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Summary. We derive a rigorous expression for the contribution
function to the spectral line depression in a stellar atmosphere,
giving the contribution of the different atmospheric layers to the
formation of the line depression. This contribution function is the
solution of the transfer equation for the line depression. It is the
only appropriate distribution function for the computation of the
depths of formation of spectral lines. It indicates, in contrast with
some earlier contribution functions, that a faint spectral line is not
necessarily formed in the same layers as the continuum. The
response function of the line depression to a given perturbation is
also briefly discussed.
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1. Introduction

The knowledge of the average depth of formation of spectral lines
is essential for the study of depth-dependent phenomena in stellar
atmospheres, as long as that study is based on the analysis of
spectral lines. Among such phenomena, we may mention the
variation with depth of turbulence, magnetic field, solar oscil-
lations or solar rotation (an example of this last case may be found
in Solonsky, 1971).

The determination of the depth of formation of spectral lines is
generally carried out through the use of a contribution function
(CF), which should give the relative contribution of the different
atmospheric layers to the observed quantity, or of a response
Sfunction (RF), which is designed to measure the response of some
observed quantity to a given perturbation.

As was first pointed out by De Jager (see Gurtovenko et al.,
1974), it is extremely important, in studying the formation of
spectral lines, to distinguish between the region of origin of the
emergent radiation and the region where the line depression is
formed. This point will be further discussed in Sect. 7.

However, if everybody agrees on the form of the CF to the
emergent intensity, several forms have been proposed for the CF to
the line depression, leading sometimes to very different (or even
contradictory) results. In our opinion, this is due to the lack of a
proper definition for the CF to a given quantity. In this paper, we
propose a coherent definition, by analogy with the CF for the

emergent intensity. Using this definition, we determine the CF to
the line depression and compare it with previously proposed
“CF’s”. We also show that it gives results in agreement with
physical intuition, contrary to some other CF’s. Finally, we show
how to derive a response function for the line depression.

2. Earlier contribution functions

2.1. Contribution function to the specific intensity

If I'is the specific intensity at frequency v in the direction s, the
transfer equation may be written (Gray, 1976):

——I=—K(1—S), @

where u = cos 6, the cosine of the angle between the s direction and
the normal to the surface, ¢ is the density of the gas, z the
geometrical depth, x the absorption coefficient and S the source
function. Introducing, as usual, the optical depth 7 by the relation:

dt=xgdz 2)

the solution of (1) for r = 0 [that is the emergent intensity /(0) in the
direction considered] may be written:

I(0)= TO Se~"rdr/u. 3
0

The integrand of (3) represents thus the fraction of the emergent
intensity originating from depth z. It is usually referred to as the CF
to I, which we shall note %,(t). In stellar atmospheres, however, it
is more convenient to work in the log 7, scale, t, being the optical
depth at a reference wavelength 4,. One of the reasons for this is
that log 7, is approximately proportional to the geometrical depth.
Writing x for logz,, one has:

dt
€, (x)=%,(v) e “4)
so that:
fg,(x)=ﬂ-11n1orokiSe—f/ﬂ,~ )
0

Ko being the absorption coefficient at wavelength A,.
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2.2. Contribution functions to the line depression

The relative depression at some frequency in the line is defined by:
R(0) = [1.(0) — L(O)]/1.(0), (6)

where 7;(0) is the emergent intensity at the frequency considered
and I,(0) the continuous intensity at the same frequency (i.e. the
intensity that we would observe if the line was absent). Replacing
the quantities in the numerator of (6) by their expressions of the
form (3) and combining the two integrals into one, we obtain, in
LTE (putting all source functions equal to the Planck function B):

+
RO)=L0O)" | B ["_ e e
0 Ko Ko

e*ﬁﬂrﬂ duofu, (7)

where k. and x, (resp. 7, and 1;) are the continuous and line
absorptions (resp. optical depths). One can thus define (?) a CF
(see Cowley, 1970):

B K
EH(x “11n 107 [1 - (1 + —l> e"'/"jl e~%r,. (8
()=u © o I(O) K, (®)

By mathematical transformations of the integral (7), including
integrations by parts, one obtains the ‘‘weight-saturation”
(Pecker, 1952) or “Planchian-gradient” (Mugglestone, 1958) CF’s

(noted ¥ and ¥, respectively):
1 B
€ (x “1In107 ‘< _(1— e~ GHmlp 9
(x)=p 0 o I(O) ( Ic) O]
and
1 dB
¢ (x)=p"'1n107 0 I (0) d‘E (1 — e~y e— =ik, (10)

These four CF’s, namely %,, €&, €', and € have been used
by different authors to compute average depths of formation of
spectral lines, leading sometimes to strongly different results. Some
authors, including Edmonds (1969), Ruhm (1969), Gurtovenko et
al. (1974), Babii and Rikalyuk (1981) have compared these CF’s,
presenting arguments in favor of one or the other of these CF’s,
with contradictory conclusions. In the following section, we derive
anew CF, based on a rigorous treatment, and which we argue is the
CF to the line depression.

3. The contribution function to the line depression

Let us recall the procedure followed to obtain the CF to the
emergent intensity. To obtain €,, we have:

— written the transfer equation for [ in the form (1);

— written its formal solution in the form (3);

— identified the integrand of (3) as €,.

It may be seen, from (1) and (3) that, when it is written in the 7,
scale, the CF to [is just the source term in the right-hand side of Eq.
(1), times the exponential factor which accounts for the fraction of
light emitted at depth 7, which is absorbed in the layers between 7,
and the stellar surface. It represents thus just what we mean by a
CF, that is the contribution of the layer situated at depth z, to the
emergent intensity.

So, if we want to obtain the CF to the line depression, we must
follow the same procedure, that is:

— write the transfer equation for R in the form (1);
— write its formal solution in the form (3);
— identify the integrand of (3) as €.

This is the only valid procedure if we want $(z,) to be
interpreted as the contribution of the layer situated at depth z, to
the observed line depression. So, the basic problem is to write a
transfer equation for R, which we thus define as the relative line
depression at any depth in the atmosphere:

R=(.—1)/L.. (11)
The transfer equations for I, and I, are the following:

udl,

o k(-8 12
Q dZ KC( c C) b ( )
udl,

L& = ) =S), (13)

where S, is the source function in the continuum and S, the source
function in the line (ratio of total emission coefficient to total
absorption coefficient). It is related to the line source function S,
(ratio of line emission coefficient to line absorption coefficient) by:

S, = (Sc+ il S,>/<1 + ﬁ) (14)
KC KC

see, e.g., Gray (1976). From (11), we get:

dR I dI. 1 dj, 5

dz Izdz—l—dz' (15)

Introducing (12) and (13) in (15) and rearranging the terms, taking
(11) into account, we obtain the transfer equation for R:

,udR

0 dZ —Kpg (R

Sk)> (16)
where the “‘effective absorption coefficient” k, and the “‘effective
source function” Sy are given by:

= 17
K+ K =5 I a7
and
S, K, S,
Sg=11——|/[1+==). 18
(=255 <>
The emergent line depression is thus:
+
R0)= [ Spe~®tdry/u, 19)
0
where
dig=kKgodz. (20
And the CF to R may be written:
S,
Er(x)=pn"" 111101:0’—(1(1— —'—) e TRl 21
Ko Ic

This is the CF to R in the logt, scale.

A nice feature of the transfer equation (16) and of the CF (21) is
that they allow a straightforward interpretation in terms of line
formation. From (21), we see that € is non zero only if:

K, # 0, so that some absorber must be present in order for a line
to be formed, and

S,# I, so that the re-emitted light must not be equal to the
absorbed light. The line will appear in absorption if S; < I, and in
emission if S; > I..
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4. The average depth of formation of a spectral line

Using the CF, we can calculate the average depth of formation of
the line depression at a given frequency by the formula:

o= | x@p(x)dx / T p ) dx. @)

In a similar way, we can compute the mean of other quantities,
such as 7, the geometrical depth z, the temperature 7,.... This is
valid only if € (x) does not change sign, which is generally true in
the case of an absorption line. If some layers contribute to line
emission, they may be treated separately, calculating a mean depth
for the absorption and a mean depth for the emission. Note, in
passing, that {logt,> *log{z,>. They would be equal in the limit
of an extremely sharp-peaked CF (ideally, a -function).

5. Comparison of the different contribution functions

For the sake of simplicity, we consider the case of LTE and the
center of the stellar (solar) disk (u=1). This does not affect any of
our conclusions. Let us denote by « the common factor:

137

A first striking point is the similarity of ¥, and ¥@ . They
behave in roughly the same way since I, ~ 1.(0) in the layers where
the line is formed and 7, is generally not very different fromz, + 7.
In fact, they coincide in the case of large 7,. This similarity gives a
posteriori support to those earlier computations of the average
depths of formation which were based on €@ (e. g., Gurtovenko et
al., 1974). It also means that the arguments of these authors
supporting € equally support €.

When comparing these five CF’s, it is very instructive to
consider the case of a layer where no absorber is present (x, = 0). In
this case, only %, and €’ cancel automatically, while the other
CF’s are non zero if 7, #+ 0, that is if some absorber is present
between the layer considered and the stellar surface. These CF’s
thus indicate some contribution to the line depression from layers
situated below those where the absorber is present. This is clearly
unphysical and would be sufficient to reject these CF’s as
indicating the layers where the line depression is formed. This is
hardly surprising in the case of & since it is the CF to the emergent
intensity and not to the line depression. Unfortunately, it is
sometimes used to determine the depth of formation of spectral
lines. At this point, it may be added that the methods of
determination of the depth of formation from the equality of the
emergent intensity to the source function at the depth of formation
also give some indication of where the emergent intensity
originates, but not where the line depression is formed.

The comparison of the different CF’s is illustrated in Figs. 1
and 2 which give the CF’s at the center of an Fe1line at S5000A in a
solar model. The excitation potential of the line is 3eV and the
calculations are carried out in LTE and at the center of the solar
disk (u=1). Figure 1 corresponds to a faint line and Fig.2 to a
rather strong line. %, has been normalised in order to have the same
integral over x as the €y’s, so that the comparison is easier. Note
that all these € ;’s have the same integral, which is the emergent line
depression. In the case of the faint line, all CF’s, except € and
€3, which is here indistinguishable from %/, indicate that the line
is formed near 7, =1, that is where the continuous intensity is
formed. For the stronger line, ¢, indicates roughly the same depth
of formation as %, while #§" and €}> remain confined to the
deeper layers. Figure 3 shows the variation of the average depth of
formation with the equivalent width for lines of 0 and 3eV
excitation potential as indicated by the different CF’s. These
average depths e~ of formation correspond to the line center.

Fig. 1. Contribution functions to the line
depression at the center of an Fer line of 3eV
excitation potential and 10 mA equivalent
width at a wavelength of 5000 A. These CF’s
are computed for the center of the solar disk
with the solar model of Gray (1976). These

functions are, respectively, € (continuous
line), ¥ (dashed line), €%’ (dash-dotted line)
and %, (dotted line). €%’ is indistinguishable

T 1 dz
=1 o _ - =
o=1In10 % dx (23)
We then have:
%,(x):occh(l + g) e~ et 24
B
G0 =ar, (1 - 7) e, 25)
B K
F (¥) =k, T0) [1 - (1 + K—‘) e“':l e, (26)
I B
ER 0 =an o (1 B Z) e @7
1 B
(3) = _— —e— T,
€r(X)=axk, 70) . (l—e—1)e 28)
I | I T
04— —
C
+0.2 1~ ]
0.0
J | | ] from %5
-6 -4 -2 0
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Fig. 2. Same as Fig. 1 for a line of 100 mA

equivalent width. The irregular appearance of
% is due to numerical inaccuracies in the
computation of the derivative of the Planck

0
6 -4 -2 0

log T,
Fig. 3. The average depth of formation of the center of an Fe line at 5000 A for
the center of the solar disk, as a function of the line equivalent width W;. The line
excitation potential is OeV (thick line) and 3eV (thin line). The depths of
formation are computed from € (continuous line), €, (dashed line) and €’
(dash-dotted line)

6. Response functions

Let us consider a physical quantity f(x) eventually varying with
depth in a stellar atmosphere (f may be, for example, the
temperature or the microturbulent velocity). If the quantity
considered is perturbed from f(x) to f(x) + 6 B(x), the change in
the observed line depression may be written, to first order:

+ o

SR(0)= [ Rgp(x)dp(x)dx, (29)
where Ry 4(x) is the RF of the line depression R(0) to a
perturbation in the quantity . It may be obtained following the
lines of Caccin et al. (1977), that is by perturbing the transfer
equation for R. We thus obtain:

Kgr I:& _ 1

R =u"'In107, =
R,ﬂ(x) 4 inllz, xo | dB Kr

dk g

(R—Sg) B

} e~rlt, (30)

The use of the RF or of the CF depends on what is analysed.
For example, the variation of the line depression due to a change in
turbulent velocity should be studied through the corresponding
RF, but that function does not tell us where the line is formed: the
latter information should be derived from the CF. It may be noted
that, in many cases, the RF to the microturbulent velocity has a
behaviour similar to the CF, while this is not the case for the RF to
the temperature. The main reason for this is that the continuous
intensity is sensitive to changes in temperature and insensitive to
changes in microturbulent velocity, the latter affecting only the line
opacity.

138
T I I ]
Y
+1.0 = / \‘ —
[
I
I’ \
C .
! \
/ \
7L \
N , .
+05 A ]
0.0
] ] | ] function
-6 -4 -2 0
log T,
100
W)

7. Discussion

Some of the basic ideas for deriving the CF to the line depression
were already present in the work of Caccin et al. (1977). Apart from
the fact that they consider the absolute line depression

D=1I-1, (31)

instead of the relative line depression R (11), they correctly
recognize that, to obtain the CF, one “‘must write a differential
equation for D and identify the source and sink terms in it”.
However, they argue that “‘the right hand member of this equation
can be written in two different ways, separating differently the term
in D and the known term”. These two ways are, in our notation
(and in LTE):

udD K,

2 — - 32
) &z K, [D P 0 B)], (32)
and

u dD K, K,
——=x||1+—|D—-—(U—-B)|. (33)
0 dz K, K,

Arguing that (32) has a clearer interpretation than (33), they
consider it as ‘‘the equation of transfer for D”” and conclude that
“the integrand of its formal solution can be properly called the CF
for the line depression”.
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The wrong point in that development is that (32) and (33) are
not two equivalent ways of separating the term in D and the known
term. In fact, I, cannot be regarded as known as long as D is
unknown. These two quantities are related by Eq. (31), where I,
may be regarded as known since it is independent of the line
absorption. So, either D or [, may be taken as the unknown, but the
transfer equation may not be written in terms of these two
quantities, considering one as known and the other as unknown. It
would be impossible to solve (32) without taking (31) into account,
in which case (32) reduces to (33). On the other hand, if both I, and
I, were known, it would not be necessary to solve a transfer
equation for D, it would be simply given by (31). So the only valid
transfer equation for D, separating correctly the known and
unknown quantities, is (33). A similar discussion applies if D is
replaced by R. In fact, it is easily shown that S and x  are unique,
as far as they do not contain any explicit dependence on R (or ;).

To conclude on the unicity of the CF to the line depression, let
us come back to the different CF’s arising from mathematical
transformations of the integral (7). Let us consider, as an example,
a distribution of particles as a function of some quantity y, given by
the distribution function

fo)=ae™

for y varying from 0 to + co. The total number of particles is given
by

(34)

+ o0
N= | ae™?dy. (35
(1]
Integrating (34) by parts, we see that the total number of particles is
also given by
+ o0
N= [ aye™Vdy.
0

(36)

Of course, nobody will ever argue that the distribution function of
the particles is equally given by aye™>. This function has no
physical meaning, except that its integral over y gives the total
number of particles. It can be used for nothing else. Only the
integrals are equivalent, but not the integrands. This is certainly
trivial, but, strange enough, it does not seem so as soon as y stands
for logz,, f(y) for the CF and N for the line depression. Showing
that the line depression may be computed from various integrals
does not allow to conclude that the integrands have any physical
meaning. Unfortunately, this has been done many times in the
past.

Rather recently, Babii and Rikalyuk (1981) have discussed the
various CF’s and have listed a number of requirements which, in
their opinion, must be satisfied by a CF in order to be physically
and mathematically sound. In particular, they note that ‘“‘with

movement into the line wing, i.e. into the region of ever decreasing
absorption in the line, the optical depths of formation of
absorption lines, [...], must approach the same optical depth of
formation of the continuous spectrum at the given A, although in
somewhat different ways”.

This is a misunderstanding which appears from time to time in
the literature. As already stressed by De Jager (see Gurtovenko et
al., 1974), it is essential to distinguish between the region of origin
of the emergent radiation and the region where the line depression
is formed. If it is true that, as the line opacity tends to zero, the
layers from which the intensity in the line originates tend to
coincide with the continuum-forming layers, this is not true for the
line depression. This is particularly clear in the following extreme
example. Consider a telluric water vapor line appearing in the solar
spectrum as observed from the ground. It is clear that, even if the
line becomes very faint, or if we move to the line wing, it does not
shift to the sun. It is always formed in the earth atmosphere. In this
case, ¥ and € would predict that most of the line depression
originates from the solar photosphere, while ¢, and €2 would
correctly place its layers of formation in the earth atmosphere. So,
as correctly indicated by €, a faint absorption line is not
necessarily formed in the same layers as the continuum.

In conclusion, from the corresponding transfer equation, we
have defined the contribution function to the line depression. This
function is the only one which gives the contribution of the
different layers to the observed line depression. We have also
shown that it is in perfect agreement with physical intuition,
contrary to what had sometimes been argued in the past about
%9
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