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• Aim:  
• Gain a broad overview in solar and stellar physics  
• Practical experience with analysing and visualising real data  
• Practical experience with scienti!c writing  

• Content  
• Sun's structure and variation on large and small scales. 
• Basic concepts about the physical phenomena that occur in the Sun's atmosphere. 
• How to carry out (theoretically) and interpret observations of the Sun and other stars?  

(Practical exercises.)  
• Similarities and di"erences between the Sun and other stars

Course aim
Introduction
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• The most important concepts will be brie#y repeated.  

• Something missing or unclear? Please let me know!                                                                        
(This course is o!ered for the "rst time…)

Previous courses / covered topics  
Introduction

AST2210 – Observasjonsastronomi • Basic understanding of telescopes/instruments 
• Observation techniques including spectroscopy 

of stars 

AST3310 – Astrofysiske plasma og 
stjernenes indre 

• Stellar interiors  (energy production, 
strati!cation)  

• Interior of the Sun 

AST4310 – Strålingsprosesser i astrofysikk • Radiative transfer   
• Interpretation of stellar spectra 
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• Aim: Gain experience with writing a longer scienti!c report                                                   
(similar to what  would be published in a scienti"c journal. 

• Writing process is an essential tool for developing the scienti!c analysis, the derived 
results and conclusions 

➡ Iterative process with rewriting and improving the di"erent sections repeatedly towards 
creating a consistent and comprehensive document.  

➡ The !nal project assignment is the !nal scienti!c report.  

➡ In order to get started with individual parts:                                                                               
Five mandatory assignments to help you getting started and develop the !nal report.  

• The !nal report will be based on the mandatory assignments.  

• You get 3 1/2 weeks extra to work on the !nal report after delivery of the last mandatory 
assignment

General aim and setup
Assignments
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• IMPORTANT: The !nal project assignment can only by submitted and graded                      
if all !ve mandatory assignments have been delivered previously. 

Setup and submission deadlines
Assignments

Assignment Submission 
deadline

Weeks in-
between Content

Mandatory  
(not graded)

I Feb 18 3-4 Practical exercises, tentative science question 
and project plan, reading list

II Mar 4 2 Introduction and background

III Mar 25 3 Description of data and method(s)

IV Apr 18 3 Analysis and results

V May 6 3 Discussion and conclusion

Final project 
assignment 

(graded, 100%)
F May 31 3 1/2 Complete report
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• You should working on all mandatory assignments in parallel as soon as they become 
relevant/feasible.   

• Examples:  

• While working on assignment I, start to look at the provided data sets and start 
reading syllabus/lecture notes and scienti!c articles 

• While working on the data analysis, review your description (and choice) of data and 
method 

• You can start on the document for the !nal project assignment already in parallel to 
mandatory assignment I.  

Important advice
Assignments
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• It is not expected that your project assignment contains novel scienti!c results.  

• The aim is to learn  

• HOW to de!ne interesting scienti!c questions.  

• HOW to work with scienti!c data.  

• HOW to present the scienti!c topic and the performed analysis in a consistent 
report.  

• Tip: It is ok to start from a published paper and do a similar analysis with the data provided 
for this course (if possible). (But please no copy & paste.)  

• You are encouraged to discuss possible topics with me early on. 

Important note
Assignments
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• The assignments are to be prepared with Latex 

• Templates for all assignments will be provided. 

• Data available for assignments: Observations / simulations for the Sun and other stars 

• To be soon introduced in the !rst group session(s). 

• Accessible on ITA’s disk system  

• Do you have access? If not, let us now immediately!  

• Data analysis  

• Recommended: Python / IDL  

• Use ITA machines for working with larger data volumes.  

• Do not store big data !les in your ITA home directory.  

• Do not run large jobs on login servers (like tsih2) 

Technical info
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The AST5770 Allstars - Our favourite examples 
Introduction
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The AST5770 Allstars - Our favourite examples 
Introduction

ES
A/

H
ub

bl
e 

& 
N

AS
A.

Sun Proxima Centauri

Betelgeuse Sirius A

N
AS

A.
/S

D
O

AL
M

A 
(E

SO
/N

AO
J/

N
RA

O
)/ 

E.
 O

’G
or

m
an

/P
. K

er
ve

lla

M
el

lo
st

or
m

 C
C-

BY
-S

A-
3.

0

Our host star! Close by!  
We can observe the Sun in much detail! 

➡ Ultimate reference star! 

The closest star to us  
(after the Sun)

Giant star. One of the few that can  
be observed (somewhat) resolved. The brightest star in the night sky. 
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The AST5770 Allstars - Our favourite examples 
Introduction

ESA/Hubble & NASA. NASA./SDO ALMA (ESO/NAOJ/NRAO)/ 
E. O’Gorman/P. KervellaMellostorm CC-BY-SA-3.0

Mass0.12 M⊙ 1 M⊙ 11 M⊙

Radius0.15 R⊙ 1 R⊙ ~900 R⊙
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• We de!ne a star as an astronomical object that 

1. consists of gas that is (partially) ionised (plasma) and 

2. is held together and formed into a sphere due to its own gravity and  

3. is luminous and 

4. releases energy due to nuclear fusion in its interior.  

• Important: A star is shining by itself!  

➡ An energy source is required.  

➡ Brown Dwarfs satisfy the three !rst criteria but not #4 (no (hydrogen) fusion in their cores) 

What is a star?
Introduction
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• Dynamos and activity cycles  

• How are magnetic !elds generated in stars?  

• How can we explain activity cycles?                                                                                            
(Cycle: large-scale magnetic "eld is reversed periodically?)  

• How can we explain the di"erences in stellar activity cycles observed for di"erent 
types of stars as compared to the Sun and other solar-like stars?  

• Prediction of future solar cycles? 

Central questions
Introduction
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• Coronal heating  

• How are the outer layers of our Sun (and of other stars) heated to extremely high 
temperatures (Sun: T >106 K)?  

• Which physical mechanisms are at work and how much do they contribute to the 
transport of energy upwards and to the heating?  

• How is the available energy dissipated into heat in the upper atmosphere?  

• Is this a common phenomenon for late-type main sequence stars and what can learn 
from observable variations? 

Central questions
Introduction
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• Stellar activity - Flares, coronal mass ejections, space weather and habitability  

• What are the exact physical mechanisms at work during "ares and coronal mass 
ejections (CMEs) on the Sun?  

• How do they di"er from #ares on other stars which can even exhibit much stronger 
super- and mega"ares?  

• How do these phenomena a"ect the interplanetary space (“space weather”) and 
nearby planets (e.g., geomagnetic storms)?  

• How would understanding these phenomena allow us to forecast space weather 
events to protect our hi-tech infrastructure on Earth and to evaluate the                 
habitability of exo-planets orbiting active stars?

Central questions
Introduction
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• Chemical evolution of the universe  
• Chemical abundances from spectroscopic observations 
• Lithium problem: Observed abundance of Li much lower than expected   

• Plasma physics  
• Stars serve as astrophysical laboratories that allows for the (remote) observation of 

plasma under conditions often di$cult to obtain under terrestrial laboratory conditions. 

• Other central astrophysical problems  
• Fast Radio Bursts (FRBs): point source-like millisecond #ashes                                                   

— Neutron stars and black holes as !nal stages in stellar evolution as potential sources? 

Central questions
Introduction
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• Average distance to the Sun is de!ned as one astronomical unit 

1AU = 149597870700 m  

• Easier to remember: 1 AU ≈ 150 × 106 km.  

• Light needs ~ 8 min from the Sun’s surface to Earth’s orbit

The distance to the Sun 
Stars in the sky – Distances and apparent sizes 

• Earth’s orbit is not a perfect circle,  
varies by about 3% during the year 

• Maximum distance (aphelion):   
152.1 × 106 km   

• Minimum distance (perihelion): 
147.1 × 106 km
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Parallax 
Stars in the sky – Distances and apparent sizes 

Apparent position  
with respect to 

background stars

1 AU
Earth
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Parallax
Stars in the sky – Distances and apparent sizes 

• Star closer to us seen at di"erent angle 
against more distant stars during the course 
of a year. 

➡ A star seems to be displaced periodically 
with respect to other stars. 

• Caused by motion of the Earth around the 
Sun.  

• Measuring the “displacement angle” 
accurately allows for determination           
of the star’s distance d 
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• The other way around: Earth’s orbit seen 
from a distance d  

➡ The length a appears as  p = 1”  from a 
distance of d=206265 AU.  

➡ This unit is called parsec (pc,                
from parallax and arcsecond).  

➡     1 pc =  206265 AU = 3.26 ly  

(1ly = 9.46×1012 km) 

➡     d [pc] = 1/p [“]

Parallax
Stars in the sky – Distances and apparent sizes 



AST5770 - UiO - S. Wedemeyer

• Example:  Proxima Centauri 

• Measured parallax = 0.768”  

➡  d [pc] = 1 / 0.768”  = 1.302 pc = 4.243 ly 

• First parallax measured: Bessel  1838 

• Hipparcos satellite (1989-1993) 

• Accuracy of 0.001” for 120,000 stars       
(+ ~2.5 million stars with lower accuracy.)  

• Gaia mission (2013-2022) 

• Accuracy of ~ 10-4 ”  

• Mapping billions of stars in the        
Milky Way 

Parallax
Stars in the sky – Distances and apparent sizes 

• Gaia: faint objects (down to V = +20) with 300 micro-arc-second precision.  

https://en.wikipedia.org/wiki/Proxima_Centauri




GAIA
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• Object on the sky with diameter x at distance d  

➡ Apparent angular extent in the sky 

• Example 1 - Sun: 

• ∆x= 2 R⊙ with  R⊙ = 696 342 km (∆x ≈ 1.4 106 km) 

• d = 1AU 

➡ ∆x = 1919”  ≈  31’     ≈ 1/2 degree

Apparent sizes of stars 
Stars in the sky – Distances and apparent sizes 

arcsec      arcmin
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• Object on the sky with diameter x at distance d  

➡ Apparent angular extent in the sky 

• Example 1 - Sun:  

• ∆x= 2 R⊙ with  R⊙ = 696 342 km (∆x ≈ 1.4 106 km) 

• d = 1AU - Remember: d varies by 3%  

➡ ∆α varies between 1887” and 1952” 

• Moon’s apparent size also varies by a few % 

➡ Some eclipse are total,                                                                               
others only annular.

Apparent sizes of stars 
Stars in the sky – Distances and apparent sizes 
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• Object on the sky with diameter x at distance d  

➡ Apparent angular extent in the sky 

• Example 2 - Proxima Cen:  

• ∆x= 2 R with  R = 1.07 105 km   

• d =  4.246 ly 

➡ Very small!  

➡ Cannot be resolved (decently) with telescopes (yet).  

➡ Remains a point source for now. 

Apparent sizes of stars 
Stars in the sky – Distances and apparent sizes 
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• Object on the sky with diameter x at distance d  

➡ Apparent angular extent in the sky 

• Example 3 - Betelgeuse:  

• ∆x= 2 R with  R = 900 R⊙  

• d =  548 ly 

➡ Small but can be (somewhat) resolved                                                            
with extended interferometric arrays (ALMA!) 

Apparent sizes of stars 
Stars in the sky – Distances and apparent sizes 
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• Object on the sky with diameter x at distance d  

➡ Apparent angular extent in the sky 

• Example 3 - Betelgeuse:  

• ∆x= 2 R with  R = 900 R⊙  

• d =  548 ly 

➡ Small but can be (somewhat) resolved                                                                
with extended interferometric arrays (ALMA!) 

Apparent sizes of stars 
Stars in the sky – Distances and apparent sizes 
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ALMA (ESO/NAOJ/NRAO)
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• Apparent brightness  

• Colours 

What di&erences do you see? 
Observational stellar parameters 

Cluster NGC 1783 (NASA/ESA Hubble Space Telescope)
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• Radiative "ux (also called radiation #ux) F                                                                             
energy radiated per time unit through an area                                                                                               
(over a given wavelength or frequency range) 

• Physical units:  J s−1 m−2 = W m−2  (SI), erg s−1 cm−2   (cgs) 

• Radiative "ux density (also called spectrum)                                                                            
energy radiated per time unit through an area per wavelength or frequency unit (Fλ , Fν ) 

• In astrophysics, it is common to use Fν. The SI unit is W m−2 Hz−1.  
• At millimetre and radio wavelengths, common to use the unit Jansky: 1 Jy = 10−26 W m−2 Hz−1 

• Radiative #ux through integration over a given wavelength or frequency range

Recap - radiative "ux and radiative "ux density
Observational stellar parameters 
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• Irradiance =  radiative #ux is received by an area (instead of emitted)  

• Total Solar Irradiance (TSI):  
• measure of the radiation #ux from the Sun that is received at the boundary of Earth's 

atmosphere.  
• Important in the context Sun’s impact on Earth’s climate. 

• Speci!c intensity: Iν  = #ux density Fν emitted per solid angle Ω :   

• Physical units:  J s−1 m−2 = W m−2 Hz−1 sr−1 (SI)

Recap - irradiance and speci!c intensity
Observational stellar parameters 
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• Apparent brightness m measured on logarithmic scale 
• Dimensionless unit magnitudo [mag] 
• De!ned by Pogson in 1856:   

• star of !rst magnitude star = 100 times brighter than a 6th magnitude star.  
• ∆m = 5 mag <-> brightness ratio of 100  
• ∆m = 1 mag <-> 1001/5 = 2.512 (Pogson’s Ratio) 

• Flux ratio  F1/F2 of the two stars.   

• Origin of the scale de!ned by bright star α Lyrae, (m = 0 mag at all wavelengths)

Apparent brightness scale
Observational stellar parameters 
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Apparent brightness scale
Observational stellar parameters 

(m⊙ )
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• Apparent brightness depends on properties of the star but also on distance! 

➡Distance dependence to be removed for direct comparison of stellar properties  

• Absolute brightness M  
• Also referred to as absolute magnitude 
• De!nition: brightness that a star has at a (!ctive) standard distance of 10 parsec      

from the observer  

➡ (independent of the distance!)

Absolute brightness 
Observational stellar parameters 
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• De!nition:  
Distance modulus = di"erence between apparent and absolute brightness       m − M  

• Additional astronomical extinction A (here in magnitudes) due to the interstellar medium 
along line of sight (LOS) between star and observer 

➡ further reduces the apparent brightness.  

• Derivation: same star at its real distance r = r1 and at the standard distance r2 = 10 pc  

➡                                                                         ,        F ∝ r−2 ,    F1/F2 ∝ r22/r12  

➡     m − M = 5 log r [pc] − 5 + A .   

• Note m-M=0  for a star at a distance of 10 pc (with A=0)                                                                          
(de"nition of the absolute brightness).

Distance modulus
Observational stellar parameters 
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* All brightness at visible wavelengths, astronomical extinction ignored (A=0) 

• Sun would be among the fainter stars observable with the naked eye when observed 
from a distance of 10 pc.

Absolute brightness 
Observational stellar parameters 

Apparent 
brightness 

mV*

Absolute 
brightness 

MV*

Distance 
modulus 
(m − M)V*

Distance

Sun -26.74 4.83 -31.57 1 AU

α Cen A 
Solar-like star 0.01 4.38 -4.37 4.4 ly

Sirius A 
brightest star (after Sun) -1.47 1.42 -2.89 8.7 ly

Proxima Cen 
closest star (after Sun) 11.13 15.6 -4.47 4.2 ly

Betelgeuse 0.5 -5.85 6.35 550 ly

➡ brightness at standard distance of 10 parsec  


