OR!

FTOO2ACA 7 77627~

Astron. Astrophys. 262, 209-215 (1992)

ASTRONOMY
AND
ASTROPHYSICS

An accelerated lambda iteration method for multilevel radiative transfer

II. Overlapping transitions with full continuum

G.B. Rybicki! and D.G. Hummer?'3

! Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
2 Max-Planck institut fiir Astrophysik, Karl-Schwarzschild-Str. 1, D/W-8046 Garching bei Miinchen, Germany
3 Institut fiir Astronomie and Astrophysik der Universitit, Scheinerstr. 1, D/W-8000 Miinchen 80, Germany

Received February 10, accepted February 27, 1992

Abstract. The ALI method of Paper I has been generalized to
include treatment of overlapping, active continuum transfer and
overlapping lines. The linearity of the iterative equations is main-
tained in this method by consistent use of the psi operator rather
than the lambda operator. The method has been applied to
a sample problem of pure helium, which includes 23 levels, 31
lines, 22 continua, three stages of ionization, and electron scatter-
ing. Velocity fields of order of a few Doppler widths were also
included by means of an observer’s frame formulation. The
convergence of the solutions was found to be comparable to that
achieved in the previous pure line method.
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1. Introduction

In Paper I (Rybicki & Hummer 1991) we presented a method of
solving multilevel transfer equations with their associated equa-
tions of statistical equilibrium by a form of the approximate
lambda iteration (ALI) method in which the latter always retain
their linearity. This feature, which eliminates the need for an
internal linearization cycle to obtain the updated level popula-
tions, is achieved by “preconditioning” the equations of statistical
equilibrium at each step, in order to eliminate the slow conver-
gence of the classical iteration caused by photons trapped in
strong lines. Although many versions of the ALI procedure have
been developed (references are given in Paper I), ours is the only
one in which the treatment of multilevel transfer is an integral
part of the formulation. For this reason we refer to our procedure
as a multilevel approximate lambda (MALI) method.

In Paper I, we developed the MALI method for isolated
transitions, and applied it to problems which involve only line
transfer. In the present paper we generalize the method to include
any number of overlapping lines and continua. The guiding
principle is that the equations of statistical equilibrium must
remain linear in the population numbers at every stage of the
calculation. This is facilitated by use of the ¥ operator intro-
duced in Paper I, rather than the more familiar A operator. The
analysis has been incorporated into a computer code, with the
temporary restriction that overlapping lines cannot yet be
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treated. In addition to the bound—free continua of the element in
question, we can include self-consistently electron scattering and
free—free continua, as well as any prespecified “background”
continuum. As before, macroscopic velocity fields can be treated
in the observers frame.

The analysis leading to various preconditioning strategies for
overlapping transitions is developed in the next section. Methods
of treating the electron scattering emissivity are also considered.
Section 3 then describes the implementation of the generalized
preconditioning in our code; other newly added facilities are
briefly mentioned. In the final section the application of the code
to a pure helium atmosphere containing three stages of ioniz-
ation is discussed.

Because this paper is of interest only as an extention of the
method described in Paper I, we assume that the reader is
thoroughly familiar with that paper in order not to have to repeat
material developed there.

2. The iterative method

The treatment of the statistical equilibrium equations is central
to the present method. We show how to incorporate an iterative
transfer scheme directly into these equations, extending the pre-
conditioning method given in Paper I, which should be consulted
for notation and background. The development given here ap-
plies to quite arbitrarily overlapping continua and lines with
velocity fields, but it has been restricted to plane geometry and to
the assumption of complete redistribution in the lines. Generaliz-
ations to more complex geometries is straightforward. The treat-
ment of partial redistribution within this formalism will be con-
sidered in a future paper.

2.1. The ordinary statistical equilibrium equations

Before introducing our generalized method of preconditioning,
we shall review the ordinary equations of statistical equilibrium,
introducing notation that will be convenient for the further
developments. As in Paper I, we label the levels by indices
LI, .... We denote the population of level I by n, its energy by
E,, and its satistical weight by g;. Here the energies E, are
measured relative to the ground level of the neutral species, so
that, for example, the energy of the ground level of the first stage
of ionization is equal to the first ionization potential. We use the
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notations I>>1" and <!’ to imply E,>E; and E,<E,, respec-
tively.

The ordinary equations of statistical equilibrium can be writ-
ten

Z np(Cri+ Ryy) = Z m(Cy + Ryp.),

1 3

@.1)

where C;;. are the collisional rate coefficients, R, are the radiative
rate coefficients. Included in the definitions of the rate coefficients
may be factors of the electron density n., which is considered
known, either because it is prescribed as part of the specified
model, or because it may be calculated adequately from the
results of a previous iteration Similar remarks hold for the
temperature field in the medium. Thus, the collisional rate coef-
ficients Cy; are to be considered as known quantities at each stage
of the calculation. We note that these equations are linear and
homogeneous in the populations n; of the treated species. An
additional relation is therefore required, usually that the sum of
populations over all levels must equal the given total population
of the species.

It will be convenient for our further development to be able to
write expressions for the radiative rate coefficients R, that apply
to both lines and continua, apply to both orderings of the indices,
I>1"and I<!', and explicitly display the dependence of these rates
on the radiation field I,,. Thus, for the transition connecting
land I we define the quantities Uy.(v) and ¥y (v), which for line
transitions are given by

hv ,
in Apou(u,v), >,
7
Un(p, v)=
0, <,
Vi (o V=2 By a1 1) 2)
(4, v)=— By-ou(p, v), .
will an wPu i
in terms of the Einstein coefficients A4;;-, By, and By, and the line

profile function ¢y = @;,. The result for ¥}, has the same form for
either I>>1’ or I<I’, although the Einstein coefficients then refer to
downward or upward transitions, respectively. A dependence of
the profile function on the angle u is included to take into
account macroscopic velocity fields.

Similarly, if the transition between ! and [’ is a continuum
transition, then we define

2hv3 ,
ne‘Dw(T)—C;—e“"""‘Tau'(V), I-1,

Up(v)=
0, <,
n. @y (T)e ™ ay.(v), I>1,
V()= . 2.
! (V) {all’(v)’ l<l’5 ( 3)

where a;;-(v) is the photoionization cross section, and ®;.(T) is
the Saha-Boltzmann function,

0, (T) =2 ( (24)

h
2¢, \ 2nmkT
(see, e.g. Mihalas 1978).
The opacity ;- and emissivity 7, in the transition connecting
I'and I’ can be conveniently expressed in terms of the quantities
Uy and V. For I>1' these are

32
> exp[(E,—E,)/kT],

xuw (s V)=n V=V, e (p, v)=nUy. (2.5)

The total opacity and emissivity can be written as

Y= tw+xe= Y, (e Vi—=mVy)+ e (2.6)
> >

"htv=z "Iu'+’7c=z m Uy +7.. 2.7
w w

It is permissible to write the total emissivity using unrestricted
summations over [ and ', since the terms for [<! in fact vanish
by Eq. (2.2) or (2.3). The quantities y. and 7, in these equations
are the background opacity and emissivity. These background
quantities may be one or a combination of two types: quantities
given as part of the original specification of the problem; or
quantities for which it has been determined that it is adequate to
use a lagged evaluation, i.e. an evaluation with results of the
previous iteration. Either way, these quantities are to be con-
sidered known at each stage of the iterations. The special case of
electron scattering emissivity is discussed below.

In terms of these quantities the radiative rate coefficient from
level I and level I' is given by

dv
Ru’ = de ‘[ﬁ [U"'(/l, V)-l- Vll’(:u’ V)I‘“.], (28)
which applies to both lines and continua, and for both I>~I" and
I<I'. The equations of statistical equilibrium (2.1) can now be
written in the form

dv
Z nl’Q'H’Z JdQ J‘E(nl, Upi+ny Vl’lIuv)
2 [

=Yy mCuy+Y, J‘dQ j%("l Up+nVyly,). (2.9
I8 14

It is a property of this formulation that the radiation field
appears simply through the single quantity I,, at angle y and at
physical frequency v, and there is no explicit separation of the
integration into “line” or “continuum” frequencies. As a conse-
quence, this formulation automatically takes into account over-
lapping of continua and lines in any combination, including the
overlapping of lines.

2.2. Preconditioned statistical equilibrium equations

We now consider the problem of preconditioning the equations
of statistical equilibrium by appropriate treatment of the radi-
ative rates terms. A detailed discussion of preconditioning was
given in Paper I for the case of a pure line problem with a back-
ground continuum and with velocity fields. As shown in Paper
I it is possible to retain the linearity and homogeneity of the
satistical equilibrium equations in their preconditioned form,
which vastly simplifies the iteration process, since no further
linearizations of the equations are required. In Paper I this was
done by judicious evaluation of some quantities using the pre-
vious iteration. By straightforward generalizations of the tech-
niques of Paper I, we shall show that linear and homogeneous
preconditioned equations can also be obtained in the present
case, which includes non-LTE continuum transition and overlap-
ping lines.

For the purposes of the present application, we have found it
very convenient to express the formal solution of the transfer
equation not by means of the lambda operator acting on the
source function, but rather by means of an operator acting on the
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emissivity:
I,=Y.[nu], (2.10)

where ¥, is the monochromatic psi operator and 1, is the total
emissivity, given by Eq. (2.7). The psi operator differs from the
lambda operator by a factor of the total opacity y,,.

The approximate iterative scheme to be introduced here
results from replacing Eq. (2.10) by

Iuv=lP:v[’1uv] +(\Puv_lP:v) [nlv] (211)
where W}, is an appropriately chosen approximate psi operator,

and where 5], is the total emissivity from the previous iteration,

’11V=Z n; UII’+"¢-

w

2.12)

As in Paper I, a dagger denotes quantities evaluated using “old”
populations n{, from the previous iteration. The theory presented
here applies to quite general approximate opertors, but in our
practical applications we use approximate operators of the type
proposed by Olson et al. (1986), as discussed in Paper 1.

The iteration method described by Eq. (2.11) is a variant of
the method of approximate lambda operators (ALI), sometimes
known as Cannon’s method. They are not exactly equivalent,
however. In each of the two iterative methods, the basic operator,
either lambda or psi, is implicitly constructed from old variables,
so that the two methods differ as to whether the total opacity
factor connecting them is to be evaluated with old or new
variables. We find that for the present problem the implicit
choice made with the psi operator is the most useful one. For
example, the intensity given by Eq. (2.11) is linear in the
new populations, through the dependence on the emissivity
[Eq. 2.7)].

In the following development, the operators ¥, and ¥},, and
also A,, and A}, are always to be interpreted as numerical
operators constructed out of old variables. The relationship
betweeen these operators is then simply

Yol . 1=AL[G) ™ ) WAL I=ARLG) ... ]
(2.13)

where ], is the total opacity evaluated with the old populations.
We shall use the psi operators exclusively in this paper. However,
if desired, lambda operators can easily be substituted in the final
formulas, using Eq. (2.13). If this is done, the resulting iteration
scheme will then be an approximate lambda operator method,
but with a particularly advantageous choice for the total opacity
factors having been made automatically.

Another form for Eq. (2.11) results from substituting for
.y and n}, using Egs. (2.7) and (2.12),
Iuv =\Puv [”;v] - Z ‘Il:v[n;rn Um'm’] + Z ‘P;Tv[nm Umm']’ (214)

mm’ mm’

where we have used the fact that the background opacity 7, is
assumed to be the same quantity in evaluating both the old and
new emissivities. Using this expression for I, in the equations of
statistical equilibrium, we obtain the iterative equations,

dv
Z e +Z JdQ jﬁ <"11 Ui+ Vi [nh]
I v

- z ny Vl’llPtv[ann Unm' ]+ Z Vit ik [m Umm’])

mm'’
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dv
=Z mCy +Z JdQ JH <"t Up+mVy ¥ lnl]
I I

- Z Vi P h (05U 1+ Z m VY h [ Umm’])a (2.15)
mm’ mm'’

As it stands, Eq. (2.15) is not linear in the new populations,
because of the last summations on each side (the critical sum-
mations), which involve the product of n;. and n,, on the left, and
the product of n, and n,, on the right. We may obtain linear
equations by appropriately modifying these terms by replacing
some quantities by corresponding ones evaluated from the pre-
vious iteration. It is easily seen that, in order to maintain both the
linearity and homogeneity of the equations, for each term of
critical summation on the left, one should choose either n;. or
n, to be replaced by its old value, but not both. An analogous
replacement is made on the right side in each term of the critical
summation involving n; and n,,.

Which population should be chosen to be the old one? Con-
siderable insight into this question is gained by supposing, for the
moment, that we choose to evaluate all the n, in the critical
summations in Eq. (2.15) using the old populations (and thus
evaluate the corresponding factors of n; and n; using the new
populations). The the last term on each side of that equation
would be identical with preceding term except for sign, which
would then cancel, leaving an equation that is precisely equiva-
lent to classical lambda iteration.

The preceding discussion strongly suggests that to maximize
the degree of preconditioning (as opposed to approaching the
lambda iteration limit), in the critical summations in Eq. (2.15)
one should use the old populations for », and n;, and the new
populations for all the n,,. Such a choice leads to full precondition-
ing of the equations. However, such a full preconditioning can
put large demands on the numerical work; for example, it can
create couplings betweeen levels that may have been uncoupled
in the original statistical equilibrium equations. As we shall see,
the preconditioning of some terms may have little effect on the
convergence rate. Therefore, it may not always be desirable to
make the maximum preconditioning choice in all terms, and
there exist many types of partial preconditioning strategies. We
shall treat full preconditioning first, and then treat one partial
preconditioning strategy, namely, preconditioning within the
same transition. These two cases should make clear the general
ideas and procedures. Finally, we discuss briefly some other
possible strategies that may be useful in particular cases.

2.3. Full preconditioning strategy

As discussed above, this strategy leads to the iterative scheme

dv
Z ny Cl’l+z JdQ jﬁ; <nr Upi+m Vil [nl]
7 I
- Z ny Vl’l\P;rv [n;rn Umm’] + Z n;’ Vl’llP:v [nm Umm'] >

dv
=y mCy+y, Idg J%“} <"1 Uy +mVy¥ulnl]
Iz I

- Z n Vll’\P;rv [n;n Umm’] + Z n{ Vll’\P:v [nm Umm’] ) (216)

This system of equations determines the set of new populations
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n,. Because of their homogeneity, one of them must be replaced
by the equation expressing the total population of the species,
summed over all levels.

For practical calculations it is convenient to rewrite these
equations to emphasize their linear dependence on the n;. It is
straightforward to show that they may be put into the form

z Fll'"1'=2(rﬁ' +If)n, =0, 2.17)
T I
where
I =Ci—dn Z Crr, (2.18)
ry —‘[dQ J I:Ul Vil iy — <Z X;'v)q’,fv <Z U”m)
I Iz
—0u <Z Um">—5w<z Vz’t”)”;fvf:l, (2.19)
I iz

and
I =Y, 1-¥5 Ik 1+¥h [n] (2.20)

In Eq. (2.19) the old opacity is defined by the same equation
xbv=nlVip—nl Vi, (221)

for either orderings of the indices (i.e. it is antisymmetric in the
two indices).

We now briefly discuss some of the considerations that go
into the numerical implementation of the method. First of all, one
notes that, because of the conservation property

Zru =

one only needs to compute the nondiagonal elements of I'%., the
diagonal elements being expressed as a row sum over the non-
diagonal elements. Thus, the terms involving §,, in Eq. (2.19) can
be ignored for the numerical computations.

Upon the introduction of an appropriate frequency and
angular quadrature formula, the numerical evaluation of the
elements of I'} proceeds by accumulating the contributions from
each frequency and angle, using the formal solution of the trans-
fer equation to compute the old radiation field ¥,,[#},] and the
elements of the approximate psi operator W}3,. Since the number
of active radiative transitions is ordinarily substantially smaller
than the number of level pairs, considerable savings can be
effected by maintaining a list of transitions active at the current
frequency. This is used first to compute the two relevant sum-
mations in Eq. (2.19), and then to find the contributions to
I'f only for the relevant pairs of indices II'. This list can be
quickly updated as one proceeds through the frequency grid,
knowing where each process begins and ends.

If ¥}, is a local operator, then all the terms in Eq. (2.19) are
ordinary numbers, and it can be solved independently at each
point in the medium. However, if it is a nonlocal operator, then
the terms involving W}, are to be regarded as spatial operators
acting on all quantities to the right, that is, on the n;. and also on
the sum over the U,,... This requires that the equations be solved
as a coupled set between different spatial points. A tridia-
gonal operator (or wider band approximation) can be treated
efficiently by well-known block band methods, but the computa-
tional time and storage requirements are increased over those of
the local operator.

(2.22)

2.4. Preconditioning within the same transition only

The preceding full preconditioning strategy can easily be seen to
be unnecessarily complete for many types of problems. For
example, in the critical summations in Eq. (2.15), the product
Vip U e =0 for all frequencies when I’ and mm’ refer to nonover-
lapping radiative transitions. Even when some frequency overlap
occurs, the mathematical overlap of the functions V. and U,,, is
clearly much greater for one transition with itself than between
two differing transitions. This suggests that a useful strategy is to
precondition within the same transition only. This is accomp-
lished by using the new populations n,, in each critical summa-
tions only for those two terms for which mm’ is the same as II' or
I'l. In the other terms the use of n' will cancel an identical term in
the preceding summation. Therefore, all summations in Eq. (2.19)
will reduce to just two terms corresponding to the transition Il
and I'l, yielding the iterative scheme

dv

Z nl’Cl'l+Z JdQ JE (ny Upy+nye Vt'z‘Puv[’?;v]
r g

—ny Vl’l\P:v[an Upl—n Vl’l\P:v [an Ui+ "1*' Vz'tq':fv[nt Uy']

+n] Vi Wi [ Uri])

dv
=y mCy +Z IdQ JE MUy +nVy¥,,nl]
G I3

Y[ Up]—m Vi Wy [nzT Uil
wmUy ]+n, V¥ [ Upi]), (2.23)

A similar reduction to the form (2.17) can be done here, where

—-nVy

+n;r V¥

ll —fdgf {(1 —Xr llIJ )Ul'l+ VI’II;?‘;II’

=S Y L = ¥R U+ Vi L8 ]}, (2.24)

and
zfvfu —‘Puv[’?uv] ‘P [nl Upl—- ‘Puv[nl Uil (2.25)

Although two terms involving W}, appear in Eq. (2.25), for any
particular values of I and ! only one survives, because of the
vanishing of either Uy or U, by Eq. (2.2) or (2.3). These equa-
tions are very similar to the ones presented in Paper I, and indeed
they reduce to those under the same restrictive assumptions of
nonoverlapping lines with background continuum.

Many of the remarks made at the end of the preceding section
concerning the numerical solution of these equations also applies
here. The numerical effort is smaller here, since only one
transition contributes to each element of I';;..

2.5. Other strategies

One can easily imagine other partial preconditioning strategies
that may be advantageous for particular problems. For example,
one might augment the partial strategy of Sect. 2.4 in order to
include special cases of unusual overlap. In case of strong line
overlap, this could be done by including not only the same
transition in the preconditioning, but also include any line or
lines that overlap it. The general guiding principle is that addi-
tional preconditioning should be done in those terms for which
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there is a significant frequency overlap, but probably only experi-
ence will show what a “significant” overlap really means.

Another partial strategy might start from the full strategy of
Sect. 2.3, but would avoid preconditioning some terms in order to
maintain some desirable structure of the rate matrix I'y., for
example, its overall block tridiagonal form in cases where only
transitions between neighboring stages of ionization are treated.

The above represent only a few suggestions for partial pre-
conditioning strategies. No special equations will be given to
implement them, since it is probably best to do this in the
numerical code itself.

2.6. Electron scattering

In the energy ranges of interest here, the scattering coefficient for
electron scattering has the classical Thomson value and, as such,
can be easily incorporated into the absorption (extinction) coef-
ficient Xuv- However, the inclusion of electron scattering in the
emissivity #,, is not straightforward. Electron scattering is often
treated as coherent in the context of steller atmospheres, and this
is usually a very good approximation for transfer in the con-
tinuum. However, coherence is manifestly incorrect for spectral
lines, since scattered photons are redistributed over the electron
Doppler width (see e.g. Chandrasekhar 1960, §86; Hummer
& Mihalas 1967), which is broader than the line Doppler width
by the large factor (m;en/m,)'/>.

While the treatment of noncoherence is probably necessary to
determine the effects on lines, there are more efficient methods
that apply to the continuum, where electron scattering may be
well-approximated as coherent and isotropic. For simplicity in
this preliminary investigation, we have used this approximation
for both lines and continua.

The simplest conceptual treatment of coherent and isotropic
electron scattering is to include it in the terms x. and 7. in
Egs. (2.6) and (2.7), with contributions to these terms being up-
dated using the results of the previous iteration. In this way, the
non-LTE parts of the transfer are treated by ALI, while the
electron scattering part is treated by classical lambda iteration.
One advantage of this kind of lambda iteration method is that it
would be easy to generalize to include the effects of noncoherence
by evaluating the emissivity using the full redistribution function.

Another approach to the monochromatic transfer problem is
to write the transfer equation in the form introduced by Feautrier
(1964),

, 0%y, Yy ca %0
_2=u‘“’_ a s P T R s
oty X+ 10 Xuvt X5
where x4, and x}=n.oy are, respectively, the “absorption” and
electron scattering opacities, and S}, is the “absorption” source
function. The term “absorption” here refers to all proceses for
which the absorption and emission coefficients can be expressed
in terms of populations; this includes all non-LTE lines and
continua, and background LTE processes such as free—free.
For the two-stream approximation, u,,=u,=J,, so that
Eq. (2.1) can be written,
2
ﬂz a_ﬂ_sav(uv—sz)a

Jy, (2.26)

o~ 2.27)
where
avsxa’i“xs. (2.28)
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Equation (2.27) can be solved using a trivial modification of the
usual Feautrier method, which takes into account the extra
factor ¢,. This method worked very well on our test problem,
giving convergence rates very much like those without scattering.
Although we have not actually done so, it is possible to generalize
this method to include explicitly the coupling of a number of
radiation streams at various angles. This would give rise to
multicomponent transfer equations at each frequency in the form
of a block tridiagonal system, which could be solved by block
Gaussian elimination.

When the number of discrete angles per hemisphere is greater
than one, scattering can also be treated by introducing the
geometrical factor

Jy

rw=
uy 5
Uyy

(2.29)

which is evaluated from the previous iteration, much in the spirit
of variable Eddington factors. The major disadvantage of this
approach is that it does require a considerable amount of extra
storage for all the quantities r,,. We expect that this method
could also be generalized to include noncoherence.

3. Implementation

The primary task in implementing numerically the precondition-
ing strategies above is the evaluation of the coefficient matrices
I'%. given by Eq. (2.19) or (2.24). This calculation can be organized
conveniently by dividing the frequency interval in which all
transitions occur into zones, defined by the thresholds of all
bound-free transitions and by the red and blue edges of each line,
as specified by a band width parameter; the same set of
transitions are active for all frequencies in the zone. As only one
transition is added (or possibly subtracted in the case of a line) at
each zone boundary, it is simple to keep track of the opacities and
emissivities entering the solution of the transfer equation at each
frequency.

The zone boundary frequencies are first created by running
through all transitions in turn, and then are ordered by ascending
frequency, along with the identification number of the transition
entering or exiting, which is negative in case of a bluc line edge.
The algorithms described in Paper I are then employed to gener-
ate the frequency mesh in each zone. Photoionization cross
sections are generated and stored at all frequencies in the zones
where the corresponding bound—free transition is active, and the
profile functions are generated and stored for each line.

The monochromatic transfer is the integrated for each fre-
quency and angle, starting with the lowest frequency. The quanti-
ties I'R are then accumulated frequency by frequency, according
to Egs. (2.19) or (2.24).

In most applications of the present ALI method, the formal
solutions of the transfer equations can be done with improved
Feautrier method described in Paper I, which is based on the
symmetric Feautrier variable u,=(I,,+1-,,)/2 in the con-
tinuum, or u,=(I,,+1_,, ,,~,)/2 within a single line with a velo-
city field. However, the Feautrier formulation breaks down when
both velocity fields and overlappping lines occur together, be-
cause the required symmetries no longer apply. These cases
require a method based on the specific intensity I, itself, such as
the method of short characteristics of Olson & Kunasz (1987).
Alternatively, one might use a Feautrier-type method specifically
adapted to treat the asymmetry. We have not implemented such
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methods in our work, since we have not yet treated problems for
which they are necessary.

We implemented several of the methods presented in Sect. 2.6
for treating the electron scattering, in particular the lambda
iteration method, the two-stream method of Eq. (2.27), and the
iteration factor method of Eq. (2.29).

The code now includes a number of other new facilities. The
electron density is expressed as a sum of two contributions,
a prespecified “background” component arising from all of the
other elements in the atmosphere, and a “self-consistent” part
evaluated from the ion populations of the element being treated
from the previous iteration. This component is initialized by an
input value for the number of free electrons per nucleus of the
element in question. Either component can be set to zero as
desired. This simple scheme appears to converge much more
rapidly than the main ALI calculation. An analogous procedure
has been implemented for “background” continuous opacities,
augmented by the free—free opacity arising from the ions of
element being treated.

In addition to the free or reflecting lower boundary condition
described in Paper I, the option of a diffusion-approximation
condition is now available. The temperature derivative is re-
placed by a difference approximation based on the last two depth
points for consistency with the treatment of the transfer equa-
tions.

Here, as in Paper I, we used the acceleration method of Ng
(1974) to improve the convergence of the method. A number of
important points about the Ng method and our use of it were not
covered in Paper I, and we should like to do so now. Although
the original Ng method did not include the possibility of using
“weights” for defining the mean square differences, we have found
that such weights can be easily included in the method and can
lead to substantial improvements. In our work we have chosen to
use the set of level populations at the various depths as defining
the basic solution. With this choice, weights equal to the inverse
squares of the level populations appear to give the best results;
these are equivalent to making the method sensitive to the mean
square of the relative errors rather than absolute errors in the
populations.

Although the Ng method works on nonlinear equations, it
really only works well after the errors in the approximate iter-
ative solution become fairly small, that is, become approximately
linear deviations from the true solution. This can be checked by
monitoring the maximum relative change in the solution in each
iteration (denoted as C, in Paper I); this should be <0.1 or 0.01
before starting the Ng steps. Applying the Ng method too soon
can produce a subsequent poor convergence rate, or even diver-
gence. The optimum iteration stage to turn on the Ng method
depends very much on the type of problem treated, and probably
can only be determined with some experimentation. Typically,
for the problems we have treated, the optimum starting point
occurs about after a number of iterations in the range 15-30.

An important parameter of the Ng method is Kp,ex, the
number of previous iterations that are used in constructing
a single Ng acceleration step. We have found K, =5 to be
a good value for our work, but, again, this is probably best
determined by experiment with the particular types of problems
to be treated.

Conceptually, the simplest way of using the Ng method is to
apply it to a set of Ky, iterations found by the underlying
“ordinary” iteration scheme (here ALI). The resulting accelerated

iterate is then used to start a new sequence of ordinary iterations;
when at least Ny, of these are determined, the Ng method is
again used to give a new accelerated iteration.

However, once started, it is not necessary to wait for
K.k new ordinary iterates before applying the Ng method, and
it can be used for every step. This may seem surprising to those
accustomed to acceleration methods that work by extrapolation,
such as Aitken’s A2-method (see, e.g. Stoer & Bulirsch 1980).
Extrapolation methods assume that the iterates follow some
simple law in iteration number, such as polynomial or exponen-
tial, and it is therefore imporant that the iterates be part of
a consistent, analytical progression. The Ng method is quite
different in that it works by finding the “best™ solution that can
be constructed from a linear combination of previous iterates.
This best solution depends only on the linear space spanned by
these previous iterates and not on their ordering in iteration
number. For example, if the iteration numbers of the Ky, iter-
ations were permuted before applying the Ng method, the results
would not change (for extrapolation methods, permuting the
iteration numbers would be disastrous!). It is clear that the Ng
method does not require a “consistent” set of iterations in the
same sense, and, once started, it can be used at every iteration
step, even though it initially mixes ordinary and accelerated
steps. It is in this form that we have used Ng method here (and in
Paper 1), and we have found much faster overall convergence
that when ordinary iteration steps are interleaved.

It is likely, however, that particularly difficult cases exist
where it might be useful to interleave some ordinary iterations
between Ng steps, since these will tend to settle the solution
down, and possibly prevent a divergence of the iteration scheme.
(The same comment may apply to the introduction of some
ordinary lambda iteration steps in very difficult cases.)

4. Numerical results

A model helium atom including all three stages of ionization was
used as the test problem, with 19 levels of He I (n <4) and three of
He 11. All 31 allowed bound-bound transitions were included, as
were all 22 bound-free transitions to the ground state of the next
ion. The Hel radiative data came from the Opacity Project
(Fernley et al. 1987) and the collisional rates for He 1 were those
of Berrington & Kingston (1987). Collisional ionization rate
coefficients for ground states were obtained from Bell et al. (1983)
and those for the excited states were estimated using the formula
of Seaton (1962). Up to 1000 frequencies and one or two angle
points per hemisphere were used (up to three points per hemi-
sphere for calculating the emergent fluxes).

For simplicity, and to concentrate on the effect of overlapping
transitions, the atmospheric model was taken to be isothermal,
with a diffusion-approximation boundary condition at a mass
column density of 10 gcm ™2 (simulating a semi-infinite slab) with
constant temperature and mass density. For similar reasons of
simplicity, electron scattering was treated in the coherent approx-
imation, which ignores frequency redistribution effects in the
lines.

For the particular test problem where T=210*K,
p=10"1%gcm™3 and n.=10'"*cm™3, we checked our results
against a similar model kindly calculated for us by Keith Butler
using an implementation of the method of Auer & Heasley (1976)
due to Butler & Giddings (1985). We found substantial agree-
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Fig. 1. The emergent flux (solid curve) for pure helium test problem with
T=210*K, p=10"'°gcm™3, and n,=10'* cm~3. The dotted curve is
the emergent flux for a blackbody at T=210* K. The spectral lines are
not resolved, but their positions and range in flux can be clearly seen. The
weak emission lines and continua here are mainly due to the Schuster
mechanism (see text)

ment between these calculations. The emergent flux calculated by
our method for this test problem is given in Fig. 1.

Both the full and the partial preconditioning strategies de-
veloped in Sects. 2.3 and 2.4, respectively were coded and tested.
For the test problem both strategies required the same number of
iterations, although each iteration with full preconditioning re-
quired significantly more computer time. Convergence was
roughly a factor of two slower than for the 19 Level He I models
with similar parameters treated in Paper I

We also compared the three different methods for treating
electron scattering described in Sect. 3. As expected, the lambda
iteration method was the slowest in convergence, by about a fac-
tor of two. The iteration factor method of Eq. (2.29) converged
more quickly but did require quite a bit more storage. The
two-stream method of Eq. (2.27) gave the best convergence, but
the limitation to two streams produced noticeable deviations
from our more accurate calculations with four and six streams.
This defect could be presumably be corrected by implementing
a multicomponent generalization of Eq. (2.27).

Some models with velocity fields were also computed. Be-
cause the code uses the observer’s frame, we treated only cases for
which the velocities were limited to a few times the thermal ion
velocity. The populations for these cases did not differ much from
those of the static case, but the emergent fluxes showed substan-
tial effects due to the profile shift in the formal solution. This
behavior is consistent with similar results found by other
workers.

Although these test models are not meant to apply to any
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particular physical case, it is interesting in that they exhibit
beautifully the Schuster (1905) mechanism. The emergent flux in
Fig. 1 shows the strong emission of the weak lines and the weak
edges in emission that result when the electron scattering opacity
is stronger than the bound-bound or bound-free opacity. One
notes that subordinate lines in the region log v<14.5 are formed
nearly in LTE, but they still have enough absorptive opacity to
dominate the electron scattering opacity. Thus, the emergent
fluxes in the cores of these lines are very near to the thermal value
(dotted curve). However, the continuum transfer is dominated by
scattering opacity, and the continuum emergent flux falls well
below the thermal value, giving rise to the emission profiles.
A similar discussion applies to the continua that appear in
emission.

The helium test problems treated here involve lines and
continua that overlap other continua, but not lines that overlap
other lines, and they therefore do not yet test the full capabilities
of our ALI method. However, since lines and continua are
treated in a unified manner in this formalism, there is every
reason to expect that the treatment of line-line overlaps will
present no difficulties. We are currently planning to apply the
method of this paper to molecular line transfer in planetary
atmospheres (see e.g. Kutepov et al. 1991), where such line over-
laps can be important.

Acknowledgements. We thank Keith Butler for providing the
independent calculation for the test case reported here. One of us
(DGH) gratefully acknowledges support from the Smithsonian
Institution Visitors Program that helped facilitate this work.

References

Auer L.H., Heasley J.N., 1976, ApJ 205, 165

Bell K.L., Gilbody H.B., Hughes J.G., Kingston A.E., Smith F.J.,
1983, J. Phys. Chem. Ref. Data 12, 891

Berrington K.B., Kingston A.E., 1987, J. Phys. B 20, 6631

Butler K., Giddings J.R., 1985, in: Lynas-Gray A.E. (ed.) News-
letter on Analysis of Astron. Spectra. Daresbury Laboratory,
no. 9, p. 7

Chandrasekhar S., 1960, Radiative Transfer. Dover, New York

Feautrier P., 1964, C. R. Acad. Sci. Paris 258, 3189

Fernley J.A., Taylor K.T., Seaton M.J., 1987, J. Phys. B 20, 6457

Hummer D.G., Mihalas D., 1967, ApJ 150, L57

Kutepov A.A., Kunze D., Hummer D.G., Rybicki G.B., 1991, J.
Quant. Spectrosc. Radiat. Transfer 46, 347

Mihalas D., 1978, Stellar Atmospheres. Freeman, San Francisco

Ng K.C,, 1974, J. Chem. Phys. 61, 2680

Olson G.L., Kunasz P.B., 1987, J. Quant. Spectrosc. Radiat.
Transfer 38 325

Olson G.L., Auer L.H., Buchler J.R., 1986, J. Quant. Spectrosc.
Radiat. Transfer 35, 431

Rybicki G.B., Hummer D.G., 1991, A&A 245, 171 (Paper I)

Seaton M.J., 1962, in: Bates D.R. (ed.) Atomic and Molecular
Processes. Academic, New York, p. 375

Schuster A., 1905, ApJ 21, 1

Stoer J., Bulirsch R., 1980, Introduction to Numerical Analysis.
Springer, New York

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1992A%26A...262..209R

