AST5770 Solar and stellar physics

University of Oslo, 2022

Sven Wedemeyer

Overview

```
Energy flux (outward) F = F_{\rm R} + F_{\rm C} = L/4\pi r^2
```

- Conduction is negligible in the Sun •
- The contributions of convection and radiation change • as function of radius
- Luminosity: energy flux arriving and being emitted from the • surface at radius r
- Flux driven by a temperature gradient ullet
- Note: Neutrinos produced by fusion carry energy •
 - Carry comparatively little energy and thus neglected here • (strictly speaking, the total energy production due to all sources balances the luminosity and neutrino flux)
 - Neutrinos escape from normal stars essentially without ٠ interaction with matter (but that is no longer true for very dense stars/ stellar remnants)
 - Strictly speaking: Energy production rate ε_v for neutrinos should • be taken into account

	d dt E _{total}
L	F

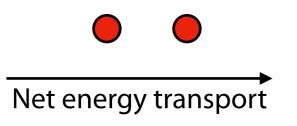
Reminder

- **Diffusion:** A general concept, time-dependent: **Net transport** of particles or energy
 - Driven by a corresponding gradient towards equilibrium
 - Random microscopic motion
 - $(net) energy flux: F = -D \nabla U, U: Energy density D: Diffusion coefficient$
 - Gradient in energy density connected to temperature gradient:
 - $\nabla U = (\partial U/\partial T)_V \nabla T = C_V \nabla T$ $\vec{v}: \text{ avg. velocity}$ i: mean free path $K = \frac{1}{3} \vec{v} \ell C_V$ $\vec{v}: \text{ avg. velocity}$ k: mean free path Cv: specific heat capacity per constant volume
 - K: conductivity
 - → valid for all particles in LTE, including gas particles but also photons

Reminder

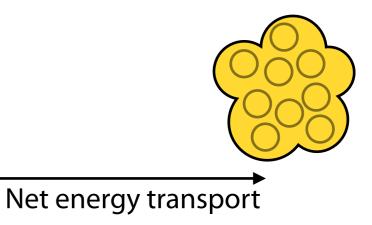
Diffusion:

- A general concept, time-dependent:
 Net transport of particles or energy
- Driven by a corresponding gradient towards equilibrium
- Random microscopic motion
- Diffusion of particles: **Conduction** Particles pass on their internal (kinetic/ potential) energy to neighbouring particles without moving over large distances
- Radiative diffusion via photons



Advection:

- Particles move over longer distances (and transport heat); e.g. as part of a fluid with macroscopic (large-scale) motion
- Macroscopic (bulk) motion (particles/mass)
- Convection with macroscopic motion



Diffusive energy transport in stellar interiors

Conduction	VS	Radiation
Gas particles (electrons)		Photons
Energy carried by a typical particle: $E = \frac{3}{2} k T$	Compar able	Energy carried by a typical photon: $E = h c / \lambda$
Number density of particles	>>	Number density of photons.
Mean free path (between collisions) Typically 10 ⁻¹⁰ m	<<	Mean free path before being absorbed or scattered Typically 10 ⁻² m

- Smaller number of **photons** is far <u>outweighed</u> by their **much larger mean free path**!
- → Photons get easier from location with high temperature to one with lower temperature
- ➡ Larger transport of energy
- ➡ Radiation is the dominant energy transport mechanism in most stars.
- → Conduction negligible in the interiors of (nearly all) main sequence stars.
- Conduction relevant in the solar corona!

Radiative energy transport

- Mean free path of a photon very small in interior of stars
 - Location where photon is emitted and location where photon absorbed have nearly same temperature
 - ➡ Conditions of local thermodynamic equilibrium fulfilled
 - ➡ Source function = Kirchhoff–Planck function
- Radiative energy diffusion

$$\Rightarrow$$
 $F = -K \nabla T$ with $K = \frac{1}{3} \bar{\upsilon} \ell C_V$

- Velocity $m{ar{v}}=c$
- Energy density $U = aT^4$

 $\Rightarrow C_V = \frac{dU}{dT} = 4 \ a \ T^3 \text{ with the radiation constant } a = \frac{8\pi^5 k^4}{15h^3c^3} = 7.56 \times 10^{-15} \, \mathrm{erg} \, \mathrm{cm}^{-3} \, \mathrm{K}^{-4}.$

 \rightarrow How do we derive the free mean free path?

Radiative energy transport

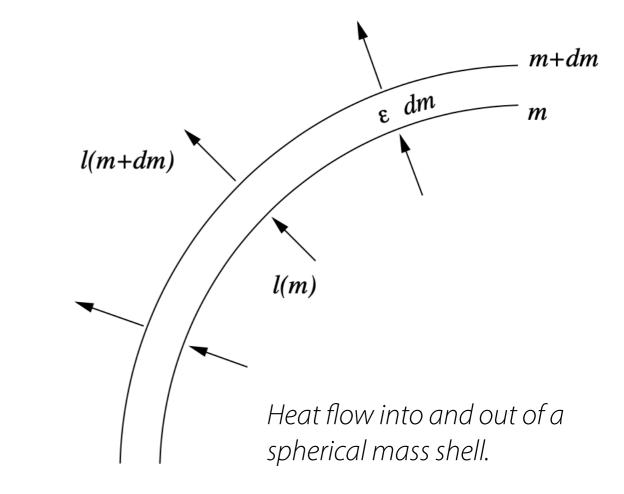
- Local luminosity *l (r)*: rate at which energy (as heat) flows outward through a sphere of radius r
- In spherical symmetry: l related to radial energy flux F

 $l(r) = 4\pi r^2 F$

- At the surface: l = L
- At the centre: l = 0.
- Normally heat flows outwards, in direction of decreasing temperature (gradient!)

 \rightarrow *l* is usually positive

• *l* negative under special circumstances (e.g. neutrino emission cooling the core)



Radiative energy transport

- Considered here: Energy transport only by radiation
 - If mean free path of photons short, radiative energy transport as diffusion process

➡ Radiative transfer handled with **diffusion approximation**

Radiative transfer equation

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = -\kappa_{\nu}\rho \,I_{\nu}$$

- \implies Intensity I_v diminished over distance s (in absence of emission)
- → mean free path = distance over which the intensity decreases by a factor of e

$$\ell_{\rm ph} = \frac{1}{\kappa \rho}$$
 κ : opacity ρ : mass density

➡ Radiative conductivity

➡ Radiative energy flux

$$K_{\rm rad} = \frac{4}{3} \frac{acT^3}{\kappa \rho}$$

$$\boldsymbol{F}_{\text{rad}} = -K_{\text{rad}} \, \boldsymbol{\nabla} T = -\frac{4}{3} \frac{acT^3}{\kappa \rho} \boldsymbol{\nabla} T.$$

 $\frac{\partial T}{\partial r} = -\frac{3\kappa\rho}{16\pi a c T^3} \frac{l}{r^2}$

Energy transport

Radiative energy transport

- Radiative energy flux $F_{\rm rad} = -K_{\rm rad} \nabla T = -\frac{4}{3} \frac{acT^3}{\kappa \rho} \nabla T.$
- With $F_{rad} = l / 4\pi r^2$ in spherical geometry (radius r):
- With the equation for mass conservation $\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho} \implies \left(\frac{\partial T}{\partial m} = -\frac{3}{64\pi^2 ac} \frac{\kappa l}{r^4 T^3} \right)$

Temperature gradient required to carry the entire luminosity *l* by radiation.

• A region with this gradient = in radiative equilibrium (\implies radiative zone).

Radiative energy transport

• Temperature gradient for radiative energy transport

 $\frac{\partial T}{\partial m} = -\frac{3}{64\pi^2 ac} \frac{\kappa l}{r^4 T^3}$

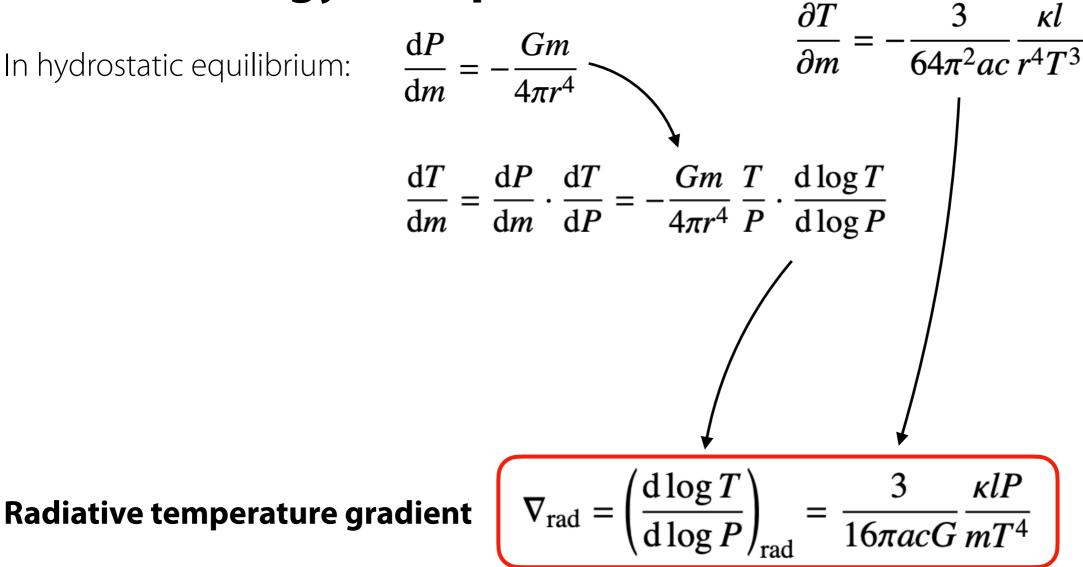
- Note:
 - Valid only if conditions for **LTE** are fulfilled (requires <u>short</u> mean free paths, much shorter than the radius, $l_{ph} \ll R$)
 - Not valid if l_{ph} becomes much longer (at the surface, near photosphere where photons escape into space)
 - ightarrow Diffusion approximation is no longer valid
 - ➡ Solution of full equations of radiative transfer necessary!

• In practice (in simulations):

- Stellar interiors can be handled with the diffusion approximation up to some depth below the surface.
 - ➡ Computationally much cheaper!
- Surface-near layers + atmosphere to be treated with full radiative transfer equations!
 Computationally much more demanding!

Radiative energy transport

In hydrostatic equilibrium:



Describes logarithmic variation of T with depth for a star in hydrostatic equilibrium and pure radiative energy transport (with pressure as depth coordinate)

Radiative energy transport

• Frequency-dependence: Radiative flux in frequency interval [v, v + dv]: $F_v dv$

$$\Rightarrow F_{\nu} = -D_{\nu} \nabla U_{\nu} = -D_{\nu} \frac{\partial U_{\nu}}{\partial T} \nabla T \quad \text{with} \quad D_{\nu} = \frac{1}{3} c \ell_{\nu} = \frac{c}{3\kappa_{\nu}\rho}$$

$$\Rightarrow \quad \text{Integral over all frequencies:} \quad F = -\left[\frac{c}{3\rho}\int_0^\infty \frac{1}{\kappa_\nu}\frac{\partial U_\nu}{\partial T}\,\mathrm{d}\nu\right] \nabla T.$$

 $\Rightarrow \text{ Can be written (as before) as } F = -K_{rad} \nabla T$ **but** radiative conductivity needs to look like this now: $K_{rad} = \frac{c}{3\rho} \int_{0}^{\infty} \frac{1}{\kappa_{\nu}} \frac{\partial U_{\nu}}{\partial T} d\nu.$

⇒ Proper average of opacity
$$\kappa_v$$
 needed! $\frac{1}{\kappa} = \frac{1}{4aT^3} \int_0^\infty \frac{1}{\kappa_v} \frac{\partial U_v}{\partial T} dv$.

 \Rightarrow Energy density U_v in same frequency interval proportional to **Planck function**! $U_v \propto B_v$

Radiative energy transport

• <u>Rosseland</u> mean absorption coefficient

$$\frac{1}{\kappa_{R}} = \frac{\int_{0}^{\infty} \frac{1}{\kappa_{\nu}} \frac{dB_{\nu}}{dT} d\nu}{\int_{0}^{\infty} \frac{dB_{\nu}}{dT} d\nu}$$

Used for the radiative temperature gradient

$$\frac{\partial T}{\partial m} = -\frac{3}{64\pi^2 ac} \frac{\kappa l}{r^4 T^3}$$

Radiative energy transport

<u>Rosseland</u> mean absorption coefficient

$$rac{1}{\kappa_{\!R}} = rac{\int\limits_{0}^{\infty} rac{1}{\kappa_{
u}} rac{dB_{
u}}{dT} \, d
u}{\int\limits_{0}^{\infty} rac{dB_{
u}}{dT} \, d
u}$$

- Weighted with $1/\kappa_{\nu} \implies$ More energy transported at frequencies where the matter is more transparent.
- Weighted with dB_v/dT ⇒More energy transported at frequencies where the radiation field is more temperature-dependent (stronger gradients).
- κ essentially as an inverse conduction coefficient!

Conductive energy transport

- Collisions between the gas particles (ions and electrons) can also transport heat.
- Energy flux due to heat conduction (equivalently to radiative energy flux)

 $\boldsymbol{F}_{cd} = -K_{cd} \, \nabla T$

• Conductive and radiative energy flux can be combined:

 $\boldsymbol{F} = \boldsymbol{F}_{rad} + \boldsymbol{F}_{cd} = -(K_{rad} + K_{cd}) \nabla T$

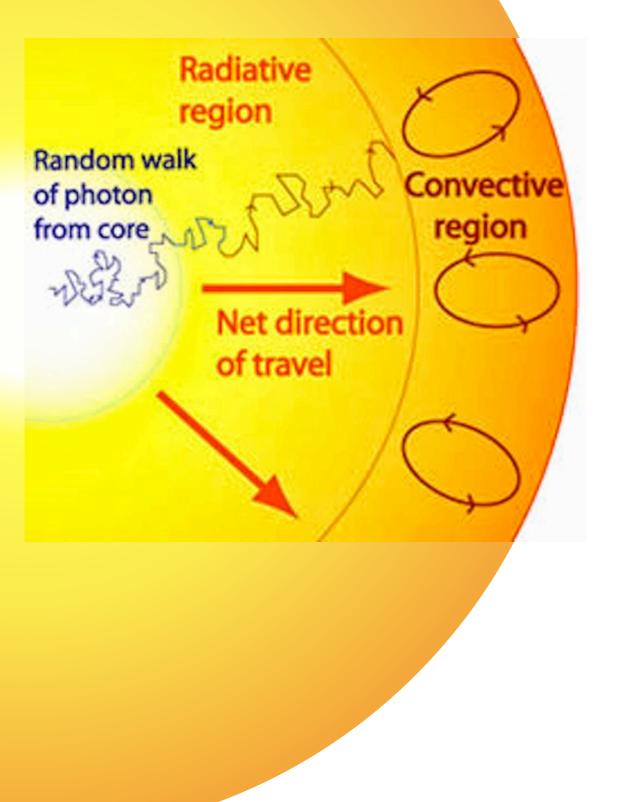
- Define an equivalent conductive opacity $K_{cd} = \frac{4acT^3}{3\kappa_{cd} \rho}$
- Combined energy flux

$$=-rac{4acT^3}{3\kappa
ho} \nabla T$$
 with $rac{1}{\kappa}=rac{1}{\kappa_{
m rad}}+rac{1}{\kappa_{
m cd}}$

Transport mechanism with largest flux dominates
 (= mechanism for which the plasma is more transparent)

F

Energy transport Radiative energy transport



 Time for a photon to travel from centre to surface without interaction: ~2s

But: mean free path of photons very small!

- In the dense solar interior: Mean free path of a photon only 10⁻² m
 - Random walk, photon absorbed and re-emitted ~10²² times before reaching surface
 - ➡ Time ~ thermal timescale of the Sun
 ~ 2 10⁷ yr
 - ➡ Observed radiation due to fusion reactions (on average) tens of millions of years ago.
 - Net direction towards surface due to gradients (opacity)

In photosphere

Energy transport

Radiative energy transport

- **Radiation** pressure $P_{\rm rad} = 1/3 \text{ a } \text{T}^4$
- Outward force that must be smaller than gravitational force in order to maintain hydrostatic equilibrium (HE)!

 $\left|\frac{\mathrm{d}P_{\mathrm{rad}}}{\mathrm{d}r}\right| < \left|\left(\frac{\mathrm{d}P}{\mathrm{d}r}\right)_{\mathrm{HE}}\right| \quad \Rightarrow \quad \frac{\kappa\rho}{4\pi c} \frac{l}{r^2} < \frac{Gm\rho}{r^2}$

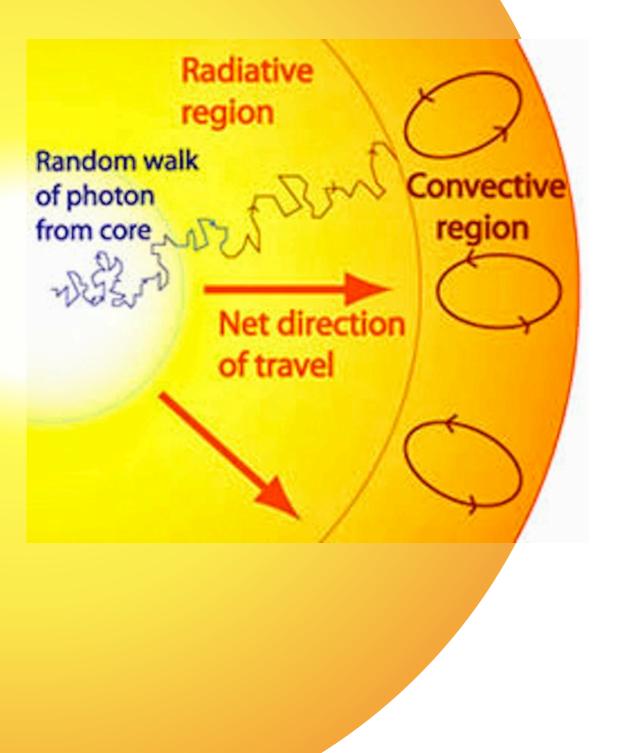
⇒ Upper limit to the local luminosity: (local) **Eddington luminosity:** Maximum energy flux that can be carried by radiation $l < \frac{4\pi cGm}{\kappa} = l_{Edd}$

Condition violated?

- ➡ No hydrostatic equilibrium!
- Gas accelerated outwards due to radiative pressure.
- → Mass loss!

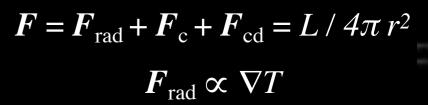
- \rightarrow Can get violated by intense nuclear burning
- ➡ In these situations, radiative energy transport insufficient for maintaining hydrostatic equilibrium
- At the surface (m=M): $L < L_{Edd} = \frac{4\pi cGM}{\frac{\kappa}{\bullet}}$

Energy transport Radiative energy transport



- Note: At high temperature all atom are completely ionised
 - Photons move through a plasma consisting of free electrons and atomic nuclei (incl. protons)
- Towards surface (in solar-like stars): Not all atoms are completely ionised anymore
 - Changes in mean molecular weight and gradients
 - ➡ Convection becomes the dominant mode of energy transport subject to <u>stability criterion</u>
- Note: Radiative energy transport the "default" in convectively stable regions

Convection



- Transport for larger energy flux (luminosity) requires larger temperature gradient required.
- But: Upper limit to ∇T in stellar interior
 - Stratification becomes unstable if limit exceeded
 - (Additional) dominating energy transport via convection

Hot (and bright)

granules

Cooler and darker

, intergranular lanes

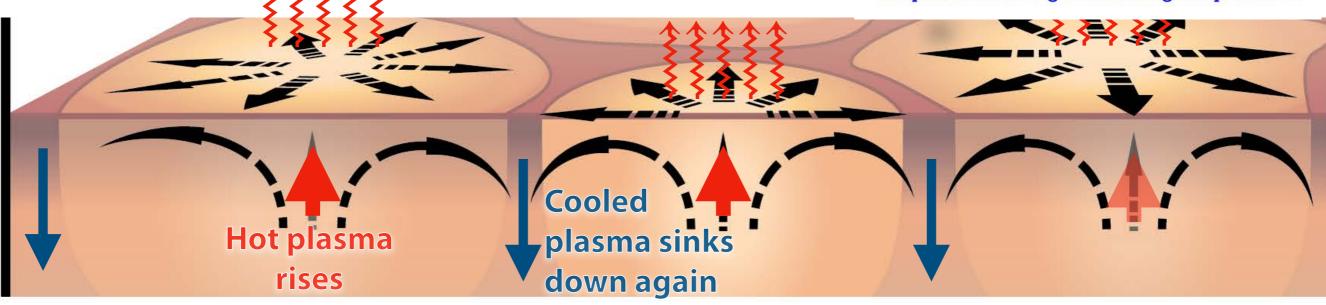
Energy transport

Surface convection — granulation

- Density, temperature decreases with radius
- Eventually plasma transparent enough (longer mean free path)
- Radiation effectively removes heat from rising convective cells at surface
- ➡ Plasma cools
- ➡ Advected sideways (pushed away from more upwelling gas below)
- ➡ Cooled and dense plasma sinks down again -

Literature: Nordlund, Stein, Asplund Living Rev. Solar Phys., 6, (2009), 2 http://www.livingreviews.org/Irsp- 2009- 2

Living Rev. Solar Phys., 6, (2009), 2 http://www.livingreviews.org/lrsp-2009-2



Top of convection zone — energy transport via convection (bulk motion)

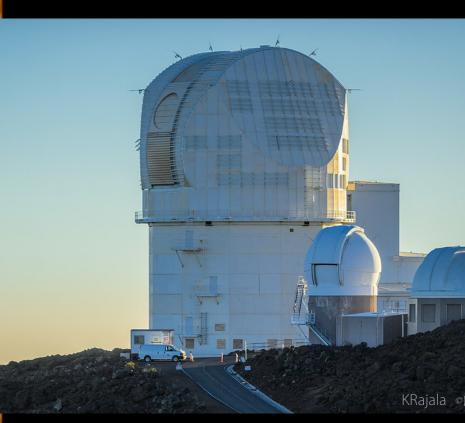
AST5770 - UiO - S. Wedemeyer

Energy transport

Convection — Solar surface convection

Time-dependent 3D hydrodynamic simulation showing convection at the top of the Sun's convection zone (at the surface)

Highest-resolution observations of the Sun's granulation ever taken. DKIST (4m) (NSO/AURA/NSF)



10 Dec. 2019 19:24:31 UT

Energy transport Surface convection — solar granulation

Highest-resolution observations of the Sun's granulation ever taken (DKIST, NSO/AURA/NSF)

Granules

- Diameters ~1000-2000km
- Lifetime ~8min

Bright features in intergranular lanes

• (Mostly) due to magnetic field concentrations

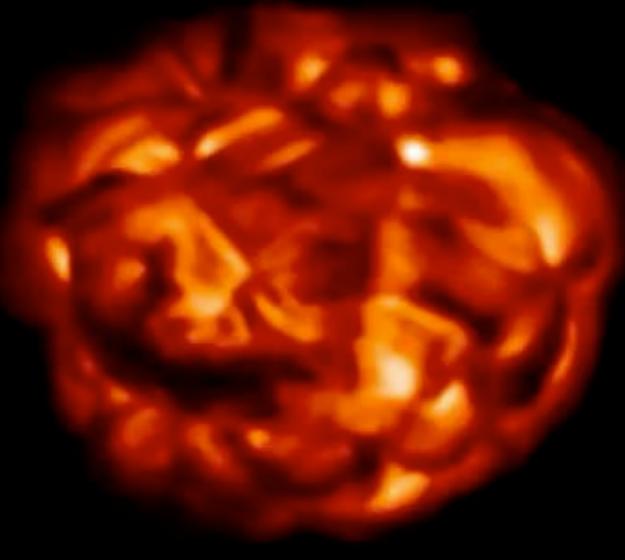
AST5770 - UiO - S. Wedemeyer

Energy transport Convection

st35gm04n26: Surface Intensity(3I), time(0.0)=30.263 yrs

Time-dependent 3D hydrodynamic simulation of **Betelgeuse**, here **intensity**

- Large convection cells
- Slower temporal evolution (Note time at top right)

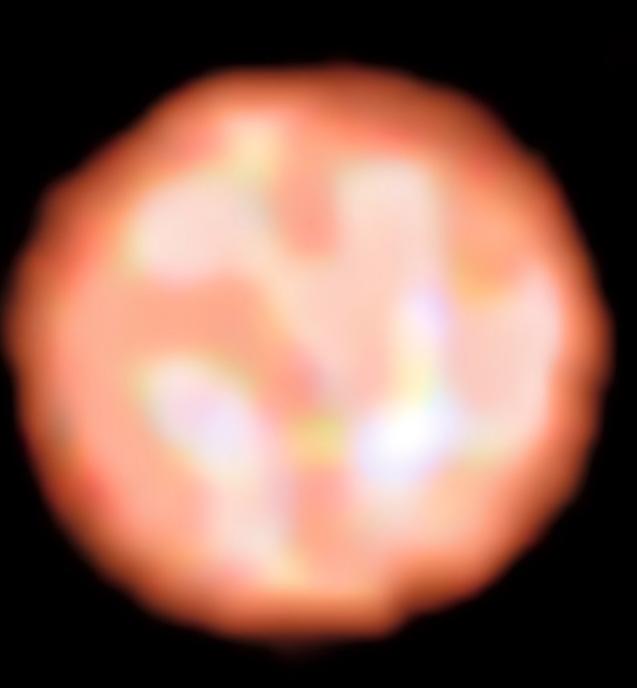


Simulation produced with the same code as the models for the project assignment (Freytag et al. 2012)

Freytag

Surface convection on other stars

- Observations of the cool red giant π¹ Gruis (with PIONIER/VLT)
- Spectral type M1I
- 1.5 solar masses
- 350 times the diameter of the Sun
- Few giant convection cells

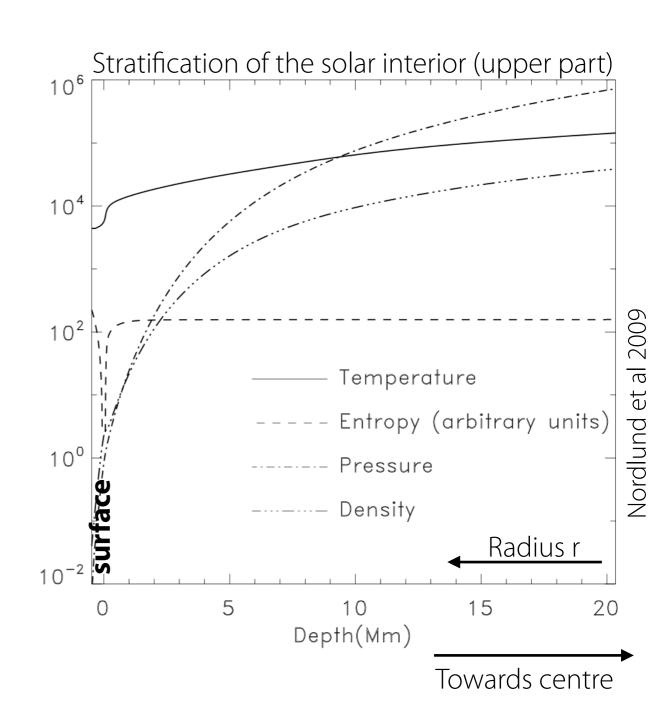


Surface convection on other stars

- Observations of the cool red supergiant Antares (with AMBER/VLTI)
- Spectral type M1.5I
- ~11-14 solar masses
- ~700 times the diameter of the Sun

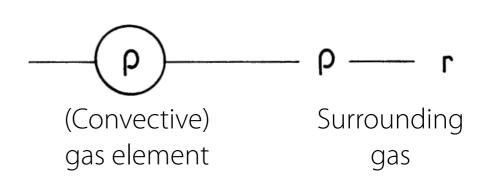
Convection — Stability criterion

- Plasma/gas inside a star not a perfectly stratified but small perturbations occur
- ➡ Is a layer stable against small perturbations?
- Or can initially small perturbations grow and result in significant deviations?
- In the stratified stellar interior: Pressure and density decreases with radius r towards surface



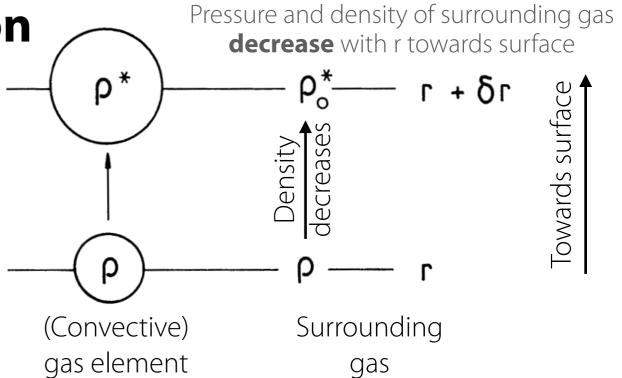
Convection — Stability criterion

- **Gas element** at distance r from the centre of the star
- Initially: Element in **equilibrium** with its surroundings at r:
- ➡ Pressure P and density p are the same as in its surroundings.



Convection — Stability criterion

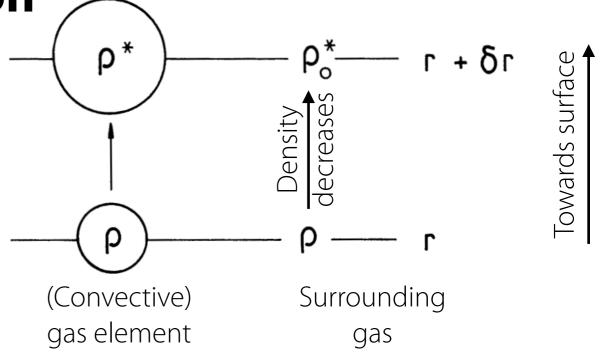
- Gas element at distance r from the centre of the star
- Initially: Element in equilibrium with its surroundings at r:
- ➡ Pressure P and density p are the same as in its surroundings.



- Now perturbation: **element** displaced (**rises**) a vertical distance δr **adiabatically** (no heat exchanged with environment) but slow enough that pressure is adjusted to new balance with outside pressure
 - Occurs when <u>time scale</u> of heat exchange is long compared to time scale of expansion of the element (the latter = local dynamical time scale, set by local sound speed); happens in the optically thick solar interior
- ➡ Element expands to restore pressure equilibrium with surrounding
- ➡ Pressure in the element reduce as it rises
- \Rightarrow Now at r+ δ r: Compare density of the element ρ^* with density of (new) surrounding ρ_0^*

Convection — Stability criterion

- Gas element at distance r from the centre of the star rises ...
- Initially in equilibrium with its surroundings at r



- $\varrho^* > \varrho_0^*$: Element will fall back to initial height stratification is **convectively stable**
- $\varrho^* < \varrho_0^*$: Element will keep rising up (net buoyancy!)

— stratification is **convectively unstable**

- At $r+\delta r$: Density difference $\varrho^* \varrho_0^*$ gradients!
- For adiabatic expansion:

$$\frac{\delta P^*}{P^*} = \gamma_{\rm ad} \quad \frac{\delta \varrho^*}{\varrho^*}$$

➡ For the situation above, we derive the following criterion for the gas remaining convectively stable:

