars

3D non-LTE for Lithium

non-LTE B I 209 nm

non-LTE B I 249.75 nm

non-LTE modelling of Si I

Bard, Carlsson, 2008,ApJ 682,1376

non-LTE modelling of Si I

We need a lot of atomic data!

Si $10827 \AA$ A line in FALC

Ionization equilibrium

Influence of different rates

Simplified model atom

23 levels, 149 lines, 22 continua

Intensity, FALC

Solid: large model atom
Dashed: simplified model atom

Contribution function to relative absorption

Solid: large model atom
Dashed: simplified model atom

non-LTE modeling of O I resonance lines

Resonance lines pumped by Lyman-beta
Carlsson, Judge, I993, ApJ 402, 344
non-LTE modeling of O I resonance lines

With Lyman-beta pumping (thick) and without (thin)

non-LTE modeling of O I resonance lines

non-LTE modeling of O I resonance lines

Sensitivity analysis showed importance of pumping chain

MHD simulation of Solar magneto-convection

- Nordlund/Stein code
- multi-group opacities, 4 bins
- Initial field 250G, vertical, single polarity
- $253 \times 253 \times 163$ simulation
- RT each snapshot, 2728 frequency points

Synthetic spectrum

3D MHD simulation

Magnetic field

Height where tau=1

Temperature structure

Why faculae?

Gband $\mu=1.0$

Comparison with observations

Simulation, $\mathrm{mu}=0.6$

Gband $\mu=0.6$

Observation, $\mathrm{mu}=0.63$

non-Statistical equilibrium

- 2-level case
- linear rate matrix
- hydrogen ionization
non-Statistical equilibrium

$$
\frac{D n_{i}}{D t}=\sum_{\substack{j \neq i \\ \text { 2-level case: }}}^{N} n_{j} P_{j i}-n_{i} \sum_{j \neq i}^{N} P_{i j}
$$

$$
n_{1}(t)=n_{1}(\infty)+\left(n_{1}(0)-n_{1}(\infty)\right) e^{-\left(P_{12}+P_{21}\right) t}
$$

Timescale depends on both upward and downward rate
There is only one timescale involved
non-Statistical equilibrium

$$
\begin{aligned}
\frac{D n_{i}}{D t}= & \sum_{j \neq i}^{N} n_{j} P_{j i}-n_{i} \sum_{j \neq i}^{N} P_{i j} \\
& \frac{D \mathbf{n}}{D t}=\mathbf{W} \mathbf{n}
\end{aligned}
$$

linear rate matrix:
Populations can be written as linear combination of eigenvectors of W with time-evolution given by eigenvalues of W (Judge 2005, JQSRT, 92, 479)

Hydrogen ionization

Time scale for hydrogen ionization/recombination is highly time-varying. Fast rates when temperature is high (ionizing phase), slow rates when temperature is low (recombining phase).

Hydrogen ionization

Electron density (thick dashed) Eigenvalue timescales (thick dotted) only collisions (dot-dashed)
Lyman lines in detailed balance (thin solid) Lyman-alpha in escape probability (dashed) Numerical result (thick solid)

Eigenvalues of rate-matrix give erroneous timescales for nonlinear rate-matrix. Exclusion of large, canceling rates (Lyman transitions) give much better results.
(Carlsson \& Stein, 2002,ApJ 572,626)

Hydrogen ionization

Time dependent ionization (solid) Equilibrium ionization (dashed)

Slow rates when recombining results in ionization higher than equilibrium values.

Formation of spectrum in a dynamic chromosphere

- Observations
- ID non-LTE simulation
- Continuum formation
- Line formation

Ca II H-line

Dynamic behaviour

Spatial variation

Spatial variation

radyn: non-LTE radiation hydrodynamics in ID

We used to have:

$$
\delta j_{\nu \mu}=\frac{\partial j_{\nu \mu}}{\partial n_{i}} \delta n_{i}+\frac{\partial j_{\nu \mu}}{\partial n_{j}} \delta n_{j}
$$

If the atmosphere is not given we get extra variables to solve for:

$$
\delta \rho, \delta T, \delta n_{e}, \delta v_{z}
$$

and extra derivatives with respect to these variables

$$
\begin{gathered}
\delta j_{\nu \mu}=\frac{\partial j_{\nu \mu}}{\partial \rho} \delta \rho+\frac{\partial j_{\nu \mu}}{\partial T} \delta T+\frac{\partial j_{\nu \mu}}{\partial n_{e}} \delta n_{e}+\sum_{i=1}^{N_{L}} \frac{\partial j_{\nu \mu}}{\partial n_{i}} \delta n_{i}+\frac{\partial j_{\nu \mu}}{\partial v_{z}} \\
\frac{\partial j_{\nu c}}{\partial x}, \frac{\partial \kappa_{\nu c}}{\partial x}, \frac{\partial \alpha_{i j}}{\partial x}, \frac{\partial G_{i j}}{\partial x}, \frac{\partial C_{i j}}{\partial x} \\
\text { are no longer zero }
\end{gathered}
$$

Extra equations: conservation of mass, energy, charge, momentum

ID non-LTE simulation

Carlsson \& Stein 1992, 1994, I995, I997

Dynamic behaviour, Temperature

Dynamic behaviour, Temperature

Grid equation

Dorfi \& Drury, I987, Jou. Comp. Phys. 69, I75

Continuum intensity

Intensity (solid) non-local. Source function (dotted) decoupled from Planck function (dashed). Intensity varies a lot less than local Planck function at tau=I
"Mean" temperature

Ca II H-line intensity

Ca II H-line formation

We rewrite the contribution function to intensity

$$
\begin{gathered}
C_{I}(z)=\frac{1}{\mu} S_{\nu}\left(\tau_{\nu}\right) e^{-\tau_{\nu} / \mu} \chi_{\nu} \\
\text { as } \\
C_{I}(z, \mu=1)=S_{\nu}\left(\tau_{\nu}\right) \tau_{\nu} e^{-\tau_{\nu} / \mu} \frac{\chi_{\nu}}{\tau_{\nu}}
\end{gathered}
$$

and show separately the three factors:

$$
\frac{\chi_{\nu}}{\tau_{\nu}}, \quad S_{\nu}\left(\tau_{\nu}\right), \quad \tau_{\nu} e^{-\tau_{\nu} / \mu}
$$

The asymmetry of the Call H-line (H2V bright grains) is caused by high opacity and small overlying opacity at the H 2 V wavelength at the location of the shock.

BIFROST

Hansteen 2004, Hansteen, Carlsson, Gudiksen 2007, Sykora, Hansteen, Carlsson 2008, Gudiksen et al 201।

- 6th order scheme, with "artificial viscosity/diffusion"
- Open vertical boundaries, horizontally periodic
- Possible to introduce field through bottom boundary
- "Realistic" EOS
- Detailed radiative transfer along 48 rays
- Multi group opacities (4 bins) with scattering
- NLTE radiative losses in the chromosphere, optically thin in corona
- Conduction along field lines
- Operator split and solved by using multi grid method
- Time dependent Hydrogen ionization
- Generalized Ohm's Law

- non-LTE Ca-II, column by column

Simulation seen with Hinode $\mathrm{Ca}-\mathrm{H}$ filter

3D NLTE: Ca II 8542

NaD

NaD

Calibration curve

Na D synthetic Dopplergram

NaD

Mg b

Mg b

Mg b

$\operatorname{Tg} z=-1.3 \mathrm{Mm}$

Temperature
$\mathrm{z}=0.41 \mathrm{Mm}$
Joule heating

Diagnostics

Hydrogen ionization out of equilibrium

Ca 8542

Jaime de la Cruz Rodrigues et al

