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ABSTRACT 

Two new techniques for obtaining solutions to non-LTE problems are developed. The essence of 
the first technique is that the core-saturation approximation, the Eddington-Barbier relation, and the 
upper boundary condition are used to derive a simple first-order differential equation for Sh This 
approximate equation is solved analytically for a two-level atom in an atmosphere with constant 
properties and zero continuum opacity. The correct surface source function, 5,

/(0) = (e)1//2R, and the 
correct thermalization depth are obtained. 

Second, we develop a new efficient perturbation technique for numerical solutions to non-LTE 
problems. Using a linear test function, a one-point quadrature relation between /„ and Sv is derived. 
From this relation it is possible to obtain an approximate solution of the transfer equation with a 
small amount of computing time. Higher order correction terms are then obtained from a perturba- 
tion series or by iteration using LTE techniques. A 1% accuracy in Sl is usually obtained after 
approximately four iterations. The computing time required to solve a one-dimensional non-LTE 
problem with velocity fields for a two-level atom is of the order of 5 times the computing time 
required to solve the corresponding LTE problem. 
Subject headings: Une formation — numerical methods — radiative transfer 

I. INTRODUCTION 

The present paper deals with the solution of the 
non-LTE radiative transfer equation in situations where 
the source function, Sv, may be expressed as 

(i) 

Here, <f>„ is the line absorption profile normalized to unit 
area, and r is the ratio between the continuum and the 
integrated line opacities. The frequency v is measured in 
units of the Doppler width. B is the Planck function, 
and St is the line source function, which can be written 
as (cf. Athay 1972a) 

In this expression, e* and et are related to the various 
creation and destruction mechanisms of photons. The 
mean intensity (/) is defined as 

(/> = ï/1/ <¡>pIvdndv, (3) 

The difficulty of solving the transfer equation is a 
result of the homogeneous term (/). Mathematically, 
this term produces a coupling between different fre- 
quencies and angles at each depth. Physically, this 
couphng is caused by scattering events during which 
photons, absorbed at a certain frequency and angle, are 
reemitted at other frequencies and in all directions. A 
small number of photons are emitted far out in the 
wings, where the opacity is low. These photons travel 
large distances before they are reabsorbed. This leakage 
of photons in the wings leads to interactions over very 
large distances. The nonlocal behavior of the radiation 
field is the main cause of the numerical difficulties of 
solving the transfer equation when e* and e* are much 
smaller than unity. 

In the past, a number of methods have been devel- 
oped to solve the transfer equation. Here we shall men- 
tion only those which are related to the present work. 
The first method, developed by Rybicki (1971), is called 
the core-saturation method. The essence of this method 
is that inactive photons are removed from the transfer 
problem by the approximation 

(4) 

where Iv is the specific intensity. Using this general 
expression for (/), we may account for the effect of 
velocity fields on the specific intensity. 

in the core of the line. This approximation is based on 
the fact, mentioned earlier, that wing photons are very 
efficient in transferring radiation, whereas core photons 
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NON-LTE 721 

play an essentially passive role (Osterbrock 1962; 
Rybicki and Hummer 1969). Using this approximation, 
Rybicki derived an expression for S¡ which involves only 
the radiation field in the wings of the line. Here and in 
the following, the wings of a line are defined as those 
frequencies and angles for which 

Tv<y> (5) 

where tv is the monochromatic optical depth, and y is a 
free parameter, the value of which should be on the 
order of unity. The equation for S¡ is solved by direct 
iteration. Thus, the use of machine core storage is 
minimal and there is no need for matrix inversions. The 
drawback of the method is that, in order to make the 
approximation Iv = Sv sufficiently good for a high accu- 
racy in the final solution, it is necessary to choose a 
relatively large y. This, of course, decreases the rate of 
convergence of the lambda iteration, so that typically 
40-50 iterations are needed for a 1% accuracy in S¡. The 
core-saturation method has been successfully applied to 
two-dimensional problems by Stenholm (1977). 

An entirely different approach to radiative transfer 
problems is developed by Athay (19726, 1976) and 
Delache (1974). Using probabihstic arguments, these 
authors derive a simple first-order differential equation 
for the quantity (/). This equation can be solved 
analytically in certain situations. However, the solutions 
are accurate only to within a factor of 2. Also, it is 
somewhat unsatisfactory that probabihstic arguments 
are used to derive this equation, since the transfer 
equation contains all relevant physics. Thus, it must be 
possible to derive an equation for (/) directly from the 
transfer equation, provided some suitable approxima- 
tions are made. This was done by Frisch and Frisch 
(1975) in a beautiful paper. These authors derive an 
equation for S¡ which gives very good agreement with 
numerical solutions of the transfer equation. 

Finally, we mention the perturbation technique of 
Cannon (1973a, 6). This method consists of replacing 
the integral over frequency and angle by a quadrature 
sum of a much lower order than is normally required for 
a given accuracy. This is equivalent to replacing the 
ordinary lambda operator A by a more approximate 
operator A*, such that 

S1 = ASl^eB=A*Sl+eB+(A-A*)Sl. (6) 

The last term is considered to be a small error term, 
which is calculated iteratively or by using a perturbation 
technique. Note that in contrast to the core-saturation 
method, the accuracy of the final solution is indepen- 
dent of the choice of A* if the solution converges. The 
advantage of Cannon’s method is that the required 
matrices and their inverses corresponding to A* can be 
calculated much more rapidly than those corresponding 
to A. The extra time required to solve for the correction 
terms is insignificant. 

In the present work, we will first derive a simple 
equation for S¡ using three approximations, one of which 
is the core-saturation approximation. We then use a 
technique similar to that of Cannon (1973a, b) to obtain 
more accurate solutions. Finally, some refinements and 
generalizations are made, resulting in a simple and very 
efficient method for solving non-LTE problems. 

II. AN APPROXIMATE EQUATION FOR S¡ 
In this section we shall derive a simple first-order 

differential equation for S¡ directly from the transfer 
equation. It is a well-known fact that virtually all solu- 
tions of the transfer equation display the same three 
characteristic properties for semi-infinite atmospheres 
with no incident radiation: 

Iy~Sv, t„ » 1 ; (7) 

T '■ = 1), T, <?■ 1, fi>(); (8) 
/V1 

C-0, -T„«l,/i<0. (9) 

Note that the monochromatic optical depth, t„, is calcu- 
lated along a ray, i.e., 

dTv = (<j>v/r+\)dT/n, (10) 

where r is the continuum optical depth. The first of the 
above relations is the core-saturation approximation 
discussed in § I. The second relation is the Eddington- 
Barbier relation, which is valid for the emergent radi- 
ation at Tj, — 0. However, this relation is approximately 
valid also for the interior radiation field if t„ is less than 
unity. The third relation is the upper boundary condi- 
tion, which of course has an important influence on S¡. 

We now assume that <t>v and r are independent of r 
and pi. Then we can write 

/oo 
JA dr, (11) 

-00 

and 

T,=T(,*vA+!)//*• (12) 

Integrating equation (7) over ft, we obtain an approxi- 
mate relation between Jv and Svr valid in the core of the 
line (Rybicki 1971): 

JV~SV> n (13) 

To calculate a similar relation between J, and Sv valid in 
the wings of the line, we employ the test function 

Sv=a+bT. (14) 
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Using equations (8), (12), and (14), we obtain 

7,=a+^/(<kA+l), (15) 

for fi>0. Integrating equations (15) and (9) over /x, we 
find 

J^Ha+ib/ih/r+l)] (16) 

Comparing this expression to equation (14), we obtain 

(17) 

which can be considered a one-point quadrature formula, 
valid in the wings of the line. The depth t'(v) is given by 

r'(»')=[2(^/r+l)]_1. (18) 

Note that t' is independent of r. 
We can now relate (J) to Sv by writing 

(/> = <7C>+ </„> = / JAdv+j J^dv. 
•'core •'wings 

(19) 

III. THE PSEUDO-LINE TRANSFER EQUATION 
Equation (22) is a simple integral equation for the line 

source function S¡. It can very easily be converted into a 
general differential equation. However, here we shall 
only study the two-level atom with no continuum. In 
this case, we have r=0 and 

£* = £*=£', (23) 

where e' is the photon destruction probability. Equation 
(22) simplifies to 

(1 +c')S/-e'B=2Sl i\ dv+ dv. 
•'0 Jvc 

(24) 

Noting the normalization of <¡>v, we find that 

e'(Sl-B)=-2Sir<l>vdp+ rStir'^dr. Jvc 
JVC 

(25) 
It is particularly convenient to use the probability of 
photon escape, ?e (Osterbrock 1962), 

The transition between the core and the wings is defined 
by the frequency, vc, for which t/(^)=t. Comparing 
equation (18), we find that 

<fc,=r(l/2T-l). = V>can (20) 

Inserting equations (13) and (17) into (19), we can write 

</)«/ SXt’)$vdv. (21) 
•'core •'wings 

Using equations (1) and (2), we finally obtain an ap- 
proximate equation for S¡. 

(l+et)S;—e*5=2 Ç* Jo 

+l 

s + —4—5 
h+r 

$vdv 

<í>„+r s^y 4>v+r 
B(r') 

X<t>vdv, (22) 

where vc = vc(t), and t'=7\v). The wing integral in this 
equation contains the long-range interactions resulting 
from the efficient transfer of radiation by the wing 
photons. Note also that the upper boundary condition is 
included in the wing integral. Thus, the above approxi- 
mate equation indeed contains the basic mechanisms of 
radiation transport in spectral lines. 

(26) 

as depth variable. Pe is equal to the probability that a 
photon is emitted outward (/i>0) in the optically thin 
wings of the line. We obtain 

e' {Sl~B)=-2S,Pe+j
PeSldPX 

•'0 
(27) 

which has a simple interpretation: The number of pho- 
tons created or destroyed at a depth, r, is balanced by a 
leakage of photons in the wings of the line minus a 
similar inflow of radiation coming from all other depths. 
Since the leakage is isotropic while the inflow comes 
only from below, the former flux tends to be twice as 
large as the latter, which is the reason why S¡ usually is 
smaller than B. Note that this interpretation is in con- 
flict with the derivation of Delache (1974). He derives 
an approximate equation for (/), using the (N)x/2 law 
for random walks or diffusion processes. However, this 
argument is incorrect (cf. Frisch and Frisch 1975). In 
our derivation the only probability of importance is the 
probability Pe that a photon is emitted in the wings. 
Such an emission is the only mechanism in our equation 
by which a photon may be transferred from one depth 
to another. 

Equation (27) can be written as a differential equa- 
tion: 

(s'+2Pe)f = -S;+^-(S,-BÆ (28) 
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Assuming that e' and B are independent of Pe, the 
solution of this simple equation is 

S(=I?[ey(e'+2Pe)],/2. (29) 

This solution is remarkable, since it gives the correct 
thermalizationdepth, S^B aX Pe~\/2e', and the exact 
value for the source function at the surface: 

S;(To=0) = 5/(Pe = è)=5[ey(e'+l)]1/2=JB£1/2, 

(30) 

where r0 is the integrated Une opacity. Solutions similar 
to equation (29) have been obtained by Ivanov (1973) 
and Frisch and Frisch (1975), who used other methods 
of derivation. 

The simplicity of equation (28) suggests that Pe is the 
most natural depth variable. The solutions expressed in 
terms of this variable are independent of the type of line 
profile considered. However, it is customary to express 
Si in terms of r0 = r/r. The transformation between Pe 

and t0 is given by equation (26), where vc now is defined 
by 

y=v*vc=5- (31) 

For a pure Doppler profile Peocr0
_1, whereas for a 

Voigt profile Pe 
oct0

_1'/2 (cf. Rybicki 1971). Thus, our 
approximate equation for Si gives 

S¡o:t0
1/2 (Doppler); (32) 

^ocr;/4 (Voigt), (33) 

when 2Pe »e'. This result is in excellent agreement with 
numerical calculations. 

In spite of the crudeness of our approximations, we 
have been able to derive an equation for S¡ which is 
simple to solve and yet gives surprisingly accurate re- 
sults regarding the depth variation of S¡. This shows that 
the basic physics of radiation transport in spectral lines 
has been retained in spite of the rather crude treatment. 
In particular we have been able to show explicitly that 
the source function is controlled by the exchange of 
photons between distant parts of the atmosphere, and 
that this exchange occurs in the transparent wings of the 
Une. The solution obtained here is valid for the simple 
case when r=0 and when e' and B are depth- 
independent. However, there is no reason why equation 
(22) should be inappropriate in more complicated situa- 
tions, since our basic assumptions are not in any way 
less valid if r^O or if e' and B vary with depth. 

As far as we know, the method for solving non-LTE 
problems presented here is new, even though the ap- 
proximations on which the method is based are all 

well-known. Our simple approach to the derivation of 
an equation for S¡ is more straightforward than the 
heuristic derivations of Athay (19726,1976) and 
Delache (1974). These authors derive an equation for S¡ 
using widely different arguments. The results obtained 
from their equation are less accurate than those pre- 
sented here. The derivations of Ivanov (1973) and Frisch 
and Frisch (1975) are elegant and more rigorous but 
also more complicated than ours. Their solutions con- 
tain a more accurate definition of the escape probabil- 
ity, but basically the equation obtained by these authors 
is identical to the one derived here, even though the 
methods of derivation are entirely different. 

IV. THE VALUE OF Y 

We have derived an equation for S¡ by employing a 
linear test function, S¡=a-\-bT. Using this function, we 
found a value of 0.5 for y. As we have seen, this 
somewhat arbitrary test function gives accurate results. 
However, we point out that there can be no unique 
choice of the value of y, since this parameter does in 
fact depend on the source function itself. Therefore, we 
have calculated S¡(t0) obtained from equations (26) and 
(29), using the wing approximation 

Jp = 2SÁTy=y) (34) 

for different values of y. The frequency vc was de- 
termined from the equation 

T,c
=Vf>.v

=Y- (35) 

In Figure 1, we show S¡(t0) obtained from our equations 
together with the exact solutions obtained by Avrett and 
Hummer (1965). We have made calculations for B— 1, 
r=0, and e=10-4, using y=0.5 and 1.0 for a pure 
Doppler profile and for a Lorentz profile with y=0.25 
and 0.5. It can be seen from the figure that the best 
overall agreement occurs for y^0.45-0.8, which is in 
good agreement with our earlier estimate. We can also 
see that the approximate solution does not depend too 
strongly on the value of y. In particular, we note that 
the surface value of S¡ is independent of y. 

The core-saturation approximation works very well in 
the optically thick parts of the line, and the wing ap- 
proximation is rather accurate in the far wings, where 
t„<1. Both of these approximations are poor near the 
transition between the core and the wing, where r^l. 
Therefore, the errors in the approximate solution for S¡ 
always tend to be largest for r0^y. Also, we see from 
Figure 1 that S¡ is constant above t0 ~y. The reason for 
this is that the wing approximation is equivalent to 
ignoring all emissions and absorptions above the depth 
where rv =y. Thus, effectively the atmosphere ends at 
r0 ~y. Later we shall see how this inconvenience may be 
removed. 
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724 SCHARMER Vol. 249 

Fig. 1.—Si(t0) obtained from eqs. (29), (34), and (35) for different values of y. The calculations were made with e= 10-4 for a pure 
Doppler profile (¿z=0) and for a Lorentz profile (a = oo). Shown are also the more exact calculations of Avrett and Hummer (1965) (dots and 
circles). 

V. AN ITERATIVE SOLUTION OF THE TRANSFER 
EQUATION 

To find the correct variation of the source function 
with depth, we must use the exact relation 

Inserting equations (1) and (2), we obtain 

, /•OO 
(l+et)5,-J 

*/ — oo 
<h 
Qv+r 

S, dv 

JV = KSV, (36) dv 

where A, is the monochromatic lambda operator. Our 
approximate equation for (/) results from replacing Kv 

by the more approximate operator A„*: 

/oo 

-00 
dv. (40) 

A * 
V 

'i, j,>y; 

jJdTpd(T„-y), T„<y. 
(37) 

As we have seen, this approximation gives a rather good 
accuracy. The advantage of the operator A„* is that it 
results in an equation for S¡ which is very rapidly solved 
numerically. We therefore propose a method for solving 
the transfer equation which is similar to the technique of 
Cannon (1973a, Z?). We rewrite equation (36) in the 
form 

This equation is solved by iteration: The “error” term 
involving the operator (A,—A,,*) is first put equal to 
zero, which gives an initial solution Sf°\ Then this 
solution is used to recalculate the error term. The pro- 
cess is iterated until convergence. It should be pointed 
out that the operator A„ is never calculated explicitly. 
The terms involving A„ are instead obtained simply by 
calculating//) from the known source functions: 

^ <#>,+>• 
B, or S„. 

<t>v+r 
S¡> (41) 

Jy=A*S,, + (A.l,—A*)Sr. (38) 

Calculating (/), we find 

/OO /'00 
<l,pA*[Sy]dv+j <t>p(Ap-A*)[Sp]dV. 

- 00 ^ — 00 

using the Feautrier LTE technique. Thus, the only ma- 
trix which is calculated and inverted explicitly is that 
corresponding to A,*. 

To calculate numerically the operator A„*, we must 
know the frequencies, Vj, which separate the core from 
the wings at each depth point, Tj. Thus, the frequencies 
Vj are determined from the equations 

(39) \(T/)=Y. j^jo> (42) 
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where Tjo is the first depth point for which the line is 
optically thick at the frequency ^=0. 

The integrals over frequency are replaced by quadra- 
ture formulae. To avoid interpolations, the set of 
frequencies defined by equation (42) were used as 
quadrature points. This makes the numerical representa- 
tion of the k* operator particularly simple: 

k—j, 

k^j, 
(43) 

where the index k corresponds to the depth variable r, 
and the index j to the frequency v. The frequency 
quadrature weights are calculated from the trapezoidal 
rule. However, it must be noted that the operator k* is 
discontinuous at the transition between the core and the 
wing. 

Equation (40) can be written as a matrix equation in 
the standard form: 

A*s=£, (44) 

where the vector s corresponds to the line source func- 
tion, and e to the right-hand side of equation (40). The 
matrix A* is an upper triangular matrix, i.e., there are 
no terms below the diagonal. The reason for this desira- 
ble property is that t^t, which implies that S^t) is 
controlled solely by sources below r. Equation (44) 
therefore can be solved by back substitution, which 
requires very little computing time. 

The proposed method was tested for a number of 
cases with a variable Planck function. In all cases studied, 
S¡ converged to a 1% accuracy after 6-12 iterations. 
This compares favorably with the core-saturation method 

of Rybicki (1971). To achieve convergence, it was al- 
ways necessary to choose a y-value in excess of 0.5. For 
a Voigt profile with a=0.1, we obtained a 1% accuracy 
after only six iterations using a y-value of 1.0. However, 
to obtain convergence for a pure Doppler profile, it was 
necessary to increase y to about 2.0, which increased the 
number of iterations to 12. In Figure d, examples of two 
such calculations are shown with r=0 and a variable 
Planck function: log Bv = 1.69-0.153 log r0. In both cases 
y was equal to 2.0. It can be seen that convergence is 
global and quite rapid. Another notable feature is that 
the convergence is slowest near r0 = 1, where the initial 
error is largest. This is because of the poor treatment of 
the transition between the core and the wings. 

The reason for the instability at low y-values is proba- 
bly the following: By making A* triangular, we are 
making the approximation that S¡ is controlled locally 
and from below. Regarding the numerical value of the 
source function, this is a rather good approximation, as 
seen from the high accuracy of the initial solution. 
However, this approximation ignores the fact that some 
fraction of the radiation field at r always is from sources 
above r. Thus, when using A* to correct for the errors of 
the previous iteration, we may come to a point where 
most of the true error is caused by an error in 5/ above 
T, whereas A* interprets the error as being caused by an 
error in S¡ below r. At this point the instability starts to 
grow unless the change of Sl from one iteration to the 
next is damped. Since S¡ is controlled by transfer of 
radiation in the wings, increasing y leads to a damping 
of the correction terms which stabilizes the solution. 
However, this also decreases the rate of convergence. To 
completely get rid of the instability, it is probably 
necessary to include terms below the diagonal in the 
matrix A*. 

Fig. 2.—The convergence of »S/(t0) in the case of a variable Planck function for a pure Doppler profile (a=0) and a Voigt profile 
(a=0.1). In order to obtain convergence, y=2 was chosen. Using y=0.5 gives a much better initial accuracy, but after one or two iterations 
the solution becomes unstable. 
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Nevertheless, the proposed method works very well, 
provided a sufficiently large y is chosen. The numerical 
implementation of the method is very simple. The com- 
puting time required to solve a one-dimensional prob- 
lem scales as 

c\n,nT +nit(c2M(ln„nT +c3nT
2), (45) 

where nv is the number of frequencies, the number of 
angles, nT the number of depth points, and nit the 
number of iterations. The total time is equal to the time 
required to calculate the matrix A*, the time required to 
calculate (/) from a known source function, and the 
time required to solve a triangular system of equations. 
In actual practice, about 90-95% of the time is used for 
the calculation of (/). The total computing time re- 
quired is therefore a factor of 7-13 greater than the time 
required to solve the corresponding LTE problem. The 
storage requirements are modest, since the only matrix 
stored is A*. If the available core storage is very small, it 
is possible to recalculate A* during each iteration, since 
the time required to do so is very short. In this case, 
only vectors of length nT need to be stored. 

VI. AN IMPROVED QUADRATURE FORMULA 

The main disadvantages of the operator A,* are the 
discontinuity at the transition between the core and the 
wings and the failure to account for the presence of 
sources located above r. Also, this operator is not well 
suited for situations where the velocity of the gas is 
nonzero. 

In this section we will derive an improved quadrature 
formula of the type 

(46) 

which does not have the inconvenient properties of the 
Av* operator. This allows us to solve the transfer equa- 
tion in situations where <#> depends on fi, as well as on r 
and v, and thus where (/) must be written as 

(J)('r)=2Í f <l>(T,n,v)Il,(T,li,v)dvdn. 
^ — 1*' —00 

(47) 

To derive a quadrature formula, we write the transfer 
equation in the form 

^f=IrSv, (48) 

where tv is given by equation (10). The formal solution 
of this equation is written in different ways depending 

Vol. 249 

on the sign of ¡l. For fi>0, we have (cf. Mihalas 1978) 

Iv=e^rSve-^dr;y (49) 

and for /x<0, we have 

Iv = -e^fvSve-<dr;, (50) 
•'o 

if the incident radiation field is zero. Note that r, <0 for 
/i<0 (cf. eq. [10]). Employing the linear test function 

Sv=a+bTvy (51) 

we obtain the standard results 

Iv=a+b+bTv (52) 

for fi>0, and 

Iv
=a+b+bTv — (a+b)eTv (53) 

for /i<0. 
Inserting these solutions and equation (51) into equa- 

tion (46), we obtain 

W=l9 t;=t, + 1 (54) 

for n>0, and 

W=l~eT% = \+Tv/(\—eTv) (55) 

for fi<0. These are the required formulae. 
The expression for t' can be used to derive the 

continuum quadrature point r'. To show how this is 
accomphshed, we assume that and r are depth- 
independent. Then tv is given by equation (12), and we 
obtain 

T'=T+n/(fr/r+l) (56) 

for /i>0. Note that r' is a function of r, fi, and v. 
In the limit of large optical depths, equations (54) and 

(55) automatically give the core-saturation approxima- 
tion. In the limit of very small optical depths, we find 

1, W-* 1 for fi>0y and W->0 for /i<0. When aver- 
aged over /i, this corresponds to the wing approxima- 
tion. The improved quadrature formulae derived here do 
not have a discontinuity at rv —y. By expanding equa- 
tion (55) to the second order in r,,, we find t„' -> \tv for 
/i<0 at small optical depths, which implies that equa- 
tion (55) correctly accounts for the fact that some of the 
nonlocalness of the radiation field is caused by sources 
above r. 

The quadrature formulae derived in this section corre- 
spond to a simple physical model of the radiation field: 

SCHARMER 
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The intensity Iv is a result of a point source of strength 
WSV located at the depth r'. Numerical calculations 
show that this simplified model is sufficiently accurate 
for an understanding of the gross behavior of Sl. 

VII. THE DEPTH-QUADRATURE PERTURBATION 
TECHNIQUE 

The quadrature formulae derived in § VI correspond 
to writing 

+ (57) 

where the approximate operator is defined by 

A^ = wJdrp8(Tv-r;). (58) 

This operator is obtained by replacing the integral over 
T in equations (49) and (50) by a one-point quadrature 
formula. Thus, the method for solving non-LTE prob- 
lems proposed below is exactly analogous to the AQP 
and FQP techniques of Cannon (1973a, 6). We there- 
fore refer to our method as the depth-quadrature 
perturbation technique (DQPT), although we do not 
formally expand Iv in terms of (A^ —A^). Our tech- 
nique differs from Cannon’s FQPT in one important 
respect: The quadrature point r/ is chosen in an opti- 
mum rather than an arbitrary way. 

The equation for S) corresponding to A1^ is identical 
to that obtained for A,*, except that the integrals over v 
occurring in equation (40) are replaced by integrals over 
v and p. In order to decrease the computing time, 
advantage is taken of the symmetry relations (cf. 
Mihalas 1978) 

and 

<t>v(r,-n,v)=<l>v(T,n,-v), (59) 

tv(t,-h,v)=-tXt,h,-v). (60) 

By using these relations, we may treat /¿ as a positive 
variable. Then for each p there are two quadrature 
points, rv

+ and t~, and weights, W+ and W~, corre- 
sponding to outgoing and ingoing rays. We obtain from 
equations (54) and (55) 

W + = l, (61) 

Tr
+=Tv + l, (62) 

= (63) 

t-=tv/W--1. (64) 

The equation for S¡ can be written 

tâs=e. (65) 

The time required to calculate A* is longer than the time 
required to calculate A*. Hence, the calculation of A^ 
should be arranged in an efficient way. This can be done 
conveniently if the vector rv(k), where k= 1,...,«T, is 
calculated for one frequency and angle at the time. Since 
<t>v and r are positive quantities, we will always find 
r^l)^^)^ • • • <Tv(nr). It is easy to show that and 
t~ are increasing functions of tv. This implies that 
t„+(1)<t,,+ (2)< •••<rI,

+ (nT), and that 
< • • • —Tv (nT). Using these inequalities, the depth point 
k +, defined such that Tv(k

+)<Tl,
+ (k)<rv(k + +1), can 

very rapidly be found for each k. Then the matrix 
elements A^k, k+) and tf(k, k + + \) are calculated 
from the linear interpolation formula 

Sv(rv
+) = Sv(k + ) + 

t,+ 

Tv{k
+ + \)-Tv(k + ) 

x[Sr(k
+ + l)-S,(k + )]. (66) 

The same procedure is used to calculate matrix elements 
corresponding to ingoing rays. 

A computer program which solves two-level non-LTE 
problems with macroscopic velocity fields using the 
DQP technique described in this section has been writ- 
ten. In the calculations, <f>„ was treated as an angle- 
dependent function. In Table 1 we give the central 
processing unit (CPU) time used for various parts of the 
program. The calculations were made with a CDC Cyber 
170-720. It can be seen from this table that the time 
required to calculate Af is approximately a factor of 1.5 
longer than the time required to calculate (J) once from 
a known source function. However, these calculations 
were made using the same number of angles and fre- 
quencies in the calculation of A* and the correction 
terms. This is not necessary, since the depth quadrature 
formula used in the calculation of A1" gives errors in St of 
the order of 30%. Thus, decreasing ntLnv by a factor of 2 
or 3 would not affect the accuracy of Af or the rate of 
convergence. It would cause a reduction of the total 
computer time by approximately 20%. It is obvious that 
the DQPT is very conveniently combined with the AQPT 
and the FQPT. However, it is not meaningful to use a 
very small number of angular and frequency points in 
the calculation of A1", since most of the computer time is 
used for the calculation of (/), not A*. 

VIII. CALCULATIONS USING THE DQPT 

We have tested the depth-quadrature perturbation 
technique on a variety of non-LTE problems. A few 
representative calculations are described below. 
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TABLEI 
CPU Time for Computer Program Solving One-Dimensional Non-LTE Problems with Velocity Fields 

Vol. 249 

CPU Times (s) 
No. OF No. of Calculation of Calculation of LU factorization Calculation of 
Angles Depth Points Voigt Profiles the Matrix of (J) per Iteration 

1   40 0.13 0.32 0.30 0.24 
3.. ..  40 0.38 0.94 0.28 0.71 
3.. .  60 0.57 1.47 0.98 1.02 

Note.—No. of frequencies: 25. Computer: CDC Cyber 170-720. CPU = central processing unit. 

Fig. 3.—The convergence of S/(t), using the DQPT for an atmosphere with a=0, r= 10 -4, e'= 10 ~4, and B— 1. The lower set of curves 
corresponds to a constant velocity, and the upper set of curves to a variable velocity, V. The dashed curve shows the variation of V with r. 
Note the high accuracy of the initial solution («=0) and the rapid convergence. 

Figure 3 shows two examples of calculations for a 
pure Doppler profile with 5=1, e'= 10-4, and a weak 
continuum, r—10 ~4. The macroscopic velocity V was 
assumed to have the form 

K=2—4exp (—t/tj), (67) 

which switches from —2 to -1-2 at approximately t=tx. 
The calculations were made with n^ — 3, «„=35, and 
nT =40 for a stationary atmosphere and for a moving 
atmosphere with = 10 ~3. In both cases the conver- 
gence was very rapid. After four iterations, the maxi- 
mum error in S¡ was 0.6% for the stationary atmosphere 
and 1.1% for the nonstationary atmosphere. The pres- 
ence of large velocity gradients affects the convergence 
only in a minor way. Contrary to what is often claimed 
in the literature, we find that the effects of the velocity 
gradient on S¡ are large. This is because of the reflector 
effect, i.e., the Doppler displaced profile leads to an 
illumination by the lower layers which enhances S¡. 

Figure 4 shows examples of calculations for a Voigt 
profile with û=10_3,5=1,e'=10_4, and r0=r/<j>(v= 
0)= 10-6. In these calculations the vertical velocity was 

zero, but the Doppler width, A, changed with depth 
according to 

A=A(<x))[l+2exp ( —)]. (68) 

Calculations were made for a= 106 and a=0, the latter 
corresponding to a constant Doppler width. In these 
calculations we used = 3, «„=30, and «T =55 to 
obtain a high accuracy. Again the convergence was very 
rapid. After only four iterations the maximum error in 
S¡ was 0.5% in the case of a constant Doppler width and 
0.7% in the case of a variable width. Calculations with 
the same set of atmospheric parameters were made by 
Athay (1972a), which gives us the possibihty of verify- 
ing that the solution converges to the correct values. We 
note that the variation in A gives strong effects on Sl 

similar to those found for a variable velocity (see Fig. 3). 
Calculations using the DQPT have been made for a 

number of similar cases. The convergence was always 
very rapid, and no evidence for numerical instabilities 
was found. The numerical implementation of the tech- 
nique is very simple; in fact, most of the computer code 
consists of an assembly of standard LTE routines. The 
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Fig. 4.—The convergence of S¡(t), using the DQPT for an atmosphere with a= 10 ~3, ra = 10 “6, e= 10 _4, and B= 1. The lower set of 
curves corresponds to a constant Doppler width, A = 3, and the upper set of curves to a variable Doppler width. The dashed curve shows the 
variation of A with r. 

computing time scales as 

c4nllnrnr+nilc5nltnvnT+c6nr
3, (69) 

which corresponds to the time required to calculate the 
matrix A1-, the time required to calculate (J) from a 
known source function, and the time required to per- 
form one LU factorization (the time required to solve 
the resulting triangular system of equations by back 
substitution is negligible). For very large n7 values it 
may be rewarding to make use of the fact that in most 
normal situations A1- is almost a triangular matrix hav- 
ing approximately only two subdiagonals. The LU 
factorization of such a matrix requires only c1n^ opera- 
tions. 

It therefore appears that the computing time require- 
ments of the DPQT are very favorable when compared 
to any other existing numerical technique for solving 
non-LTE radiative transfer problems. The reason for 
this saving is that though we often need a large number 
of depth points to determine Sl—because of the large 
variation of opacity with frequency—for any single 
frequency the number of depth points required is not 
that large. Thus, inverting full-size tridiagonal matrices 
means a waste of computing time. By introducing a 
simple one-point quadrature formula and iterating until 
a predetermined accuracy in Sl is reached, we are per- 
forming a minimum of arithmetic operations. 

In the calculations made so far, we have not tried to 
minimize the computer time used for the calculation of 
the correction terms. By ignoring depth points outside 
the interval 10-2<t„ <10, it should be possible to de- 
crease the computing time by approximately a factor of 
2 without any significant loss of accuracy. 

The choice of quadrature points in frequency has 
been rather arbitrary. By combining equations (46) and 
(47), we may calculate (J) when Sl is given. Using 
various expressions for Sh it should be possible to 
discuss thoroughly the proper choice of frequency 
quadrature points and thus to decrease the number of 
frequencies required. 

IX. CONCLUSIONS 

We have presented one approximate analytical method 
and one more exact numerical method for solving non- 
LTE problems. The analytical method relies on simple 
and well-understood concepts of radiative transfer the- 
ory. Using this approach we may understand the basic 
control mechanisms of non-LTE. This is important also 
from a pedagogical point of view. It should be possible 
to use the analytical approach to derive new approxi- 
mate scaling laws. For example, we have derived expres- 
sions for the surface value of St when the incident 
radiation field is not zero (not published). Finally, the 
derivation of equation (22) is interesting from a diagnos- 
tic point of view because it rests on the assumption of 
equality between the observable intensity /„(0) and 
the source function Sv at t; = 1. This means that the 
Eddington-Barbier relation can be used not only to 
derive the value of Sv : it allows us to probe directly the 
escape mechanisms which control the source function. 
However, it should be pointed out that the Eddington- 
Barbier relation may fail badly for differentially moving 
atmospheres (cf. Athay 1972<r, Hummer 1976). 

We have also presented a new numerical technique, 
the DQPT, which consists in replacing the integral of Sv 

over T by a one-point quadrature formula. This method 
provides an important link between the core-saturation 
method of Rybicki (1971) and the perturbation tech- 
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niques of Cannon (1973a, Z?). The efficiency of this 
method and its easy implementation should make this 
an attractive method for solving non-LTE problems. 
Also, the fact that the initial solution is obtained from a 
quadrature formula which has a simple physical mean- 
ing should give good possibilities for interpretations of 
the calculations. The DQPT can easily be applied to 
three-dimensional problems. 

Finally, we should mention that the original idea of 
constructing quadrature formulae for evaluating mean 
intensities seems to be from Bengt Strömgren (cf. 
Chandrasekhar 1960, p. 69). Such two- and three-point 
quadrature formulae for evaluating Jv were constructed 
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by Reiz (1950). The iterative technique developed here 
to solve non-LTE problems is new. 
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