### AST5770 Solar and stellar physics

University of Oslo, 2022

**Sven Wedemeyer** 

### **Bolometric brightness**

- Bolometric = <u>all</u> wavelengths
- Integration of the wavelength-dependent radiation flux  $F_{\lambda}$  over <u>all</u> wavelengths, or equivalently  $F_{\nu}$  over <u>all</u> frequencies

$$F = \int_0^\infty F_\lambda d\lambda = \int_0^\infty F_\nu d\nu$$

→ Apparent bolometric brightness mbol is a measure for the total radiative flux F of a star

#### **Photometry and colours**

- Use of different filters in an observation
- Transmission of only limited wavelength ranges
- Standardised filter system(s)
  - Most common: UBVRI(+)
  - Originally **UBV** (ultraviolet blue visual)
  - Extended into the infrared (IR)

#### UBVRI filter system + extension

| Filter | descript. | λ [nm] | FWHM [nm] |       |
|--------|-----------|--------|-----------|-------|
| U      | UV        | 365    | 66        |       |
| B      | blue      | 440    | 94        |       |
| V      | visual    | 548    | 88        |       |
| R      | red       | 658    | 138       | nce   |
| I      | IR        | 806    | 149       | nitta |
| J      | IR        | 1220   | 213       | ansr  |
| H      | IR        | 1630   | 307       | 6 Tra |
| K      | IR        | 2190   | 490       | 6     |
| L      | IR        | 3450   | 473       |       |
| M      | IR        | 4750   | 460       |       |

- Brightness measured in a selected filter marked with corresponding index
- Example: Visual (**V**)
  - Apparent brightness: m<sub>V</sub> = V (Often only the filter ID is used!)
  - Absolute brightness:  $M_V$



#### Photometry and colours, color index

- Measuring brightness with different filters captures
   variation of flux density as function of wavelength (spectrum)
  - ➡ Reveals difference between stars
- Colour index: difference of two brightness measured in different bands,  $m_X m_Y$ .
- Example:  $m_B m_V = B V$



#### Photometry and colours, color index

- Measuring brightness with different filters captures
   variation of flux density as function of wavelength (spectrum)
  - ➡ Reveals difference between stars

#### Colour index:



### **Bolometric correction**

- Filters cover only parts of the spectrum
- Especially measuring with few filters may give incomplete picture
  - Correction for missing wavelength ranges needed when absolute brightness across all wavelengths is wanted
  - → Bolometric correction (BC):  $M_{bol} = M_V + BC$
- Note: hot stars radiate much in UV, not well captured by the available filter systems; (very) cool stars better covered with IR filters



#### **Photometry and colours**

 Note that different instruments at different telescopes can have other filter systems



#### **Stellar spectrum**





- Measured Sun's intensity as function of wavelength
- The black body spectrum for an effective temperature of Teff = 5778 K
- Data from Neckel and Labs (1984) Also provided for your project assignment.

### **Blackbody spectrum**

- Radiation flux density (spectrum) resembles a blackbody spectrum, which is given by the Planck function B<sub>v</sub> (T).
  - $B_v$  (T): spectral density of electromagnetic radiation emitted by a blackbody in thermal equilibrium at a given temperature T.
  - $\rightarrow$  The flux density  $F_{v}$  of a blackbody:

 $F_{\nu}=\pi B_{\nu}(T)$ 

➡ Bolometric flux by integration over all frequencies:

$$F = \int_0^\infty F_\lambda d\lambda = \int_0^\infty F_\nu d\nu = \int_0^\infty \pi B_\nu(T) d\nu = \sigma T^4 \Rightarrow F = \sigma T_{\text{eff}}^4$$

• Stefan-Boltzmann constant:

$$\sigma = \frac{2\pi^5 k_{\rm B}^4}{15h^3 c^2} = 5.67 \times 10^{-8} {\rm W} {\rm m}^{-2} {\rm K}^{-4} = 5.67 \times 10^{-5} {\rm erg} {\rm s}^{-1} {\rm cm}^{-2} {\rm K}^{-4}$$

#### Stefan-Boltzmann law

- Radiation flux density (spectrum) resembles a **blackbody** spectrum, which is given by the Planck function  $B_v$  (T).
  - $B_{\nu}$  (T): spectral density of electromagnetic radiation emitted by a blackbody in thermal equilibrium at a given temperature T.
  - $\rightarrow$  The flux density  $F_v$  of a blackbody:

$$F_{\nu}=\pi B_{\nu}(T)$$

➡ Bolometric flux by integration over all frequencies:

**Stefan-Boltzmann law** 

$$F = \int_0^\infty F_\lambda d\lambda = \int_0^\infty F_\nu d\nu = \int_0^\infty \pi B_\nu(T) d\nu = \sigma T^4 \Rightarrow F = \sigma T_{\text{eff}}^4$$

• Stefan-Boltzmann constant:

$$\sigma = \frac{2\pi^5 k_{\rm B}^4}{15h^3 c^2} = 5.67 \times 10^{-8} \,{\rm W}\,{\rm m}^{-2}\,{\rm K}^{-4} = 5.67 \times 10^{-5} {\rm erg}\,{\rm s}^{-1}\,{\rm cm}^{-2}\,{\rm K}^{-4}$$

#### Stefan-Boltzmann law

- Example: Sun
- Bolometric flux density of the Sun measured just outside Earth's atmosphere by a satellite:

 $\implies$  solar constant = 1.36 kW m<sup>-2</sup>

- Radiation emitted from the Sun's "surface" at radius 1  $R_{\odot}$
- Diluted over a sphere with radius d = 1 AU with surface area  $A = 4\pi d^2$



#### **Stefan-Boltzmann** law

#### Example: Sun

• Bolometric flux density of the Sun measured just outside Earth's atmosphere by a satellite:

 $\implies$  solar constant = 1.36 kW m<sup>-2</sup>

- Radiation emitted from the Sun's "surface" at radius 1 R⊙
- Diluted over a sphere with radius d = 1 AU with surface area A =  $4\pi$  d<sup>2</sup>
- Correction for "dilution" effect with the factor  $d^2/R_{\odot}^2$  gives flux density at Sun's surface (1R $_{\odot}$ ):  $F_{\odot} = 6.3 \cdot 10^7 Wm^{-2}$
- Stefan-Boltzmann law:  $F_{\odot} = \sigma T_{eff,\odot}^4 \longrightarrow effective temperature of the Sun: <math>T_{eff,\odot} \approx 5770 \text{ K}$



## **Stellar parameters**

### Luminosity

- Total radiative energy output of a star
  - given by flux that emerges across the total surface of a star.
- Assumption: star is spherical with radius R
- $\Rightarrow$  Surface area  $A = 4 \pi R^2$
- $\blacksquare$  Luminosity of a star L = A F

## **Stellar parameters**

### Luminosity

• Total radiative energy output of a star

given by flux that emerges across the total surface of a star.



- Units: W (SI) or erg s–1 (cgs)
- Convenient to use the bolometric luminosity of the Sun as unit

 $L_{\odot} = 3.84 \times 10^{26} \,\mathrm{W}$ 

## Stellar spectra

 Blackbody for different temperatures



- Increasing  $T_{eff}$ 
  - $\implies$  Bolometric flux F (integral under the curve) increases with T<sub>eff</sub><sup>4</sup>
  - ightarrow Wavelength of peak becomes shorter: Wien's displacement law  $\lambda_{
    m ma}$

 $\lambda_{\max} = \frac{b}{T}$ 

Interactive app:

https://phet.colorado.edu/sims/html/blackbody-spectrum/latest/blackbody-spectrum\_en.html

Wien's displacement constant  $(b = 2.89777 \times 10^{-3} \text{ m} \cdot \text{K} \approx 2900 \,\mu \text{ m} \cdot \text{K})$ 

### Stellar spectra



- A real stellar spectrum ...
  - ... is reasonably well described at longer wavelengths
  - ... deviates in particular at shorter wavelengths and/or in wavelength regions with many (absorption) lines!



## Stellar spectra

#### Hydrogen lines and continua



### **Stellar spectra**

### **Spectrum of the Sun**

### Line strength

- Strength of a spectral line depends on the number of atoms/molecules with electrons in the starting orbit for the spectral line under consideration
- **Example:** H- $\alpha$  line at 656.3nm in absorption, n=2  $\rightarrow$  n=3  $\implies$  H atoms needed that have electrons in level n=2,
  - $\rightarrow$  Must already have absorbed a photon to raise n=1 $\rightarrow$  n=2
  - ➡ Requires high enough temperature
- Level populations and thus strength of a spectral line depends thermodynamic properties of the gas (and chemical abundance)
- Line strength measured as **equivalent width** 
  - Area between spectral line and continuum and reshape into rectangle that extends from 1 to 0
  - Width of covered area



Wavelength  $\lambda$ 



#### Line strength

• Strength of a spectral line depends on chemical abundance of the element and thermodynamic properties such as the gas **temperature** 



#### Line strength

• Analysis of many spectral lines of different elements (and ionisation stages) allows to determine the gas temperature



#### Line strength

• Saha equation: Ionization degree for any gas in thermal equilibrium



n: Number density of atoms in the i-th ion state (i electrons removed)ε: ionisation energy



- Spectral types defined according to occurrence and strength of spectral lines
- ➡ Sorting the different types into a sequence



- Measuring brightnesses, colour indices, spectral lines (+Stefan-Boltzmann law)
- ➡ Spectral types can sorted into a sequence as function of temperature



### Stellar spectra



- Different classification schemes
- Harvard spectral classification
- Further developed and extended
- ➡ Morgan-Keenan system

- A star is classified by a
  - Spectral class
  - Decimal sub-division (0-9) with effective temperature decreasing with in increasing digit
  - Luminosity class



| Ma | ain spectral classes |                |                                                           |
|----|----------------------|----------------|-----------------------------------------------------------|
| 0  | violet               | > 28 000 K     | less than few visible absorption lines, weak Balmer       |
|    |                      |                | lines, ionised helium lines                               |
| В  | blue                 | 10000 - 28000K | neutral hydrogen lines, more prominent Balmer lines       |
| Α  | blue                 | 7500 - 10000K  | strongest Balmer lines, other strong lines                |
| F  | blue-white           | 6 000 – 7 500K | weaker Balmer lines, many lines including neutral metals  |
| G  | white-yellow         | 5000 - 6000K   | Balmer lines weaker still, dominant ionised calcium lines |
| K  | orange-red           | 3 500 – 5 000K | neutral metal lines most prominent                        |
| Μ  | red                  | < 3 500  K     | strong neutral metal lines and molecular bands            |



| Main s | pectral classes |                         |                                                           |
|--------|-----------------|-------------------------|-----------------------------------------------------------|
| 0      | violet          | > 28 000 K              | less than few visible absorption lines, weak Balmer       |
|        |                 |                         | lines, ionised helium lines                               |
| В      | blue            | 10000 - 28000K          | neutral hydrogen lines, more prominent Balmer lines       |
| A      | blue            | 7 500 – 10 000K         | strongest Balmer lines, other strong lines                |
| F      | blue-white      | 6 000 – 7 500K          | weaker Balmer lines, many lines including neutral metals  |
| G      | white-yellow    | 5 000 – 6 000K          | Balmer lines weaker still, dominant ionised calcium lines |
| K      | orange-red      | 3 500 – 5 000K          | neutral metal lines most prominent                        |
| Μ      | red             | < 3 500 K               | strong neutral metal lines and molecular bands            |
| Supple | mentary classes | of cool stars           |                                                           |
| R(C)   | red             | < 3 000 K               | Carbon compounds, S-process elements                      |
| N(C)   | red             |                         | Carbon compounds, S-process elements                      |
| S      | red             | $\sim 3000  \mathrm{K}$ | s-process elements, molecular bands                       |
|        |                 |                         | (especially ZrO and TiO)                                  |

- **R,N or C-type: "carbon stars"** red giant stars and Asymptotic Giant Branch (AGB) stars.
  - regular M-type giant stars have more oxygen and carbon -> referred to as "oxygen-rich" stars.
- S-type stars: carbon and oxygen are approximately equally abundant
  - prominently spectral features due to the s-process elements (e.g. zirconium monoxide (ZrO).

| Main s  | pectral classes |                         |                                                           |
|---------|-----------------|-------------------------|-----------------------------------------------------------|
| 0       | violet          | > 28 000 K              | less than few visible absorption lines, weak Balmer       |
|         |                 |                         | lines, ionised helium lines                               |
| В       | blue            | 10000 - 28000K          | neutral hydrogen lines, more prominent Balmer lines       |
| А       | blue            | 7500 - 10000K           | strongest Balmer lines, other strong lines                |
| F       | blue-white      | 6 000 – 7 500K          | weaker Balmer lines, many lines including neutral metals  |
| G       | white-yellow    | 5000 - 6000K            | Balmer lines weaker still, dominant ionised calcium lines |
| K       | orange-red      | 3 500 – 5 000K          | neutral metal lines most prominent                        |
| Μ       | red             | < 3 500 K               | strong neutral metal lines and molecular bands            |
| Supple  | mentary classes | of cool stars           |                                                           |
| R (C)   | red             | < 3 000 K               | Carbon compounds, S-process elements                      |
| N (C)   | red             |                         | Carbon compounds, S-process elements                      |
| S       | red             | $\sim 3000 \mathrm{K}$  | s-process elements, molecular bands                       |
|         |                 |                         | (especially ZrO and TiO)                                  |
| Very lo | w mass /sub-ste | llar spectral classes ( | (mostly brown dwarfs)                                     |
| L       | IR              | 1 500 – 2 500 K         | lines of alkali metals (e.g. N) and metallic compounds    |
|         |                 |                         | (e.g. FeH)                                                |
| Y       | IR              | 800 – 1 500 K           | methane absorption lines                                  |
| Τ       | IR              | < 800 K                 | water and ammonia lines                                   |

#### Luminosity class

| Ia - 0 | hypergiants            |
|--------|------------------------|
| I      | supergiants            |
| II     | bright giants          |
| III    | giants                 |
| IV     | subgiants              |
| V      | main sequence (dwarfs) |
| VI     | subdwarfs              |

• A star is classified by a



#### • Examples

| Sun         | G2V   |
|-------------|-------|
| Sirius A    | AOV   |
| Proxima Cen | M5.5V |
| Betelgeuse  | M1I   |
| Aldebaran   | K5III |

#### **Additional classification**

- Special spectral types
  - W for Wolf-Rayet stars with no hydrogen lines in their spectra
  - **D** for white dwarfs
  - ...
- Extra information can be added to the spectral type of a star if it differs from the other regular types / show peculiarities
  - e: presence of pronounced emission lines
  - v: variable spectral features.
  - . . .
  - Example: M5.5Ve
- Please note that
  - the accuracy of a spectral classification depends on the quality of the available data
  - a spectral classification can change as a star changes

### **Stellar populations**

- Observations show that decreasing **metal content** correlated with increasing age of stars.
- Stars (in our galaxy) can be further divided into populations according to their chemical composition or metallicity
  - **Population I:** "recent" stars, high metallicity
  - **Population II:** old stars, low metallicity
  - **Population III:** first stars in the universe (very low metal content)

• Originally, pop I+II, pop III added in 1978

### **Stellar classification**

#### Hertzsprung-Russell diagram



### **Stellar classification**

#### Hertzsprung-Russell diagram

#### EXPANDED HERTZSPRUNG-RUSSELL DIAGRAM



- The fundamental (global) parameters that describe a star are
  - mass M,
  - radius R,
  - luminosity L.
- They are commonly expressed in units of the solar values  $M_{\odot}$ ,  $R_{\odot}$ , and  $L_{\odot}$
- **Stellar atmosphere** (layer from where we receive most of the observable information) is characterised by the following parameters:
  - effective temperature T<sub>eff</sub>
  - gravity acceleration g
  - **chemical composition** (*expressed as metallicity*)
  - magnetic field strength

(although the magnetic field is typically difficult to be expressed by just one parameter)

• Often stellar properties can only be derived with **significant uncertainties**,

#### Mass

- According to our definition of a star, nuclear fusion in its interior is required.
  - → Minimum mass of a star  $M_{min} \approx 0.08 M_{\odot}$ .
  - ➡ Objects with M<sub>min</sub> < 0.08M<sub>☉</sub> (but more mass than planets): brown dwarfs (M<sub>bd</sub> < 0.08M<sub>☉</sub>).
- Highest masses M > 100M⊙
  - Known examples with up to ~ 250M⊙
- Number of stars with a certain mass decreases strongly with mass!

➡ only few very massive stars but very many low-mass stars.

- ➡ very massive stars are therefore typically far away
- Strong stellar winds and outflowing gas result in clouds surrounding these stars can make the determination of the stellar mass less reliable.

#### Radius

#### • Main sequence stars

- Typical values: 0.1  $R_{\odot}$  to ~ 25  $R_{\odot}.$
- Radii increase as function of effective temperature along the main sequence
- Red dwarfs at the cool end being much smaller than the Sun
- Hot main sequence stars being much larger than the Sun.

#### • Red giants, supergiants, ...

- Diameters larger than the orbit of Mars.
- Examples: Antares (680 800  $R_{\odot}$ ), Betelgeuse (900  $R_{\odot}$ ), and Mu Cephei (972 1,260  $R_{\odot}$ ).
- Largest stars: radii currently estimated to up ~ 2000  $R_{\odot}$  .

#### • White dwarfs

•  $R < 0.02 R_{\odot}$ 



Careful: Scale might not be accurate (anymore)



Careful: Scale might not be accurate (anymore)

### **Stellar classification**

### Hertzsprung-Russell diagram

#### Hertzsprung-Russell Diagram





#### **Luminosity** $\rightarrow L = 4\pi R^2 \sigma T_{eff}^4$

- The bolometric luminosity of stars spans r many orders of magnitude:  $10^{-4} L_{\odot} 10^{6} L_{\odot}$
- Depends to **4<sup>th</sup> power** on T<sub>eff</sub>
- Small difference in T<sub>eff</sub> results in a large change in L! (Same true for uncertainties)
- Example 1: blue-white supergiant Deneb (α Cyg) — one of the brightest stars in the sky: L ~ 60 000 — 200 000L<sub>☉</sub>.
  - ➡ Large uncertainty is due to the poorly known distance!
- Example 2: Red supergiant
   Betelgeuse L ≈ 100 000L<sub>☉</sub>





### ar parameters



**Spectral type O6** 

 $L \propto R^2 T_{eff}^4$ 

R = 18 R<sub>☉</sub> T<sub>eff</sub> = 38 000 K = 6.3 T<sub>eff,☉</sub> → L = 520 000 L<sub>☉</sub>

#### Red dwarf star

$$\begin{split} R &= 0.1 \ R_\odot \\ T_{eff} &= 0.5 \ T_{eff,\odot} = 2885 \ K \\ &\implies L &= 0.1^2 \ 0.5^4 \ L_\odot \\ &= 0.0006 \ L_\odot \\ &= 0.06 \ \% \ L_\odot \end{split}$$