AST5770

Solar and stellar physics

University of Oslo, 2022
Sven Wedemeyer

Introduction

Course aim

- Aim:
- Gain a broad overview in solar and stellar physics
- Practical experience with analysing and visualising real data
- Practical experience with scientific writing

- Content

- Sun's structure and variation on large and small scales.
- Basic concepts about the physical phenomena that occur in the Sun's atmosphere.
- How to carry out (theoretically) and interpret observations of the Sun and other stars? (Practical exercises.)
- Similarities and differences between the Sun and other stars

Introduction

Previous courses / covered topics

AST2210 - Observasjonsastronomi	- Basic understanding of telescopes/instruments - Observation techniques including spectroscopy of stars
AST3310 - Astrofysiske plasma og stjernenes indre	- Stellar interiors (energy production, stratification) - Interior of the Sun
AST4310 - Strålingsprosesser i astrofysikk	- Radiative transfer - Interpretation of stellar spectra

- The most important concepts will be briefly repeated.
- Something missing or unclear? Please let me know!
(This course is offered for the first time...)

Assignments

General aim and setup

- Aim: Gain experience with writing a longer scientific report (similar to what would be published in a scientific journal.
- Writing process is an essential tool for developing the scientific analysis, the derived results and conclusions
$\boldsymbol{\Delta}$ Iterative process with rewriting and improving the different sections repeatedly towards creating a consistent and comprehensive document.
\Rightarrow The final project assignment is the final scientific report.
- In order to get started with individual parts:

Five mandatory assignments to help you getting started and develop the final report.

- The final report will be based on the mandatory assignments.
- You get 3 1/2 weeks extra to work on the final report after delivery of the last mandatory assignment

Assignments

Setup and submission deadlines

- IMPORTANT: The final project assignment can only by submitted and graded if all five mandatory assignments have been delivered previously.

Assignment		Submission deadline	Weeks in- between	Content
Mandatory (not graded)	I	Feb 18	$3-4$	Practical exercises, tentative science question and project plan, reading list
	II	Mar 4	2	Introduction and background
	IV	Apr 18	3	Analysis and results
	V	May 6	3	Discussion and conclusion
Final project assignment (graded, 100\%)	F	May 31	$31 / 2$	Complete report

Assignments

Important advice

- You should working on all mandatory assignments in parallel as soon as they become relevant/feasible.
- Examples:
- While working on assignment I, start to look at the provided data sets and start reading syllabus/lecture notes and scientific articles
- While working on the data analysis, review your description (and choice) of data and method
- You can start on the document for the final project assignment already in parallel to mandatory assignment I.

Assignments

Important note

- It is not expected that your project assignment contains novel scientific results.
- The aim is to learn
- HOW to define interesting scientific questions.
- HOW to work with scientific data.
- HOW to present the scientific topic and the performed analysis in a consistent report.
- Tip: It is ok to start from a published paper and do a similar analysis with the data provided for this course (if possible). (But please no copy \& paste.)
- You are encouraged to discuss possible topics with me early on.

Technical info

- The assignments are to be prepared with Latex
- Templates for all assignments will be provided.
- Data available for assignments: Observations / simulations for the Sun and other stars
- To be soon introduced in the first group session(s).
- Accessible on ITA's disk system
- Do you have access? If not, let us now immediately!
- Data analysis
- Recommended: Python / IDL
- Use ITA machines for working with larger data volumes.
- Do not store big data files in your ITA home directory.
- Do not run large jobs on login servers (like tsih2)

Introduction

The AST5770 Allstars - Our favourite examples

Sun

G-type main sequence star

Betelgeuse

Proxima Centauri

Red dwarf star (M-type, main seq.)

Sirius A

A-type main sequence star'

Introduction

The AST5770 Allstars - Our favourite examples

Sun

Our host star! Close by!
We can observe the Sun in much detail!
\Rightarrow Ultimate reference star!
Betelgeuse

Proxima Centauri

The closest star to us (after the Sun)

Sirius A

The brightest star in the night sky.

Introduction

The AST5770 Allstars - Our favourite examples

$0.12 \mathrm{M} \circ \quad$ Mass

Introduction

What is a star?

- We define a star as an astronomical object that

1. consists of gas that is (partially) ionised (plasma) and
2. is held together and formed into a sphere due to its own gravity and
3. is luminous and
4. releases energy due to nuclear fusion in its interior.

- Important: A star is shining by itself!
\Rightarrow An energy source is required.
$\boldsymbol{\Rightarrow}$ Brown Dwarfs satisfy the three first criteria but not \#4 (no (hydrogen) fusion in their cores)

Introduction

Central questions

- Dynamos and activity cycles
- How are magnetic fields generated in stars?
- How can we explain activity cycles?
(Cycle: large-scale magnetic field is reversed periodically?)
- How can we explain the differences in stellar activity cycles observed for different types of stars as compared to the Sun and other solar-like stars?
- Prediction of future solar cycles?

Introduction

Central questions

- Coronal heating
- How are the outer layers of our Sun (and of other stars) heated to extremely high temperatures (Sun:T>106 K)?
- Which physical mechanisms are at work and how much do they contribute to the transport of energy upwards and to the heating?
- How is the available energy dissipated into heat in the upper atmosphere?
- Is this a common phenomenon for late-type main sequence stars and what can learn from observable variations?

Introduction

Central questions

- Stellar activity - Flares, coronal mass ejections, space weather and habitability
- What are the exact physical mechanisms at work during flares and coronal mass ejections (CMEs) on the Sun?
- How do they differ from flares on other stars which can even exhibit much stronger super- and megaflares?
- How do these phenomena affect the interplanetary space ("space weather") and nearby planets (e.g., geomagnetic storms)?
- How would understanding these phenomena allow us to forecast space weather events to protect our hi-tech infrastructure on Earth and to evaluate the habitability of exo-planets orbiting active stars?

Introduction

Central questions

- Chemical evolution of the universe
- Chemical abundances from spectroscopic observations
- Lithium problem: Observed abundance of Li much lower than expected
- Plasma physics
- Stars serve as astrophysical laboratories that allows for the (remote) observation of plasma under conditions often difficult to obtain under terrestrial laboratory conditions.
- Other central astrophysical problems
- Fast Radio Bursts (FRBs): point source-like millisecond flashes
- Neutron stars and black holes as final stages in stellar evolution as potential sources?

Stars in the sky - Distances and apparent sizes

The distance to the Sun

- Average distance to the Sun is defined as one astronomical unit

$$
1 \mathrm{AU}=149597870700 \mathrm{~m}
$$

- Easier to remember: $\mathbf{1} \mathbf{A U} \approx \mathbf{1 5 0 \times 1 0 6} \mathbf{~ k m}$.
- Light needs ~ $\mathbf{8} \mathbf{~ m i n}$ from the Sun's surface to Earth's orbit
- Earth's orbit is not a perfect circle, varies by about 3\% during the year
- Maximum distance (aphelion): $152.1 \times 10^{6} \mathrm{~km}$
- Minimum distance (perihelion):
$147.1 \times 10^{6} \mathrm{~km}$

Stars in the sky - Distances and apparent sizes

Parallax

Stars in the sky - Distances and apparent sizes

Parallax

- Star closer to us seen at different angle against more distant stars during the course of a year.
\Rightarrow A star seems to be displaced periodically with respect to other stars.
- Caused by motion of the Earth around the Sun.
- Measuring the "displacement angle" accurately allows for determination of the star's distance d

$$
p=\tan \frac{a}{d} \quad \Rightarrow \quad p \approx \frac{1 \mathrm{AU}}{d}
$$

Stars in the sky - Distances and apparent sizes

Parallax

- The other way around: Earth's orbit seen from a distance d
$\boldsymbol{\Rightarrow}$ The length \mathbf{a} appears as $\mathbf{p}=\mathbf{1 \prime}$ from a distance of $d=206265 \mathrm{AU}$.
\Rightarrow This unit is called parsec (pc, from parallax and arcsecond).
$\Rightarrow 1 \mathrm{pc}=206265 \mathrm{AU}=3.26 \mathrm{ly}$

$$
\left(1 \mathrm{ly}=9.46 \times 10^{12} \mathrm{~km}\right)
$$

$\Rightarrow d[p c]=1 / p\left[{ }^{["]}\right.$

Stars in the sky - Distances and apparent sizes

Parallax

- Example: Proxima Centauri
- Measured parallax $=0.768^{\prime \prime}$
$\Rightarrow d[p c]=1 / 0.768^{\prime \prime}=1.302 \mathrm{pc}=\mathbf{4 . 2 4 3} \mathbf{l y}$
- First parallax measured: Bessel 1838
- Hipparcos satellite (1989-1993)
- Accuracy of $0.001^{\prime \prime}$ for 120,000 stars (+ ~ 2.5 million stars with lower accuracy.)
- Gaia mission (2013-2022)
- Accuracy of $\sim 10-4$ "
- Mapping billions of stars in the Milky Way

www.eso.org

GAIA

Stars in the sky - Distances and apparent sizes

Apparent sizes of stars

- Object on the sky with diameter x at distance d
\Rightarrow Apparent angular extent in the sky

$$
\Delta \alpha=\arctan \frac{\Delta x}{d}
$$

- Example 1 - Sun:
- $\Delta x=2 R \odot$ with $R \odot=696342 \mathrm{~km}(\Delta x \approx \mathbf{1 . 4} \mathbf{1 0 6} \mathbf{~ k m})$
- $d=1 A U$
$\Rightarrow \Delta x=\underset{\operatorname{arcsec}}{1919^{\prime \prime}} \approx \underset{\operatorname{arcmin}}{31^{\prime}} \approx \mathbf{1 / 2}$ degree

Stars in the sky - Distances and apparent sizes

Apparent sizes of stars

- Object on the sky with diameter x at distance d
- Apparent angular extent in the sky

$$
\Delta \alpha=\arctan \frac{\Delta x}{d}
$$

- Example 1 - Sun:

- $\Delta x=2 R \odot$ with $R \odot=696342 \mathrm{~km}\left(\Delta x \approx \mathbf{1 . 4} 1 \mathbf{1 0}^{6} \mathbf{~ k m}\right)$
- $d=1 A U-$ Remember: d varies by 3\%
" ${ }^{\prime}$ a varies between 1887" and 1952"
- Moon's apparent size also varies by a few \%
- Some eclipse are total, others only annular.

Stars in the sky - Distances and apparent sizes

Apparent sizes of stars

- Object on the sky with diameter x at distance d
\Rightarrow Apparent angular extent in the sky

$$
\Delta \alpha=\arctan \frac{\Delta x}{d}
$$

- Example 2 - Proxima Cen:
- $\Delta x=2 R$ with $R=1.07105 \mathrm{~km}$
- $d=4.246 \mathrm{ly}$
$\Delta \alpha=\arctan \frac{\Delta x}{d}=\arctan \frac{2 \times 1.07 \times 10^{5} \mathrm{~km}}{4.246 \times 9.46 \times 10^{12} \mathrm{~km}}=1.1$ milliarcsec
- Very small!
\Rightarrow Cannot be resolved (decently) with telescopes (yet).
- Remains a point source for now.

Extended

Stars in the sky - Distances and apparent sizes

Apparent sizes of stars

- Object on the sky with diameter x at distance d
\Rightarrow Apparent angular extent in the sky

$$
\Delta \alpha=\arctan \frac{\Delta x}{d}
$$

- Example 3 - Betelgeuse:
- $\Delta x=2 R$ with $R=900 R \odot$
- $d=548$ ly

$$
\Delta \alpha=\arctan \frac{\Delta x}{d}=\arctan \frac{2 \times 900 R_{\odot}}{548 \times 9.46 \times 10^{12} \mathrm{~km}}=0.05 \operatorname{arcsec}
$$

\Rightarrow Small but can be (somewhat) resolved with extended interferometric arrays (ALMA!)

Extended object

Stars in the sky - Distances and apparent sizes

Apparent sizes of stars

Actual image of Betelgeuse!

- Example 3 - Betelgeuse:
- $\Delta x=2 R$ with $R=900 R \odot$
- $d=548$ ly

$$
\Delta \alpha=\arctan \frac{\Delta x}{d}=\arctan \frac{2 \times 900 R_{\odot}}{548 \times 9.46 \times 10^{12} \mathrm{~km}}=0.05 \operatorname{arcsec}
$$

\Rightarrow Small but can be (somewhat) resolved with extended interferometric arrays (ALMA!)

Observational stellar parameters

What differences do you see?

- Apparent brightness
- Colours

Clúster NGC 1783 (NASAVESA Hubble Space Telescope)

Observational stellar parameters

Recap - radiative flux and radiative flux density

- Radiative flux (also called radiation flux) \mathbf{F}
energy radiated per time unit through an area
(over a given wavelength or frequency range)
- Physical units: $\mathrm{J} \mathrm{s}^{-1} \mathrm{~m}^{-2}=W \mathrm{~m}^{-2}(\mathrm{SI})$, erg s $^{-1} \mathrm{~cm}^{-2}$ (cgs)
- Radiative flux density (also called spectrum)
energy radiated per time unit through an area per wavelength or frequency unit ($\mathbf{F}_{\boldsymbol{\lambda}}, \mathbf{F}_{\mathbf{V}}$)

$$
F_{\lambda}=\frac{d v}{d \lambda} F_{v}=\frac{c}{\lambda^{2}} F_{v}
$$

- In astrophysics, it is common to use Fv_{v}. The SI unit is $\mathrm{W} \mathrm{m}^{-2} \mathrm{~Hz}^{-1}$.
- At millimetre and radio wavelengths, common to use the unit Jansky: $1 \mathrm{Jy}=10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$
- Radiative flux through integration over a given wavelength or frequency range

$$
F=\int_{v_{1}}^{v_{2}} F_{\nu} d \nu \quad F=\int_{\lambda_{1}}^{\lambda_{2}} F_{\lambda} d \lambda
$$

Observational stellar parameters

Recap - irradiance and specific intensity

- Irradiance = radiative flux is received by an area (instead of emitted)
- Total Solar Irradiance (TSI):
- measure of the radiation flux from the Sun that is received at the boundary of Earth's atmosphere.
- Important in the context Sun's impact on Earth's climate.
- Specific intensity: $\left.\right|_{V}=$ flux density F_{v} emitted per solid angle Ω :

$$
F_{v}=\int_{\Omega} I_{v} \cos \theta d \Omega
$$

- Physical units: $\mathrm{J} \mathrm{s}^{-1} \mathrm{~m}^{-2}=\mathrm{W} \mathrm{m}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}(\mathrm{SI})$

Observational stellar parameters

Apparent brightness scale

- Apparent brightness \mathbf{m} measured on logarithmic scale
- Dimensionless unit magnitudo [mag]
- Defined by Pogson in 1856:
- star of first magnitude star $=100$ times brighter than a 6th magnitude star.
- $\Delta \mathrm{m}=5 \mathrm{mag}\langle->$ brightness ratio of 100
- $\Delta \mathrm{m}=1 \mathrm{mag}\left\langle->100^{1 / 5}=2.512\right.$ (Pogson's Ratio)

$$
\Delta m=m_{1}-m_{2}=-2.5 \log \left(F_{1} / F_{2}\right) \quad[\mathrm{mag}]
$$

- Flux ratio F_{1} / F_{2} of the two stars.
- Origin of the scale defined by bright star a Lyrae, ($m=0$ mag at all wavelengths)

Observational stellar parameters

Apparent brightness scale

bright	-26.7	Sun (mə)
	-12.6	Full moon
	-4.4	Venus (max.)
	-1.4	Sirius (brightest star in the sky)
	0.5	Betelgeuse (visual band, variable)
	6.5	Limit for naked eye
	10.0	Limit for binoculars
	11.1	Proxima Cen (visual band)
	15.1	Pluto
	31.5	Limit of Hubble Space Telescope
faint	~ 34	Limit of James Webb Space Telescope (infrared)

Observational stellar parameters

Absolute brightness

- Apparent brightness depends on properties of the star but also on distance!
\Rightarrow Distance dependence to be removed for direct comparison of stellar properties
- Absolute brightness M
- Also referred to as absolute magnitude
- Definition: brightness that a star has at a (fictive) standard distance of $\mathbf{1 0}$ parsec from the observer
$\boldsymbol{\Delta}$ (independent of the distance!)

Observational stellar parameters

Distance modulus

- Definition:

Distance modulus $=$ difference between apparent and absolute brightness $\mathbf{m}-\mathbf{M}$

- Additional astronomical extinction A (here in magnitudes) due to the interstellar medium along line of sight (LOS) between star and observer
\Rightarrow further reduces the apparent brightness.
- Derivation: same star at its real distance $r=r_{1}$ and at the standard distance $r_{2}=10 \mathrm{pc}$

$$
\Rightarrow \Delta m=m_{1}-m_{2}=-2.5 \log \left(F_{1} / F_{2}\right), \quad F \propto r^{-2}, \quad F_{1} / F_{2} \propto r_{2}^{2} / r_{1}^{2}
$$

$\Rightarrow m-M=5 \log r[p c]-5+A$.

- Note m-M=0 for a star at a distance of 10 pc (with $A=0$) (definition of the absolute brightness).

Observational stellar parameters

Absolute brightness $\quad \Rightarrow$ brightness at standard distance of 10 parsec

	Apparent brightness $\mathbf{m}_{\mathbf{v}^{*}}$	Absolute brightness $\mathbf{M}_{\mathbf{v}^{*}}$	Distance modulus $\mathbf{(m - \mathbf { M } _ { \mathbf { v } } { } ^ { * }}$	Distance
Sun	-26.74	4.83	-31.57	1 AU
\mathbf{a} Cen A Solar-like star	0.01	4.38	-4.37	4.4 ly
Sirius A brightest star (after Sun)	-1.47	1.42	-2.89	8.7 ly
Proxima Cen closest star (after Sun)	11.13	15.6	-4.47	4.2 ly
Betelgeuse	0.5	-5.85	6.35	550 ly

* All brightness at visible wavelengths, astronomical extinction ignored (A=0)
- Sun would be among the fainter stars observable with the naked eye when observed from a distance of 10 pc .

