AST5770 Solar and stellar physics

University of Oslo, 2022

Sven Wedemeyer

Practical information

Updated schedule

mandag 10:15-12:00	Forlesning 1	rom 304
tirsdag	/	
onsdag 14:15-16:00	Gruppeundervisning	rom 304
torsdag 10:15-11:45	Forlesning 2	rom 304

Assignments

First mandatory assignment

- Delivery via devilry (more information soon)
- Assignments to prepared using the provided latex templates:

/mn/stornext/d9/svenwe/lecture/AST5770/data/assignment/assign1/

Preparatory exercises for training

- 1. Literature research with ADS
 - Download bibtex items and use them in latex
- 2. Loading and plotting a reference model (VALC)
- 3. Use the helioviewer tool
- 4. First look at the provided observation and simulation data

• First steps towards the final project assignment

- Tentative science question, work plan, and reading list
- Important: Just to get started! Can be updated!

	ASTS770 - Solar and stellar physics University of Oslo 2022
1	MANDATORY ASSIGNMENT I
2	Candidate # X
3	January 25, 2022
4	Please note that this is assignment will not be graded but delivery is mandatory in order to qualify for submission of the final (graded) project assignment.
5	1. Preparatory exercises
67	Instructions. The exercises in this section will help you getting started with tasks that are essential for working with the next mandatory and it final project assignments.
8	1.1. Literature search and bibliography
9	Instructions. Use the Astrophysics Data System (ADS) to find the right references. You should retrieve the bibTey items from ADS and build a a bibliography file (.bib). Please answer the questions below by specifying the bibcode and using the cite command.
11	1.1.1. Which is the most cited paper that contains the word "Sun" in the title?
12	Answer: - title of the paper Bibcode:
13 14	1.1.2. Which of the papers that do cite the paper referred to above in exercise 1.1.1 and was published after the yea 2000 has itself received the most citations?
15	Answer: - title of the paper Bibcode:
16	1.1.3. Which is the most cited paper of the author Parker, E that contains the word "solar" in the title?
17	Answer: - title of the paper Bibcode:
18 19	1.1.4. In their paper on simulations of solar granulation, which the authors Stein, R. F. & Nordlund, Å published in th Astrophysical Journal (ApJ) in 1998, they refer to another paper on magnetic elements. Which is that paper?
20	Answer: - title of the paper Bibcode:
21	1.1.5. Which is the most cited paper that contains the words "solar metallicity low-mass stars" in the title and/or abstract?
23	Answer: - title of the paper Bibcode:

Literature research

https://ui.adsabs.harvard.edu/

Introduction to the Astrophysics Data System (ADS)

	QUICK FIELD: Author First Author Abstract Year Fulltext All Search Terms	*			
← Start New Search	author:("Vernazza") year:1981	X Q			
	Your search returned 1 results				
	↓	ate -		🕑 Export -	Lul Ex
	Show highlights Show abstracts Hide Sidebars	Go To Bottom	Years C	Citations Reads	
 Avrett, E Loeser, R Vernazza, J COLLECTIONS astronomy REFEREED 	1 1 1981ApJS45635V 1981/04 cited: 2172 Image: Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun. Vernazza, J. E.; Avrett, E. H.; Loeser, R.	ŝS	Too little d	ata to make a use	eful graph
 refereed INSTITUTIONS KEYWORDS PUBLICATIONS BIB GROUPS SIMBAD OBJECTS NED OBJECTS 	Per Page 500 V I of 1 next O	Top 🔺			
 DATA VIZIER TABLES PUBLICATION TYPE 					

Practical information

Data / material for assignments

• Main directory:

/mn/stornext/d9/svenwe/lecture/AST5770/

- Sub-directories/content:
 - Data: data/
 - Templates 4 assignments: **assignment**/
 - First assignment: assignment/assign1/
 - Latex: assignment/latex/
 - Further information: assignment/AST5770_projectassign.pdf

- Who uses python? Who IDL?
- Note that order of dimensions in data cubes can be flipped!

Stellar structure — The Sun

Atmosphere

>1 000 000 K Corona ~100 000 K Transition region 10 000 K Chromosphere-Photosphere-5770 K **Convection** zone **Radiative** zone 15 000 000 K Core A brief recap of the stellar interior will be provided in one of the next lectures.

Solar"zoology"

- A plethora of phenomena with different names
- Names often depend on the **region/layer** where phenomenon occurs (if known/limited to that) or the **wavelength** domain in which it is observed
- Names are often given upon discovery without understanding the physical mechanism behind — names not always meaningful
- Careful: Sometimes different names just refer to different aspects of the same phenomenon or observable imprints in different parts of the spectrum

Different regions — photosphere

Active Region (Large) area with strong magnetic field	Sunspot Areas of concentrated very strong field, appear dark	Umbra Central compact part, dark Penumbra Surrounding, filamentary						
	Faculae bright (filamentary) areas							
Quiet Sun Outside Active Regions, weaker magnetic field	Network Concentrations of strong magnetic field, filamentary/ mesh-like							
	Inter-network Areas with weak magnetic field inside network cells							

Different regions — chromosphere

Active Region (Large) area with strong magnetic field	Sunspot Areas of concentrated very strong field, appear dark	Umbra Central compact part, dark Penumbra Surrounding, filamentary
	Plage bright area, higher temperature, often proceeds formation of sunspots	Filaments Plages
Quiet Sun Outside Active Regions, weaker magnetic field	Network Concentrations of strong magnetic field, filamentary/ mesh-like	
	Inter-network Areas with weak magnetic field inside network cells	

- Solar atmosphere

 highly dynamic
 intermittent
 dynamically coupled
- Structured on large range of spatial scales, down to (at least) 0.1 arcsec
- The Sun is dynamic on short timescales (down to seconds)
- Plethora of processes.
- Great plasma physics "laboratory"

Solar Dynamics Observatory SDO/NASA

HOW TO OBSERVE THE SUN?

- Different continua and spectral lines probing different plasma properties in different domains/layers
- Multi-wavelength co-ordinated space-borne/ground-based campaigns as standard in modern solar physics

Active Region (sunspots)

> Quiet Sun (``normal" granulation)

Solar Dynamics Observatory SDO/NASA

Multi-wavelength co-ordinated space-borne/ground-based campaigns as standard in modern solar physics

Corona (SDO/AIA171) Chromosphere (ALMA 3.0 mm) Chromosphere (ALMA 1.2 mm) **Photosphere (SDO/HMI)** Solar Dynamics Observatory SDO/NASA

Solar Dynamics Observatory (SDO)

- Space telescope(s) with several instruments (since 2010)
- Helioseismic and Magnetic Imager (HMI)
 - Provides magnetograms
- Atmospheric Imaging Assembly (AIA)
 - Many different filters (distributed over 4 telescopes) that map different layers (or more precisely temperature ranges) in the solar atmosphere
 - 12s cadence

Solar Dynamics Observatory (SDO)

- Atmospheric Imaging Assembly (AIA)
- Maps effectively different layers in the chromosphere and corona

Filter	Ions	Log T							
131	Fe VIII, XX, XXIII	5.6, 7.0, 7.2							
171	Fe IX	5.8							
193	Fe XII, XXIV	6.1, 7.3							
211	Fe XIV	6.3							
335	Fe XVI	6.4							
94	Fe XVIII	6.8							

Preview - The solar atmosphere

Interactive exploring — helioviewer

- web-based version: https:// helioviewer.org/
- downloadable application: <u>https://www.jhelioviewer.org/</u> (has more functions)

Solar coordinate systems

- RA/Dec does not make sense for relative coordinates on the Sun as the Sun itself is moving with respect to the sky background
- Relevant coordinates for the Sun shown at the bottom of the helioviewer window!

Solar coordinate systems Helioprojective Cartesian Coordinates

- Observations are projected against the celestial sphere
- Observer-centric system with projective angles and solar disc-centre as origin

This is the projected equivalent of heliocentric-cartesian coordinates, where the distance parameters x and y are replaced with the angles θ_x and θ_y , where θ_x is the longitude, and θ_y is the latitude. Close to the Sun, where the small angle approximation holds, the heliocentric-cartesian and helioprojective-cartesian are related through the equations

$$x \approx d(\frac{\pi}{180^{\circ}})\theta_{x} \approx D_{\odot}(\frac{\pi}{180^{\circ}})\theta_{x}, \qquad (4)$$
$$y \approx d(\frac{\pi}{180^{\circ}})\theta_{y} \approx D_{\odot}(\frac{\pi}{180^{\circ}})\theta_{y}, \qquad (4)$$

where *d* is the distance between the observer and the feature, and D_{\odot} is the distance between the observer and Sun center.

Semi-empirical model atmosphere

- Semi-empirical models
 - Starting with a model atmosphere that describes the stratifications of relevant properties such gas temperature, density etc.
 - Calculate the emergent intensity for different continua and spectral lines
 - Compare to observations
 - Adjust the model atmosphere
 - Repeat until the observations are (overall) reproduced as accurately as possible

• Very well known: VAL: Vernazza, Avrett, Loeser (1981)

- One-dimensional!
- Several models and updates/modifications
- Widely used as a reference

Semi-empirical model atmosphere

VAL: Vernazza, Avrett, Loeser (1981)

Semi-empirical model atmosphere VAL: Vernazza, Avrett, Loeser (1981)

Semi-empirical model atmosphere TABLE 12 VAL Model C (1981)

							MODLE C			
	h	m	τ ₅₀₀	Т	V	n _H	n _e	P _{total}	Pgas	σ
	(km)	(g cm ⁻²)		(K) (km s⁻¹)	(cm ⁻³)	(cm ⁻³)	$(dyn cm^{-2})$	Ptotal	(g cm ⁻³)
1	2543	5.257-06	0.	447000	11.28	1.005+09	1.205+09	1.440-01	.9896	2.349-15
2	2298	5.365-06	3./12-08	141000	9.87	3.205+09	3.839+09	1.4/0-01	.9752	/.494-15
3	2290	5.373-06	3.969-08	89100	9.82	5.041+09	5.961+09	1.4/2-01	.9614	1.179-14
4 5	2280	5.389-06	4.491-08	37000	9.78	1.201+10	1.318+10	1.477-01	.9318	2.113-14
-										
5	22/1	5.413-06	5.234-08	32000	9./1	1.3/8+10 1.567+10	1.498+10	1.483-01	.8976	3.222 - 14
Ŕ	2207	5 443-06	6 124-08	25500	9.68	1,719+10	1 912+10	1.407-01	.0040	1 017-14
ğ	2255	5.476-06	7,110-08	24500	9.64	1.797+10	1.881+10	1.500-01	.8698	4.203-14
10	2230	5.583-06	1.030-07	24200	9.49	1.862+10	1.943+10	1.530-01	.8718	4.355-14
• •	2200	5 716-06	1 426-07	24000	0 23	1 032+10	2 000+10	1 566-01	9645	1 517-14
12	2160	5.902-06	1.977-07	23500	9,08	2.051 ± 10	2.120+10	1.617-01	.8778	4.795-14
12	2129	6.055-06	2.427-07	23000	8.87	2.163+10	2,219+10	1.659-01	.8801	5.058-14
14	2120	6,101-06	2.562-07	22500	8.81	2.231+10	2,276+10	1.672-01	.8789	5.216-14
15	2115	6.128-06	2.640-07	21000	8.78	2.403+10	2.402+10	1.679-01	.8710	5.619-14
16	2113	6.140-06	2.674-07	18500	8.77	2.732+10	2.620+10	1.682-01	8539	6.390-14
17	2109	6.172-06	2.754-07	12300	8.74	4.092+10	3.306+10	1.691-01	7839	9.569-14
18	2107	6.193-06	2.801-07	10700	8.72	4.673+10	3.535+10	1.697-01	.7552	1.093-13
19	2104	6.228-06	2.877-07	9500	8.71	5.239+10	3.705+10	1.706-01	.7277	1.225-13
20	2090	6.416-06	3.243-07	8440	8.60	6.127+10	3.799+10	1.758-01	.6986	1.433-13
21	2080	6.564-06	3.507-07	8180	8.55	6.541+10	3,780+10	1.798-01	.6891	1.530-13
22	2070	6.722-06	3.770-07	7940	8.50	6.960+10	3.783+10	1.842-01	.6808	1.628-13
23	2050	7.066-06	4.299-07	7660	8.42	7.705+10	3.792+10	1.936-01	.6701	1.802-13
24	2016	7.732-06	5.203-07	7360	8.22	9.075+10	3.811+10	2.118-01	.6616	2.122-13
25	1990	8.322-06	5.903-07	7160	8.01	1.033+11	3.858+10	2.280-01	.6600	2.417-13
26	1925	1.015-05	7.717-07	6940	7.63	1.380+11	4.028+10	2.780-01	.6620	3.227-13
27	1785	1.647-05	1.212-06	6630	6.92	2.601+11	4.771+10	4.511-01	.6772	6.082-13
28	1605	3.407-05	1.958-06	6440	5.85	6.386+11	6.005+10	9.334-01	.7262	1.493-12
29	1515	5.144-05	2.420-06	6370	5.26	1.048+12	6.456+10	1.409+00	.7595	2.450-12
30	1380	1.012-04	3.286-06	6280	4.51	2.273+12	7.600+10	2.774+00	.8051	5.315-12
31	1280	1.747-04	4.084-06	6220	3.92	4.200+12	7.486+10	4.786+00	.8423	9.822-12
32	1180	3.112-04	5.075-06	6150	3.48	7.865+12	8.108+10	8.527+00	.8694	1.839-11
33	1065	6.299-04	6.861-06	6040	2.73	1.711+13	9.349+10	1.726+01	.9136	4.000-11
34	980	1.098-03	9.148-06	5 92 5	2.14	3.147+13	1.041+11	3.008+01	.9440	7.359-11
35	905	1.840-03	1.239-05	5755	1.70	5.546+13	1.049+11	5.043+01	.9628	1.297-10
36	855	2.632-03	1.553-05	5650	1.53	8.135+13	1.064+11	7.210+01	.9691	1.902-10
37	755	5.577-03	2.537-05	5280	1.23	1.864+14	8.838+10	1.528+02	.9784	4.358-10
38	705	8.333-03	3.288-05	5030	1.09	2.935+14	7.664+10	2.283+02	.9821	6.864-10
39	655	1.276-02	4.452-05	4730	.96	4.794+14	8.085+10	3.495+02	.9852	1.121-09
40	605	2.013-02	7.022-05	4420	.83	8.119+14	1.112+11	5.516+02	.9881	1.899-09
41	555	3.270-02	1.456-04	4230	.70	1.382+15	1.733+11	8.958+02	.9912	3.232-09
42	515	4.878-02	3.014-04	4170	.60	2.096+15	2.495+11	1.336+03	.9934	4.902-09
43	450	9.378-02	1.017-03	4220	.53	3.989+15	4.516+11	2.569+03	.9949	9.327-09
44	350	2.481-01	5.626-03	4465	.52	9.979+15	1.110+12	6.798+03	.9954	2.334-08
45	250	6.172-01	2.670-02	4780	.63	2.315+16	2.674+12	1.691+04	.9936	5.413-08
46	150	1.433+00	1.117-01	5180	1.00	4.917+16	6.476+12	3.926+04	.9854	1.150-07
47	100	2.118+00	2.201-01	5455	1.20	6.866+16	1.066+13	5.804+04	.9801	1.606-07
48	50	3.056+00	4.395-01	5840	1.40	9.203+16	2.122+13	8.274+04	.9748	2.152-07
49	-25	4.279+00 4.991+00	9.953-01	6420 6910	1.60	1.166+17 1.261+17	6.433+13 1.547+14	1.172+05	.9702	2.949-07
50	25	4.331400	1.003+00	0910	1.70	1.20171/	1.34/714	1.300+03		2.545 07
51	-50	5.747+00	3.338+00	7610	1.76	1.317+17	4.645+14	1.575+05	.9697	3.080-07
52	-/5	0.534+00	/.445+00	8320	T.80	1.302+1/	1.204+15	1./90+05	.9/11	3.192-07

Overview

• Data: /mn/stornext/d9/svenwe/lecture/AST5770/data

ref	Reference model, solar atmosphere (Vernazza et al. 1981), model C
obs_sunspec	Observed spectrum of the Sun (Neckel & Labs 1994)
obssun_sst1 obssun_sst2 obssun_sst3 obssun_sst4	Observations of the Sun with the Swedish 1-m Solar Telescope (SST)
obs starcat	Catalogue with stellar parameters
obs_starcat/SED	Spectral Energy Distribution for different stars
simsts_F5V	3D numerical simulations for different stellar types, 1 snapshot each
simsts_K2V simsts K8V	Volume data
simsts_G2V	Continuum intensity
simsts_K5III simsts_M3V	Spectral line data
simsut_G2V	Time series of 2D slices extracted from a 3D numerical simulations of the Sun (in production)

Reference model

- Semi-empirical atmospheric model of the Sun by Vernazza, Avrett, and Loeser (1981)
- Provided: Model C for Quiet Sun conditions (referred to as VAL C)
- For comparison and/or as reference for observational and simulation data sets.
- /mn/stornext/d9/svenwe/lecture/AST5770/data/ref/ val81c.h5
- HDF5 the following tags:

z: Geometrical height above the photospheric level with h=0km where the continuum optical depth tau_500=1

Reference model

- Semi-empirical atmospheric model of the Sun by Vernazza, Avrett, and Loeser (1981)
- Provided: Model C for Quiet Sun conditions (referred to as VAL C)
- For comparison and/or as reference for observational and simulation data sets.
- /mn/stornext/d9/svenwe/lecture/AST5770/data/ref/ val81c.h5
- For the beginning only VAL C is provided.
- More models (VAL A F) and others can be added soon

Solar spectrum

- Data from Neckel and Labs (1984) measurement spectrum of the Sun (function of wavelength)
- Flux: at solar disc-centre (FC) and averaged over the solar disc (F), wavelength (LC)
- Intensity: at solar disc-centre (IC) and averaged over the solar disc (I), wavelength (LC)
- /mn/stornext/d9/svenwe/lecture/AST5770/data/obssun_spec/obssun_spec_NL94.h5
- HDF5 the following tags:

DESCRIPTION

F FC I IC LF LI TAGS TLF TLI

Data / material for assignments — solar observations

Solar observations with Swedish 1-m Solar Telescope (SST)/CRISP, time series of imag									
obssun_sst1	Quiet Sun, photospheric spectral line Fe I 617.3 nm	$[x, y, \lambda, t]$							
	2015-Oct-11 08:44:29 - 09:18:16 UT ($\mu = 0.78, [x, y] = [-590", 47"]$)								
obssun_sst2	Quiet Sun, chromospheric spectral line Ca II 854.2 nm	$[x, y, \lambda, t]$							
	2015-Oct-11 08:44:15 - 09:18:01 UT ($\mu = 0.78, [x, y] = [-590", 47"]$)								
	Note: Data contains some weak artefacts that need to be dealt with.								
obssun_sst3	Sunspot (AR12533), chromospheric spectral line H α	$[x, y, \lambda, t]$							
	29-Apr-2016 09:43:09 - 11:13:07 UT, ($\mu = 0.75, [x, y] = [623, 8]$)								
	Drews and L. Rouppe van der Voort (2020),								
	L. H. M. Rouppe van der Voort et al. (2021)								
obssun_sst4	Sunspot (AR12770), photospheric spectral line Fe I 617.3 nm	$[x, y, \lambda, t]$							
	2020-Aug-07 08:22:21 - 08:59:58 UT, ($\mu = 0.83, [x, y] = [-446", 279"]$)								

- Swedish 1-m Solar Telescope (SST)
- Time series for different continua and spectra are offered for different solar targets.
- Intensity in units of instrumental counts (no absolute physical units!)
- Files are in HDF5 format and contain a **description**, coordinates (relative within the provided field of view), wavelengths, and time.

Solar observations (SST) — obssun_sst1

obssun_sst1Quiet Sun, photospheric spectral line Fe I 617.3 nm $[x, y, \lambda, t]$ 2015-Oct-11 08:44:29 - 09:18:16 UT ($\mu = 0.78, [x, y] = [-590", 47"]$) $[x, y, \lambda, t]$

• Simultaneous with dataset obssun_sst2!

Solar observations (SST) — obssun_sst2

obssun_sst2	Quiet Sun, chromospheric spectral line Ca II 854.2 nm	$[x, y, \lambda, t]$
	2015-Oct-11 08:44:15 - 09:18:01 UT ($\mu = 0.78, [x, y] = [-590", 47"]$)	
	Note: Data contains some weak artefacts that need to be dealt with.	

• Simultaneous with dataset obssun_sst1!

Solar observations (SST) — obssun_sst3

obssun_sst3	Sunspot (AR12533), chromospheric spectral line H α	$[x, y, \lambda, t]$
	29-Apr-2016 09:43:09 - 11:13:07 UT, ($\mu = 0.75, [x, y] = [623, 8]$)	
	Drews and L. Rouppe van der Voort (2020),	
	L. H. M. Rouppe van der Voort et al. (2021)	

Solar observations (SST) — obssun_sst4

obssun_sst4Sunspot (AR12770), photospheric spectral line Fe I 617.3 nm $[x, y, \lambda, t]$ 2020-Aug-07 08:22:21 - 08:59:58 UT, ($\mu = 0.83, [x, y] = [-446", 279"]$) $[x, y, \lambda, t]$

Solar observations — coordinates

• Caution: Coordinates and rotation!

- The coordinates are approximate for the telescope pointing
- Typically near the centre of the field of view (FOV)
- Typically at the beginning of the observation
- Can differ from the correct(ed) helioprojective coordinates by a few arcseconds!
- The FOV can be **rotated** with respect to the helioprojective coordinate frame
- Usually: FOV is **co-aligned** with a reference image, e.g. SDO
 - SDO coordinates are corrected
 - Co-alignment easier if there are prominent features in both images (e.g. a sunspot)
 - Co-alignment can be hard and unreliable in absence of prominent features!
 - **"Fun" experiment:** Compare the SST FOVs with SDO
 - Correct co-alignment is not expected for the project assignment!

Solar observations — coordinates

• Caution: Coordinates and rotation!

- The coordinates are approximate for the telescope pointing
- Typically near the centre of the field of view (FOV)
- Typically at the beginning of the observation
- Can differ from the correct(ed) helioprojective coordinates by a few arcseconds!
- The FOV can be **rotated** with respect to the helioprojective coordinate frame
- In addition:
 - The FOV of different telescopes vary
 - SST ~60" x 60" (Note: smaller close-up regions are provided for the assignments)
 - Sun rotates! Following the same feature on the Sun needs following of the solar rotation (slow but notable after 1h)
 - The quality of images can vary over time ("seeing" due to Earth's atmosphere)

Stellar catalogue

- obs_starcat/obs_starcat.p contains catalogue with (mostly empirical) parameters for 79 stars
- Can be loaded as a table in python. Some hints:

assignment/AST5770_projectassign.pdf

Name	Sp Type	SIMBAD MAIN ID	RA	DEC	Distance	B-V	Mass	Radius	Teff	L_bol	Period	Vsini	Age	Log R'HK	[Fe/H]	Log L_X	Log Rx	log g	B_V	RO	U	v	R	1	J
1	1		deg	deg	рс	E E	Msun	Rsun	к	Lsun	d	Km/s	Myr			Erg/s		cgs	G		1				1.5
GJ 1111	M6	G 51-15	127.4556042	26.7760389	3.5805	2.066	0.1	0.11	3293	0.0013	0.46	7.3	200		-0.12	27.61	-2.75	3.36	51.5	0.005		14.81	14.736		8.235
Proxima Cen	M5.5V	NAME Proxima Centauri	217.43	-62.68	1.3	1.886	0.12	0.15	2990	0.003	89.8	2.7	4850	-4.29	-0.07	26.82	-3.98	3.17	200	0.63	14.21	11.13	9.45	7.41	5.357
GJ 1156	M5	V* GL Vir	184.7474811	11.1260831	6.4722	1.83	0.14	0.16	3467.33	0.0021	0.49	8.7	5000		0.11	27.69	-3.29	3.18	64.9	0.005		13.9	13.55		8.525
EQ Peg B	M4.5	BD+19 5116B	352.9693164	19.9371906	6.2477	1.65	0.25	0.25	3309	0.0077	0.4	28.5	950	-4.5	1	28.19	-3.25	3.04	364	0.005	5	10.44	12.165	1	7.101
V374 Peg	M4	V* V374 Peg	330.3046894	28.3069075	9.1041	1.718	0.28	0.28	3432.62	0.01	0.45	39.1			-1.83589	28.36	-3.2	2.99	493	0.006		11.99	11.602		7.635
EV Lac	M3.5	V* EV Lac	341.7072156	44.3339881	5.0502	1.412	0.32	0.3	3742.19	0.0115	4.37	6.9	300	-3.97	0	28.37	-3.32	2.99	406	0.068		10.26	9.89	11	6.106
YZ CMi	M4.5	V* YZ CMi	116.1673917	3.5524542	5.9874	1.62	0.32	0.29	3542.23	0.011	2.77	6.5	1	-4.26	0.29	28.33	-3.33	3.02	480	0.042	13.761	11.225	9.958	8.263	6.581
V2247 Oph	M1	EM* SR 12	246.8313	-24.6945528	112.3166	1.545	0.36	2	3828.93	0.236	3.5	19.874675	1.4		-0.254	30.11	-3.14	1.39	142	0.016		13.28	12.15	10.855	9.424
EQ Peg A	M3.5	BD+19 5116A	352.9673833	19.9372944	6.2614	1.52	0.39	0.35	3585	0.018	1.06	17.5	950	-4.18		28.83	-3.02	2.94	282	0.02	2 5	10.173	9.946	1500	6.162
AD Leo	M3	BD+20 2465	154.9011708	19.8700361	4.966	1.544	0.42	0.38	3859.05	0.0192	2.24	3.34	25	-4.33	0.2	28.73	-3.18	2.9	152	0.047		9.52	9.19	17.5	5.449
CE Boo	M2.5	BD+16 2708	223.6218214	16.1010631	9.9324	1.5	0.48	0.43	3806.34	0.0335	14.7	3.5	130	-4.319	-0.15	28.4	-3.7	2.85	91.6	0.288	12.86	10.15	9.116	7.872	6.633
TYC6349-0200-1	K6	HD 358623	314.0114111	-17.1816122	45.9306	0.978	0.54	0.54	4270	0.244	3.39	15.6	21		-0.1	8		2.71	34.1		12 2.	10.625	10.18	8.847	7.849
OT Ser	M1.5	V* OT Ser	230.4705439	20.9777589	11.4445	1.3629	0.55	0.49	3802.66	0.017	3.4	4.8	70	-4.27	-0.1	28.8	-3.4	2.8	81	0.097	12.662	10.003	8.993	7.843	6.61
GJ_2006A	M3.5Ve	GJ 2006 A	6.96	-32.55	34.8	1.5	0.552	0.558	3150	0.046	3.9	6.2	6		-0.5	29.53	-2.72	2.69	4.02	100	1. 61	12.95	11.79	10.29	8.88
GJ 49	M1.5	BD+61 195	15.6619519	62.3450481	9.8556	1.463	0.57	0.51	3777	0.048	18.6	2.49	1200	-4.668	0.49	28	-4.3	2.78	16.3	0.352	1	9.6	8.7	7.88	6.23
DS Leo	MO	V* DS Leo	165.6597572	21.9671392	11.9365	1.437	0.58	0.52	3911.91	0.056	14	2.89	710	-4.37	0.03	28.3	-4	2.77	23.9	0.267	12.246	9.572	8.638	7.634	6.522
HIP 12545	K6	BD+05 378	40.3578681	5.9884503	44.4373	1.25	0.58	0.57	4166.67	0.262	4.83	40	21		0.3			2.69	78.5	1.1	1	10.271	9.88	9.3	7.904
DT Vir	M0.5	BD+13 2618	195.1940975	12.3757311	11.5132	1.45	0.59	0.53	3965.42	0.051	2.85	9.75	600	-3.994	-0.339	28.92	-3.4	2.76	76.6	0.092	12.314	9.75	8.785	7.653	6.437
HIP 76768	K6	HD 139751	235.1182958	-18.6961711	38.1494	1.24	0.61	0.6	4572.53	0.162	3.64	8	120	1.1	0.3			2.67	54.2			10.07	9.953	8.637	7.73
DN Tau	MO	V* DN Tau	68.8640625	24.2497028	128.2199	1.36	0.65	1.9	3964	0.534	6.32	12.3	1.7		-1.005	30.08	-3.41	1.7	317	0.027	13.56	12.32	11.79	10.95	9.139
TYC6878-0195-1	K4	CD-26 13904	287.936125	-26.069125	59.0713	1.05	0.65	0.64	4566.78	0.367	5.72	9.8	21		-0.371		1.5	2.64	31.7		5	10.2	9.55	9.09	8.081
HD 201091A	K5V	* 61 Cyg A	316.7248019	38.7494403	3.4972	1.069	0.66	0.62	4327	0.164	34.2	1.1	3600	-4.704	-0.03	28.22	-4.53	2.67	2.68	0.786	7.5	5.21	4.19	3.54	3.12

Stellar catalogue

- obs_starcat/obs_starcat.p contains catalogue with (mostly empirical) parameters for 79 stars
- Can be loaded as a table in python. Some hints:

assignment/AST5770_projectassign.pdf

• For some stars fluxes at selected frequencies (mm-radio range)

S (10 GHz)	S (15 GHz)	S (33 GHz)	S (45 GHz)	S (98GHz)	S (150 GHz)	S (200 GHz)	S (230 GHz)	S (344 GHz)	S (400 GHz)	S (680 GHz)
mJy	mJy	mJy	mJy	mJy	mJy	mJy	mJy	mJy	mJy	mJy

Stellar catalogue

- **obs_starcat/obs_starcat.p** contains catalogue with (mostly empirical) parameters for 79 stars
- Can be loaded as a table in python. Some hints: assignment/AST5770_projectassign.pdf

Stellar observations — Spectral Energy Distribution (SED)

- **obs_starcat/SED** contains files for all 79 stars with SEDs
- Can be loaded in python. Some hints: assignment/AST5770_projectassign.pdf

```
from astropy.io.votable import parse_single_table
sed = parse_single_table(datafile).to_table()
list(sed.columns)
freq=sed['sed_freq']
flux=sed['sed_flux']
error=sed['sed eflux']
```

★ See also: obs starcat SED info.txt

Numerical simulation 3D radiation magnetohydrodynamics

- Complicated spatial structure of the solar atmosphere requires modelling in 3D
- Small part of the atmosphere plus upper convection zone to drive dynamics selfconsistently
- Computational grid, advanced time step by time step
- Solving equations of (magneto)hydrodynamics with "realistic" equation of state plus radiative transfer (simplified with pre-calculated opacity look-up tables)

Synthetic observations — radiative transfer

 Predictions by means of synthetic intensity maps calculated from 3D radiation magnetohydrodynamic simulations

Overview

- Different 3D simulation data for different spectral types are available
- names starting with simsts, only one snapshot per model is available.
- For most spectral types: two models for same spectral type but with different initial magnetic field strength $B_{\rm 0}$
- See assignment/AST5770_projectassign.pdf

ID	Spectral	$T_{\rm eff}$	logg	$ B_0 $	Description	Ref.		
	type	[K].		[G]				
MHD simulat	MHD simulations for different stellar types, single snapshots only							
simsts_F5V	F5V	6500	4.5	0,		S18		
				50				
simsts_G2V	G2V	5770	4.44	0,	Sun	S18		
				50				
simsts_K2V	K2V	5000	4.5	0,		S 18		
				50				
simsts_K8V	K8V	4000	4.5	0,		S 18		
				50				
simsts_M3V	M3V	3240	4.5	100	Red dwarf star, similar to AD Leo	W13a		
simsts_K5III	K5III	4010	1.5	0	Red giant star, equivalent to Aldebaran	W17		
					(α Tau); Data: 1 time step,			
MHD simulations for the Sun, short time series								
simsut G2V	G2V	5770	4.44	50	Sun, time series ($\Delta t = 10$ s)	W13b		

Overview

Table A.4: Quantities contained in the simulation data files.

• HDF5 files

Entry	Description	Unit	Dimension				
Х	x axis	cm	1D				
Y	y axis	cm	1D				
Z	z axis	cm	1D				
DZ	z extent of grid layer	cm	1D				
TIME	time	S	1D or scalar				
RHO	Mass density	g/cm ³	3D				
TGAS	Gas temperature	K	3D				
PGAS	Gas pressure	dyn/cm ²	3D				
KAPPA	Absorption coefficient		3D				
VX	Velocity x-component	cm/s	3D				
VY	Velocity y-component	cm/s	3D				
VZ	Velocity z-component	cm/s	3D				
The following entries are only available for MHD models.							
BX	Magnetic field x-component	G	3D				
BY	Magnetic field y-component	G	3D				
BZ	Magnetic field z-component	G	3D				
In addition, all files contain the following useful information.							
DESCRIPTION	Description of the data entries						
UNIT	Physical units of the data entries						

Overview

- Synthetic observables in each folder:
 - ***_continuumintensity.h5**: continuum intensity for wavelengths 300 nm 5.0μ m
 - theoretical continuum: under assumption of local thermodynamic equilibrium, no spectral lines.
 - ➡ Differences with respect to real observations should be expected
 - intensity data provided as function horizontal coordinates (x and y, identical to those in the files described above) and wavelength λ .
 - See the description and unit tags.
 - ***_lineintensity_FeI6173.h5**: intensity for the Fe I 6173 line (neutral iron, 617.3 nm)
 - difference with respect to the continuum intensity files: spectral line files contain intensity as function of wavelength across a narrow region around the nominal central wavelength λ_0 of the line.
 - In addition, the theoretical continuum at λ_0 (calculated as if there was no line)

simsts_G2V_50G lambda=600.0

simsts_K2V_0G lambda=600.0

