AST5770 Solar and stellar physics

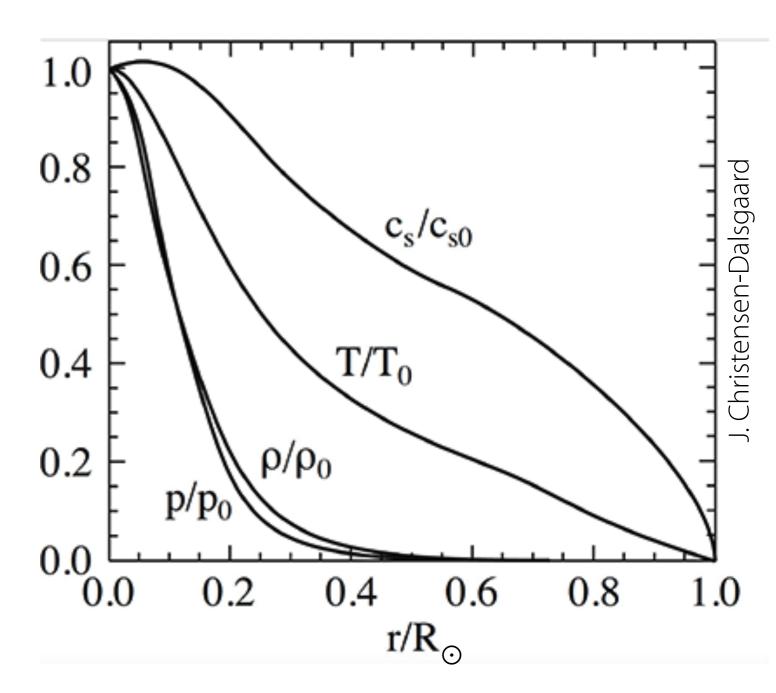
University of Oslo, 2022

Sven Wedemeyer

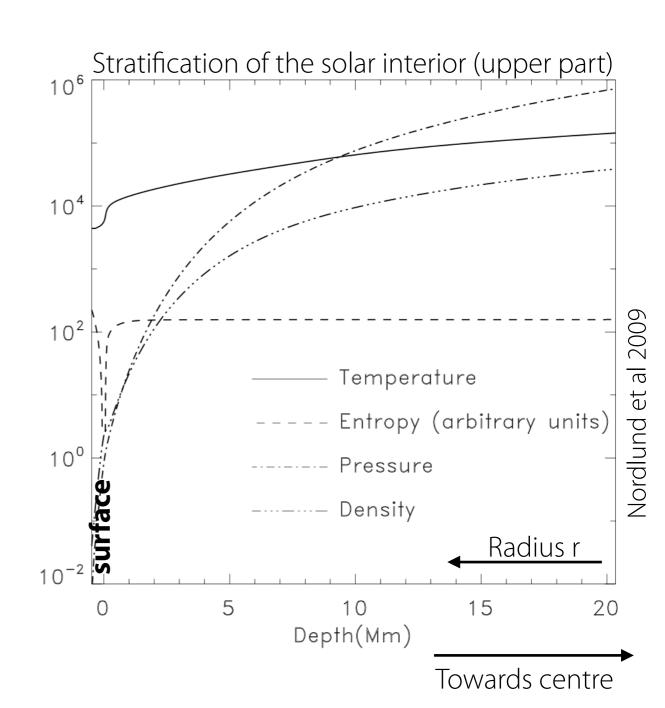
Stellar interior

Standard model of the solar interior

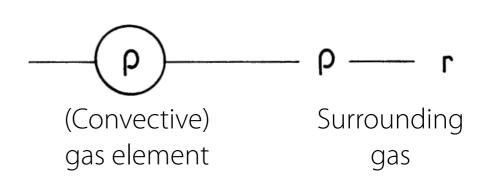
- Variation of (average) quantities as function of radius in the solar interior (r/R⊙)
- Scaled to value at solar centre
- Temperature $T_0 = 1.57 \ 10^7 \, K$
- Mass density $\rho_0=1.54 \ 10^5 \text{ kg m}^{-3}$
- Pressure $p_0=2.35 \ 10^{16} Nm^{-2}$
- Sound speed $c_{s,0}=5.05 \ 10^5 \ ms^{-1}$



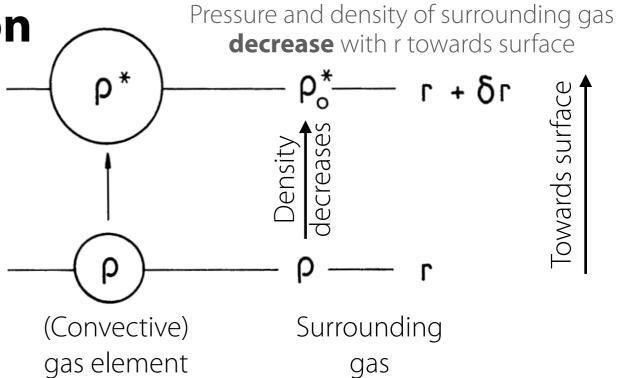
- Plasma/gas inside a star not a perfectly stratified but small perturbations occur
- ➡ Is a layer stable against small perturbations?
- Or can initially small perturbations grow and result in significant deviations?
- In the stratified stellar interior: Pressure and density decreases with radius r towards surface



- **Gas element** at distance r from the centre of the star
- Initially: Element in **equilibrium** with its surroundings at r:
- ➡ Pressure P and density p are the same as in its surroundings.



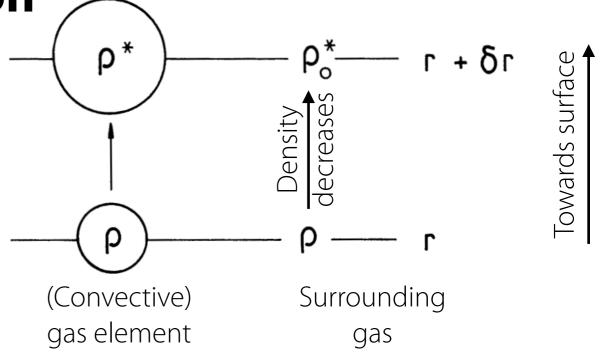
- Gas element at distance r from the centre of the star
- Initially: Element in equilibrium with its surroundings at r:
- ➡ Pressure P and density p are the same as in its surroundings.



- Now perturbation: **element** displaced (**rises**) a vertical distance δr **adiabatically** (no heat exchanged with environment) but slow enough that pressure is adjusted to new balance with outside pressure
 - Occurs when <u>time scale</u> of heat exchange is long compared to time scale of expansion of the element (the latter = local dynamical time scale, set by local sound speed); happens in the optically thick solar interior
- ➡ Element expands to restore pressure equilibrium with surrounding
- ➡ Pressure in the element reduce as it rises
- \Rightarrow Now at r+ δ r: Compare density of the element ρ^* with density of (new) surrounding ρ_0^*

Convection — Stability criterion

- Gas element at distance r from the centre of the star rises ...
- Initially in equilibrium with its surroundings at r



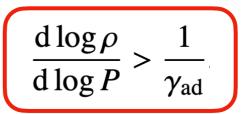
- $\varrho^* > \varrho_0^*$: Element will fall back to initial height stratification is **convectively stable**
- $\varrho^* < \varrho_0^*$: Element will keep rising up (net buoyancy!)

— stratification is **convectively unstable**

- At $r+\delta r$: Density difference $\varrho^* \varrho_0^*$ gradients!
- For adiabatic expansion:

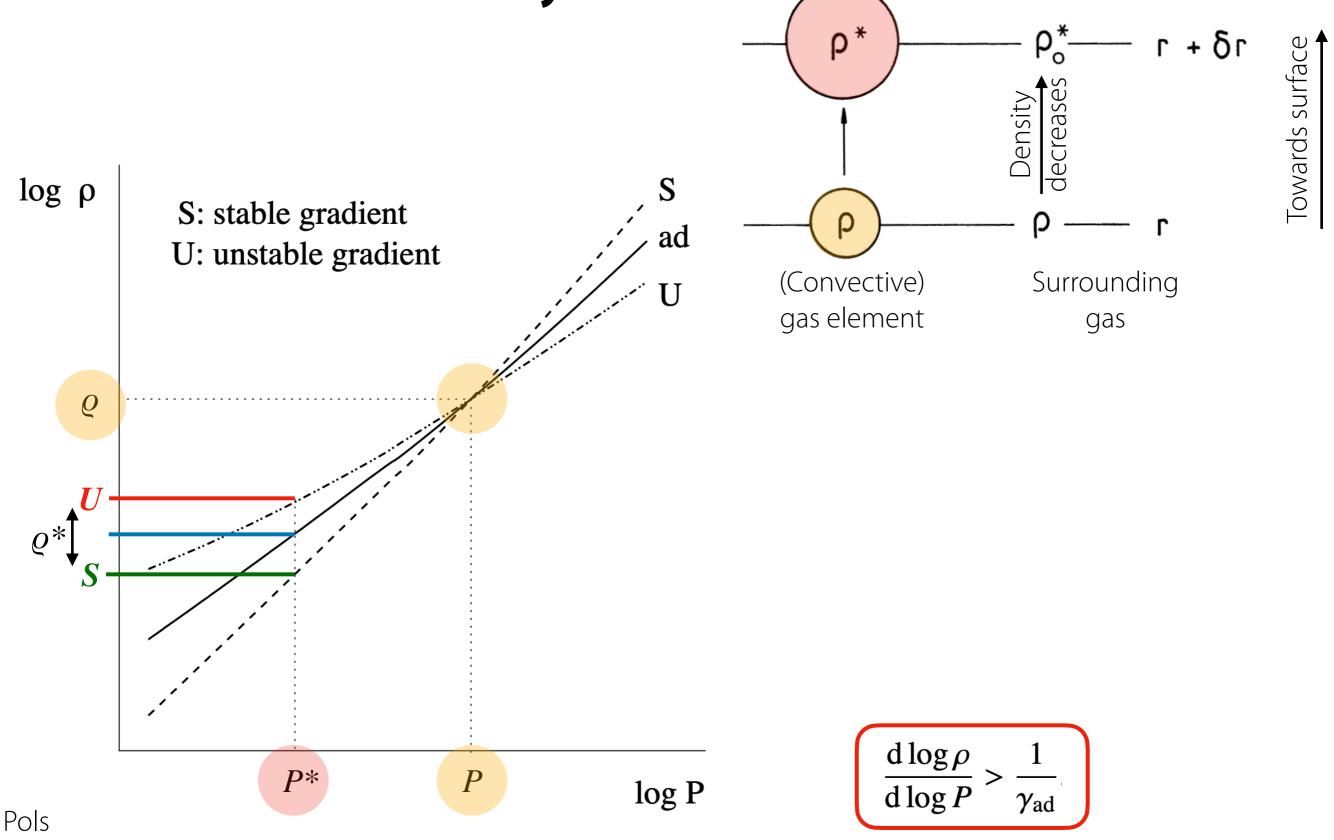
$$\frac{\delta P^*}{P^*} = \gamma_{\rm ad} \quad \frac{\delta \varrho^*}{\varrho^*}$$

For the situation above, we derive the following criterion for the gas remaining convectively stable:



AST5770 - UiO - S. Wedemeyer

Energy transport



Energy transport Convection — Stability criterion

• Compare gradient ∇_{rad} for convectively stable stratification with adiabatic temperature gradient $\nabla_{ad} = \left(\frac{\partial \ln T}{\partial \ln P}\right)$

 Ledoux criterion of stability against convection

$$\nabla_{\rm rad} < \nabla_{\rm ad} - \frac{\chi_{\mu}}{\chi_T} \, \nabla_{\mu}$$

 $abla_{rad}$: spatial gradient of temperature

- ∇_{μ} : spatial gradient of mean molecular weight
- ∇_{ad} : adiabatic temperature variation in a gas element undergoing a change in pressure.

$$\chi_T = \left(\frac{\partial \log P}{\partial \log T}\right)_{\rho, X_i} \quad \chi_\rho = \left(\frac{\partial \log P}{\partial \log \rho}\right)_{T, X_i} : \begin{array}{c} \text{Indices: quantities held} \\ \text{constant} \end{array}$$

- For chemically homogeneous gas: $\nabla_{\mu} = 0$:
- ➡ Schwarzschild criterion of stability against convection
 - Note: In presence of fusion reactions: $\nabla_{\mu} \ge 0$
 - Stabilising effect! (An upwards displaced element is heavier due to higher μ)

$$\nabla_{\rm rad} < \nabla_{\rm ad}$$

Energy transport Convection — Stability criterion

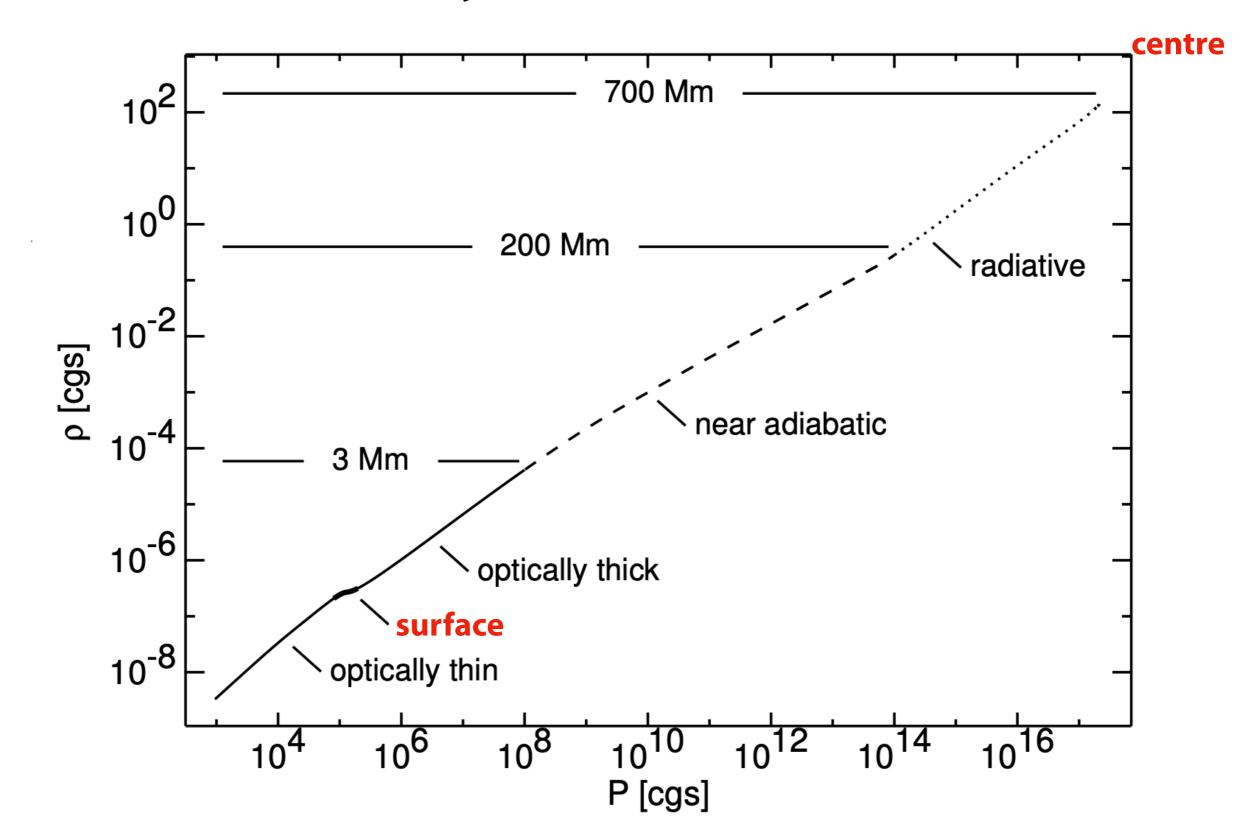
• Compare gradient ∇_{rad} for convectively stable stratification with adiabatic temperature gradient $\nabla_{ad} \equiv \left(\frac{\partial \ln T}{\partial \ln P}\right)$

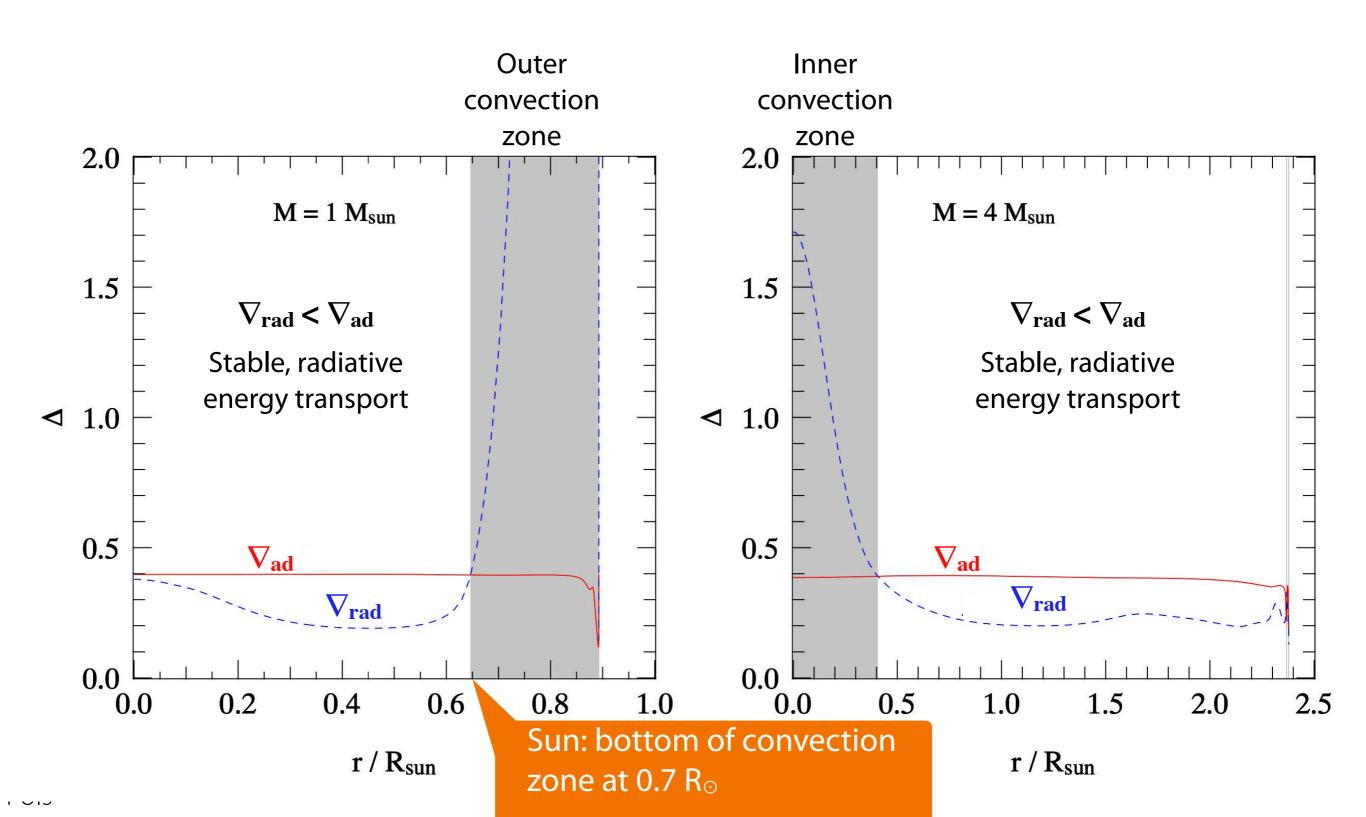
 Ledoux criterion of stability against convection

$$\nabla_{\rm rad} < \nabla_{\rm ad} - \frac{\chi_{\mu}}{\chi_T} \, \nabla_{\mu}$$

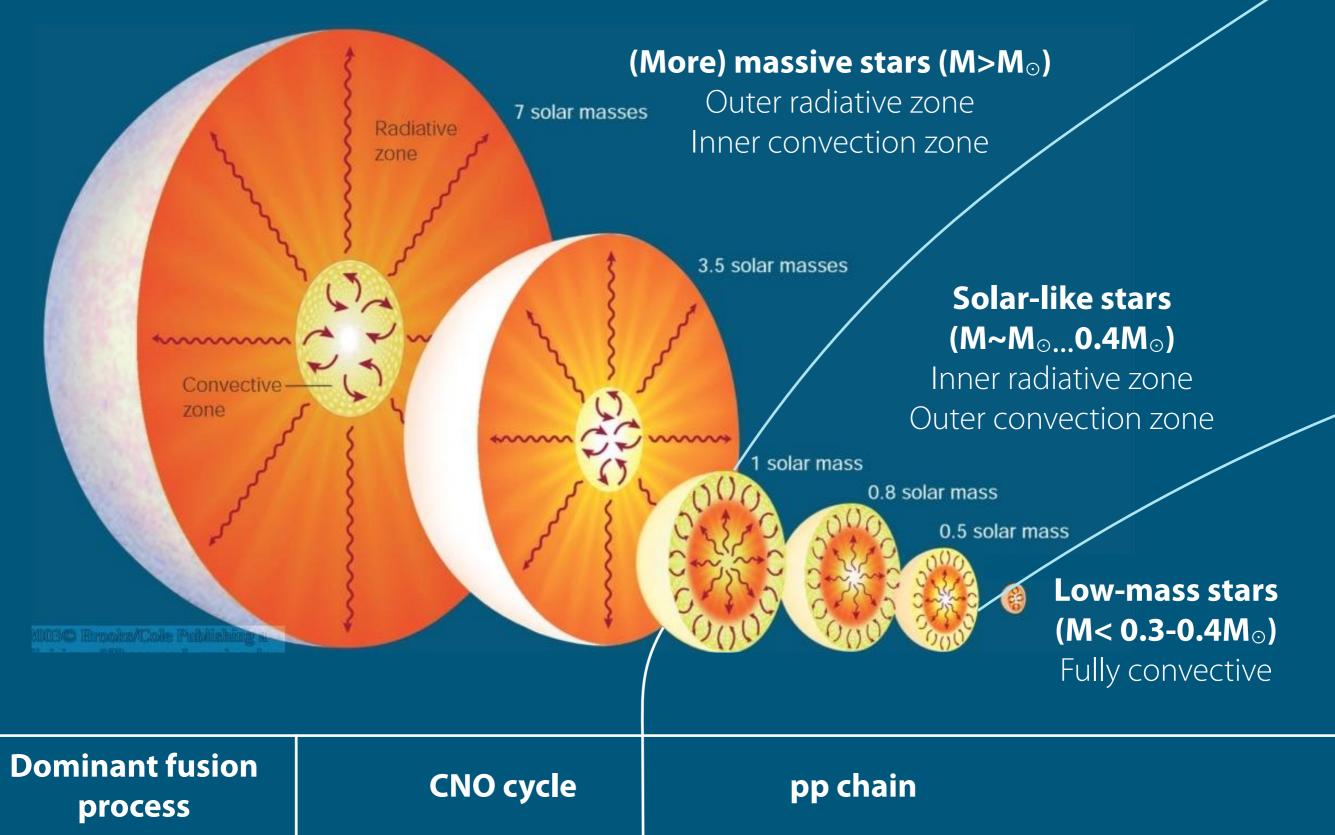
- Stratification convectively stable: Energy transport by radiation
- Stratification convectively unstable: Energy transport by convection

Convection — Stability criterion in the solar interior





Differences along the main sequence



Differences along the main sequence

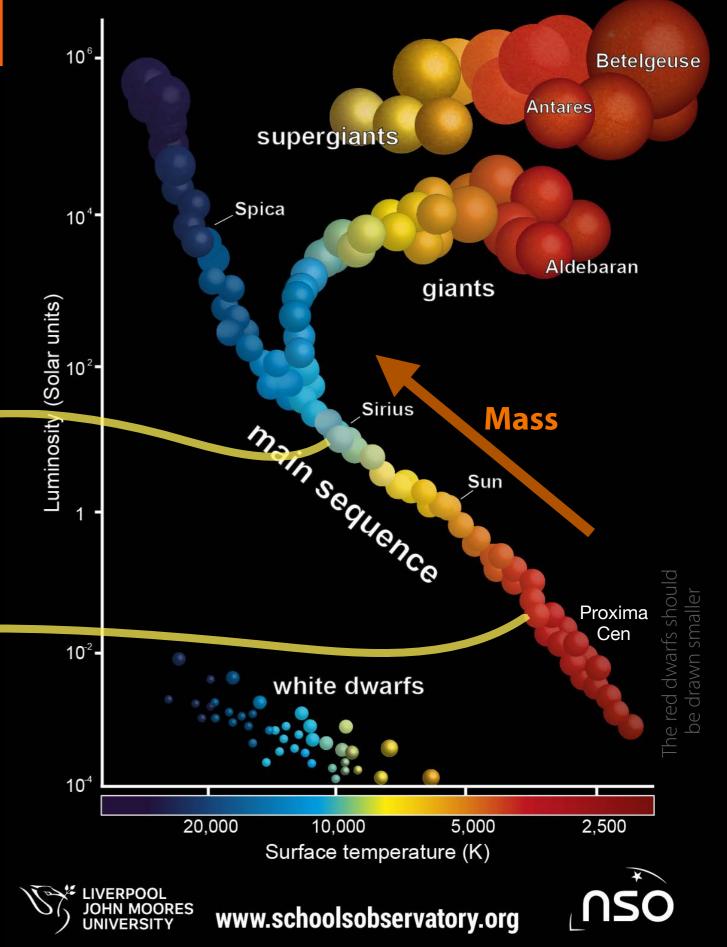
(More) massive stars (M> M_{\odot})

Outer radiative zone Inner convection zone

Solar-like stars (M~M_☉...0.4M_☉) Inner radiative zone Outer convection zone

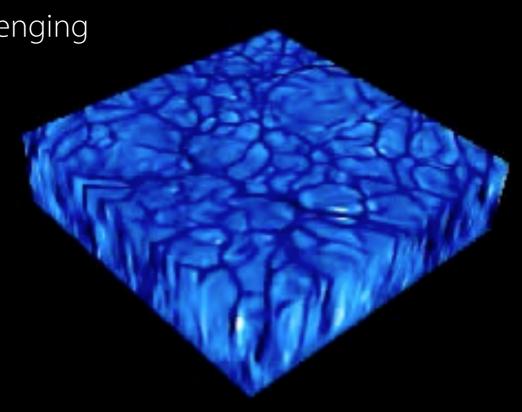
> Low-mass stars (M< 0.3-0.4M_☉) Fully convective

Hertzsprung-Russell Diagram



Mixing length theory

- In the context of stellar (interior) structure and evolution, we want to know about convection zones:
 - How much energy can be transported by convection?
 - What is the **temperature gradient** ?
- But: Detailed theory of convection and its practical application still challenging today
- Addressed with numerical simulations but very challenging
 and computationally expensive
 - Prohibitive to use as part of stellar evolution calculations.
 - ➡ Simpler approach needed
 - ➡ Mixing Length Theory (MLT)



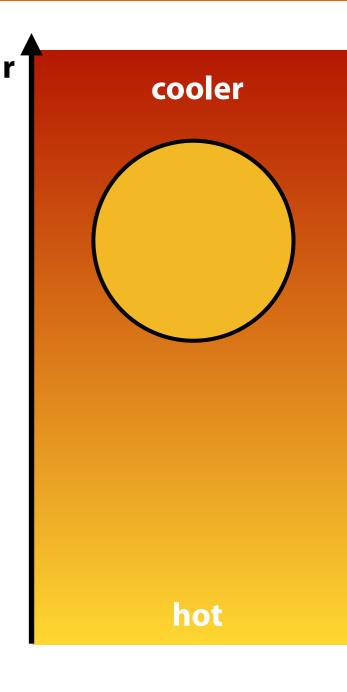
Mixing length theory

- Simplified picture of convective energy transport:
 - 1. Gas element rises (or sinks) over a radial distance
 - 2. Gas element dissolves (becomes part of the new environment) and releases excess heat
 - Mixing length l_m
 - If gas element sinks, it absorbs deficit energy from
 environment
 - Mixing length l_m is an unknown free parameter!
 - Assumption: l_m on the order of local pressure scale height H_P

r 1	cooler
	hot

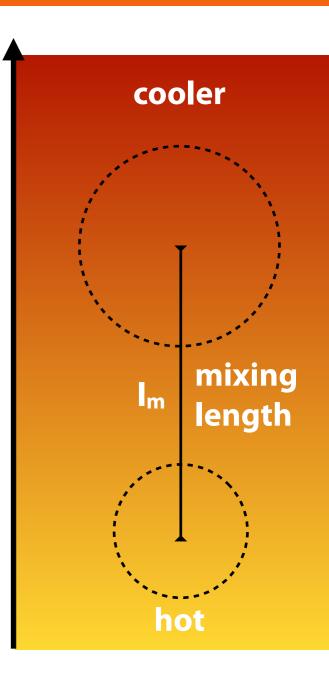
Mixing length theory

- Simplified picture of convective energy transport:
 - 1. Gas element rises (or sinks) over a radial distance
 - 2. Gas element dissolves (becomes part of the new environment) and releases excess heat
 - Mixing length l_m
 - If gas element sinks, it absorbs deficit energy from environment
 - Mixing length l_m is an unknown free parameter!
 - Assumption: l_m on the order of local pressure scale height H_P



Mixing length theory

- Simplified picture of convective energy transport:
 - 1. Gas element rises (or sinks) over a radial distance
 - 2. Gas element dissolves (becomes part of the new environment) and releases excess heat
 - Mixing length l_m
 - If gas element sinks, it absorbs deficit energy from environment
 - Mixing length l_m is an unknown free parameter!
 - Assumption: l_m on the order of local pressure scale height H_P

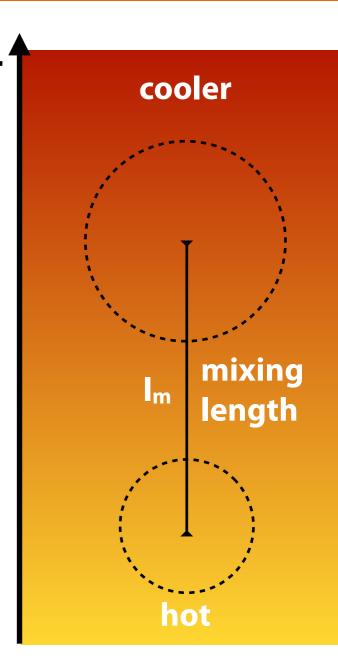


• **Pressure scale height:** (in a stratified medium) the radial distance over which the pressure $H_P =$ changes by a factor 1/e

$$H_P = \left| \frac{\mathrm{d}r}{\mathrm{d}\ln P} \right| = \frac{P}{\rho g}$$

Mixing length theory

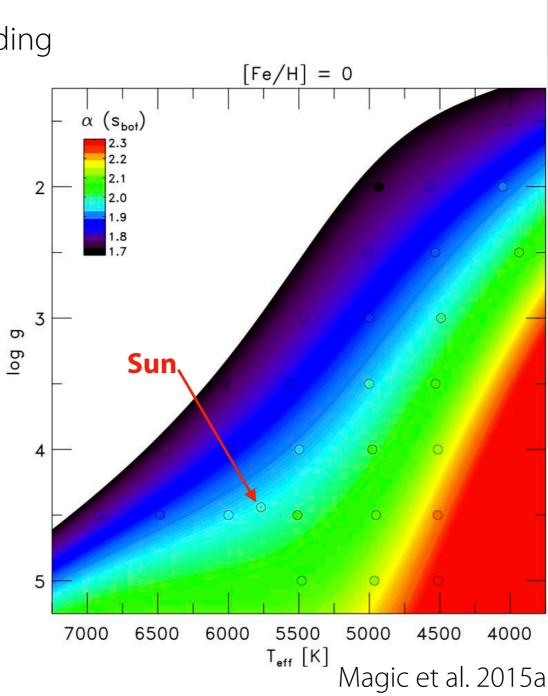
- Assumption: $l_m = \alpha H_P$
 - Valid in hydrostatic equilibrium.
 - Reasonable as gas element expands while rising
- Assume spherical surface inside the convection zone
 - 1/2 covered by rising blobs
 - 1/2 covered by sinking blobs
 - Expanding rising blobs would cover most of the area after rising 1-2 pressure scale heights.
 - ➡ Net energy transport upwards (down the gradient)

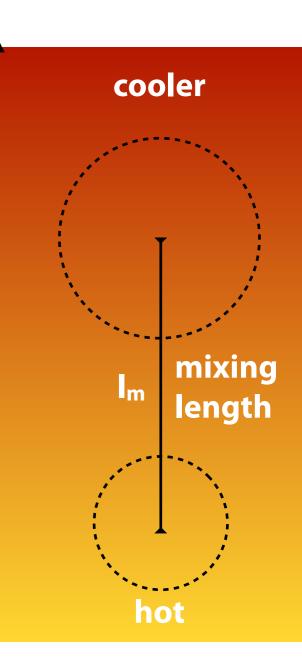


• **Pressure scale height:** (in a stratified medium) the radial distance over which the pressure changes by a factor 1/e $P(\mathbf{r}) = P_0 e^{-(\mathbf{r}/H_p)} \implies H_P = \left|\frac{\mathrm{d}r}{\mathrm{d}\ln P}\right| = \frac{P}{\rho g}$

Mixing length theory

- Detailed numerical model calculations (in comparison to observation) to derive/calibrate corresponding mixing length
- Mixing length (via parameter depends on
 - Effective temperature $T_{\rm eff}$
 - Grav. Acceleration log g
 - Metallicity [Fe/M]
- Values for α typically ~2





r

The convective energy flux

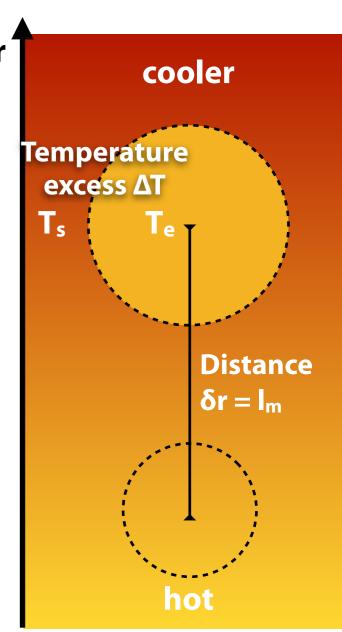
- Gas element after rising a distance $\delta r = l_m$:
 - \rightarrow Mean excess temperature ΔT between element and surrounding:

$$\Delta T = T_{\rm e} - T_{\rm s} = \left[\left(\frac{\mathrm{d}T}{\mathrm{d}r} \right)_{\rm e} - \frac{\mathrm{d}T}{\mathrm{d}r} \right] \ell_{\rm m} = \Delta \left(\frac{\mathrm{d}T}{\mathrm{d}r} \right) \ell_{\rm m}$$

- dT/dr: temperature gradient in surrounding
- $(dT/dr)_e$: variation of temperature with radius r for the gas element while rising and expanding adiabatically
- $\Delta(dT/dr)$: difference between the two gradients.
- Rewrite the equation above with gradients $\nabla = \left(\frac{\partial \ln T}{\partial \ln P}\right)$ and $H_P = \left|\frac{\mathrm{d}r}{\mathrm{d}\ln P}\right| = \frac{P}{\rho g}$ deriving and using the following equation

$$\frac{\mathrm{d}T}{\mathrm{d}r} = T \frac{\mathrm{d}\ln T}{\mathrm{d}r} = T \frac{\mathrm{d}\ln T}{\mathrm{d}\ln P} \frac{\mathrm{d}\ln P}{\mathrm{d}r} = -\frac{T}{H_P} \nabla \quad \text{and} \quad \left(\frac{\mathrm{d}T}{\mathrm{d}r}\right)_e = -\frac{T}{H_P} \nabla_{\mathrm{ad}} \nabla_{$$

$$\Delta T = T \, \frac{\ell_{\rm m}}{H_P} \, (\nabla - \nabla_{\rm ad})$$



The convective energy flux

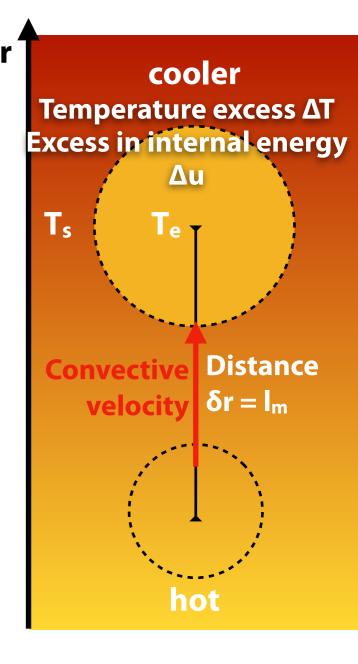
- Mean temperature excess ΔT is related to an excess in internal energy between the gas element and the surrounding $\Delta u = c_P \Delta T \varrho$
- Energy flux carried by gas elements at (average) velocity $v_c\,$ (the convective velocity)

$$F_{\text{conv}} = \mathbf{v}_{c} \varrho \, \Delta u = \mathbf{v}_{c} \varrho \, c_{P} \, \Delta T$$

- ➡ What is the **convective velocity**?
- Gas element moves over distance l_m in the time t starting from resting position at constant acceleration: $l_m = \frac{1}{2} a t^2$

Average velocity
$$v_c \approx l_m / t = \sqrt{\frac{1}{2}\ell_m a}$$

Arr Buoyancy force provides the acceleration
$$a = -g \frac{\Delta \rho}{\rho} \approx g \frac{\Delta T}{T}$$



$$\Delta T = T \, \frac{\ell_{\rm m}}{H_P} \, (\nabla - \nabla_{\rm ad})$$

The convective energy flux

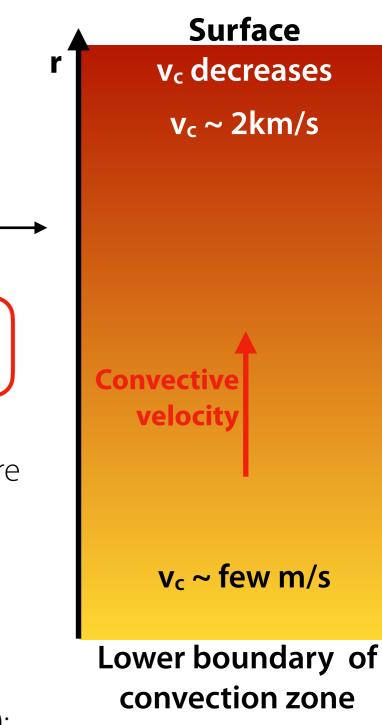
- Increases with radius
- For the Sun up to ~2 km/s (average velocity)—_____

➡ Convective energy flux

$$F_{\rm conv} = \rho c_P T \left(\frac{\ell_{\rm m}}{H_P}\right)^2 \sqrt{\frac{1}{2}gH_P} \left(\nabla - \nabla_{\rm ad}\right)^{3/2}$$

- Superadiabaticity $\nabla \nabla_{ad}$: degree to which the actual temperature gradient ∇ exceeds the adiabatic value ∇_{ad} .
- What $\nabla \nabla_{ad}$ is needed to carry the whole energy flux by convection?
 - With typical values for the whole star (using the virial theorem):

$$\implies \quad F_{\rm conv} \sim \frac{M}{R^3} \left(\frac{GM}{R}\right)^{3/2} (\nabla - \nabla_{\rm ad})^{3/2}$$



The convective energy flux and temperature gradient

• Combine
$$F_{\text{conv}} = \rho c_P T \left(\frac{\ell_{\text{m}}}{H_P}\right)^2 \sqrt{\frac{1}{2}gH_P} \left(\nabla - \nabla_{\text{ad}}\right)^{3/2}$$
 and $F_{\text{conv}} \sim \frac{M}{R^3} \left(\frac{GM}{R}\right)^{3/2} (\nabla - \nabla_{\text{ad}})^{3/2}$

$$\nabla - \nabla_{\rm ad} \sim \left(\frac{LR}{M}\right)^{2/3} \frac{R}{GM}$$

- Typical values in the interior of the Sun $\nabla \nabla_{ad} \sim 10^{-5} 10^{-7}$
- ➡ Only very small superadiabaticity needed!
- \blacksquare Convective energy transport is very efficient with $F_{\text{conv}} \gg F_{\text{rad}}$
- **Temperature gradient** in a convective region can be derived by simply using $\nabla \approx \nabla_{ad}$

$$\Rightarrow \quad \frac{\mathrm{d}T}{\mathrm{d}m} = -\frac{Gm}{4\pi r^4} \, \frac{T}{P} \, \nabla$$

Convection near the surface

- Density and temperature much smaller
- Superadiabaticity much larger
- Temperature gradient depends on detailed properties of the convective motions

- Convection: upwards + downwards motion
 - \rightarrow Net transport of energy
 - But no net transport of mass
- Effective mixing
- Spatial and temporal scale smaller in the upper layers

Sector and a sector and the sector and the sector of the s

surface

- Simulated vertical velocity in a vertical cross-section trough the Sun's upper convection zone, played fast forward
- red: upward
- blue: downward
- streamlines

(C. Henze, NASA Advanced Supercomputing Division, Ames Research Center).

- 24 Mm

I FLIGHT HERE

- Convection zone: Mass density changes by orders of magnitudes
 - Density scale height for a stratified medium: $\varrho(r) = \varrho_0 e^{-(z/H)}$
- Gas element rising up (or down) by a density scale height
 - \Rightarrow Expands (or contracts) by a factor e.
 - \Rightarrow Set dominant spatial scale of convective motions
 - \Rightarrow Convection cell size \approx few local scale height

Rising gas elements

cannot carry mass higher but diverge.

- Most elements turning over within a density scale height (statistically!)
- Upward flows diverge, smoothed out

→Upflows occupy ~2/3 of the area.*

Sinking gas elements

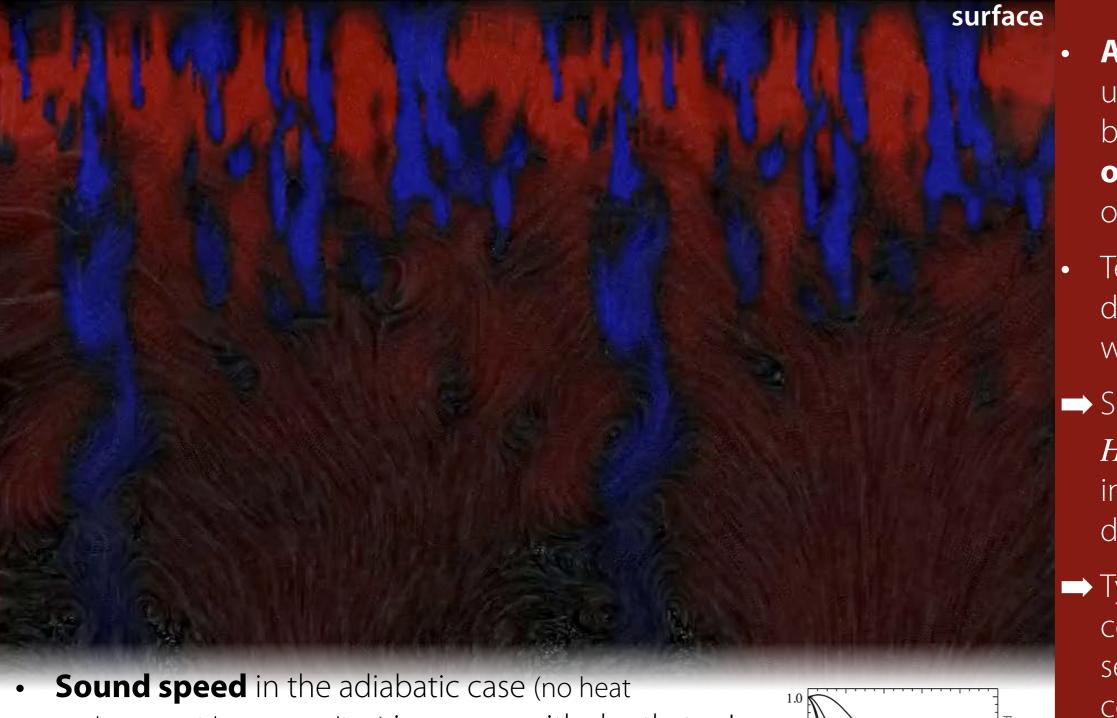
get compressed and fluctuations increased, becoming turbulent.

- Elements can shoot down as turbulent plumes
- →Downflows occupy ~1/3 of the area. *

* Inside the convection zone! The uppermost layer (~100km in the Sun) is special as it is at surface where the plasma becomes transparent.

surface

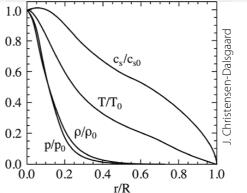
- Asymmetry up/downflows but conservation of mass must be obeyed!
- Temperature and density increase with depth
- → Scale height $H_P = P/(Qg)$ increases with depth
- ➡ Typical size of convective cells set by mass conservation and local conditions, increase with depth



exchange with surrounding) increases with depth, too!

$$c_{\rm s} = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_s} = \sqrt{\frac{\gamma P_0}{\rho_0}} = \sqrt{\frac{\gamma k_{\rm B} T_0}{\mu m_{\rm H}}} = \sqrt{\gamma g H_p}$$

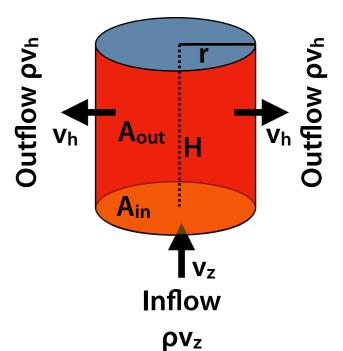
 $k_{\rm B}$: Boltzmann constant μ : mean molecular weight $m_{\rm H}$: mass of hydrogen



- Asymmetry up/downflows but conservation of mass must be obeyed!
- Temperature and density increase with depth
- \Rightarrow Scale height $H_P = P/(Qg)$ increases with depth
- → Typical size of convective cells set by mass conservation and local conditions, increase with depth

Spatial scales — Convection cell sizes

- Conservation of mass must be obeyed!
- Rough estimate for typical radius of a convection cell:
 - Assume a volume in the form of a cylinder with height ${\bf H}$ and radius ${\bf r}$
 - Inflow of matter through bottom with area A_{in} = $\pi\,r^2$
 - Flow turns over within one scale height H
 - \blacksquare Outflow through the sides of the cylinder with area $A_{out} = 2 \pi r H$
 - Conservation: Outflow = inflow
 - $\Rightarrow A_{\rm in} \, \varrho v_z = A_{\rm out} \, \varrho v_h$
 - $\Rightarrow \pi r^2 \varrho v_z = 2 \pi r H \varrho v_h$
 - \rightarrow r = 2 H v_h/v_z



vz: vertical velocity vh: horizontal velocity

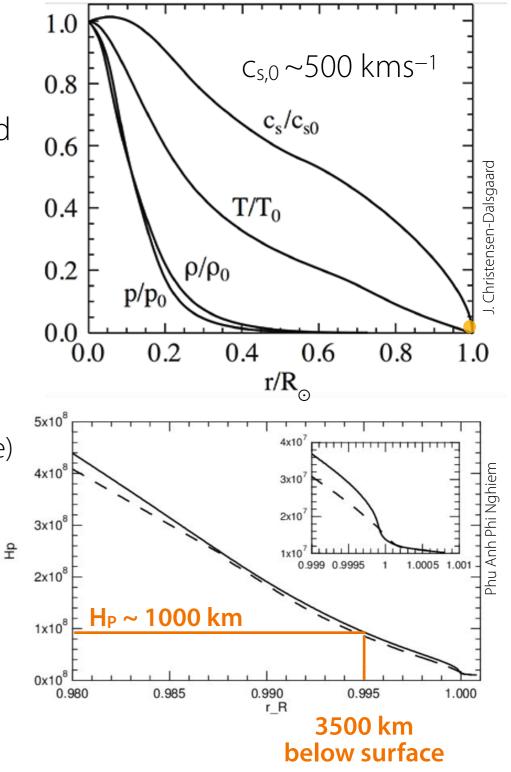
Spatial scales — Convection cell sizes

- **Typical radius of a convection cell** $r = 2 H v_h / v_z$
- Vertical velocity v_z = convective velocity
- Horizontal velocity? **Upper limit** set by local sound speed

$v_h < c_s$

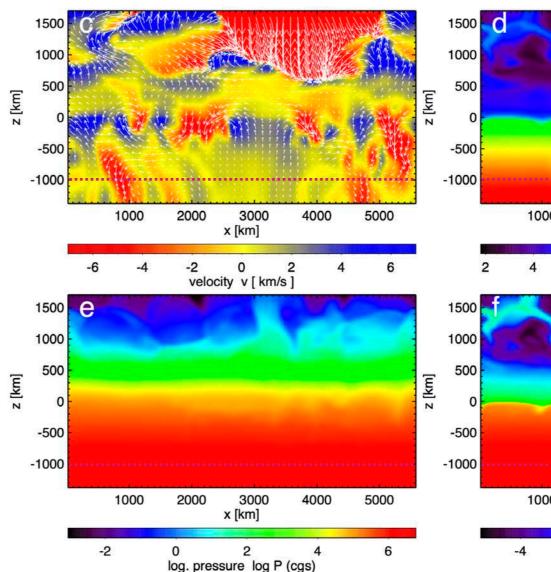
- Convective velocity v_z and sound speed c_s (> v_h) depend on the local thermodynamic conditions and are thus functions of radius
- **Example 1:** Top of the convection zone (well below surface)
 - $v_z \sim 2km/s$, $H \sim 1000 \ km$, $c_s = (\gamma \ H_P \ g)^{1/2} \approx 20 \ km/s$
 - → $r = 2 H v_h / v_z < 2000 km \times 20/2 = 20 000 km$
 - ➡ Horizontal cell diameters are <u>smaller</u> than that
 - ➡ Will change strongly as function of radius / depth!

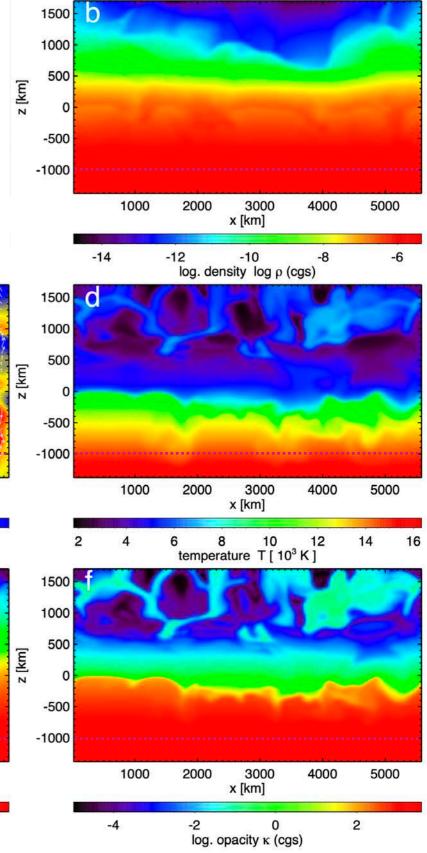
* $\gamma = 5/3$ (ideal monatomic gas). $\log g_{\odot} = 4.4$ (cgs!)



Spatial scales — Convection cell sizes

- Typical radius of a convection cell $r = 2 H v_h / v_z$
- Example 2: 3D simulation, 1000 km below surface)
- All in cgs units!
 - log g = 4.4
 - $v_z \sim 2 \text{km/s}$
 - $log P \sim 6$
 - $\log \varrho \sim -6$
- \Rightarrow $H_P = P/(\varrho g) = 400 \ km$
- $ightarrow c_s = (\gamma H_P g)^{1/2} \approx 13 \text{ km/s}$
- $\implies \mathbf{r} < 2 H_P c_s / v_z \approx 5000 \ km$
- ➡ Convection cell diameter smaller than 10 Mm

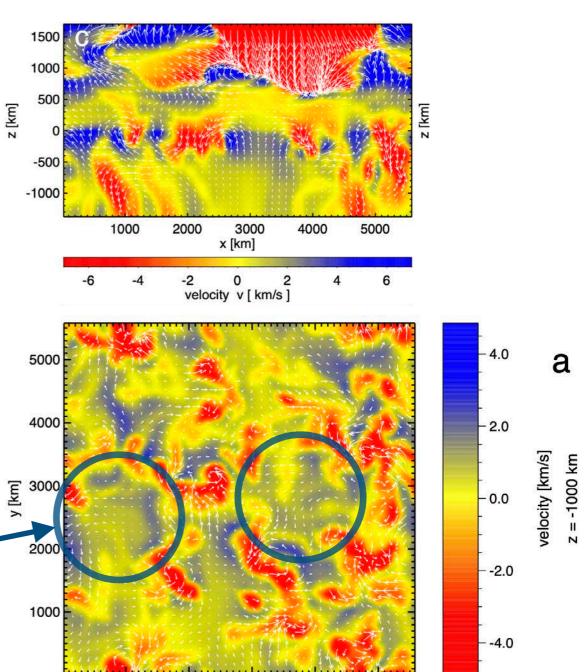




Wedemeyer (2003)

Spatial scales — Convection cell sizes

- **Typical radius of a convection cell** $r = 2 H v_h / v_z$
- **Example 2:** 3D simulation, 1000 km below surface)
- All in cgs units!
 - log g = 4.4
 - $v_z \sim 2 \text{km/s}$
 - $log P \sim 6$
 - $log \varrho \sim -6$
- \Rightarrow $H_P = P/(\varrho g) = 400 \ km$
- $rightarrow c_s = (\gamma H_P g)^{1/2} \approx 13 \text{ km/s}$
- $\implies \mathbf{r} < 2 H_P c_s / v_z \approx 5000 \ km$
- Very rough upper limit only!
- ➡ From simulation diameter of convection cells at z=-1000km on the order of ~2000km



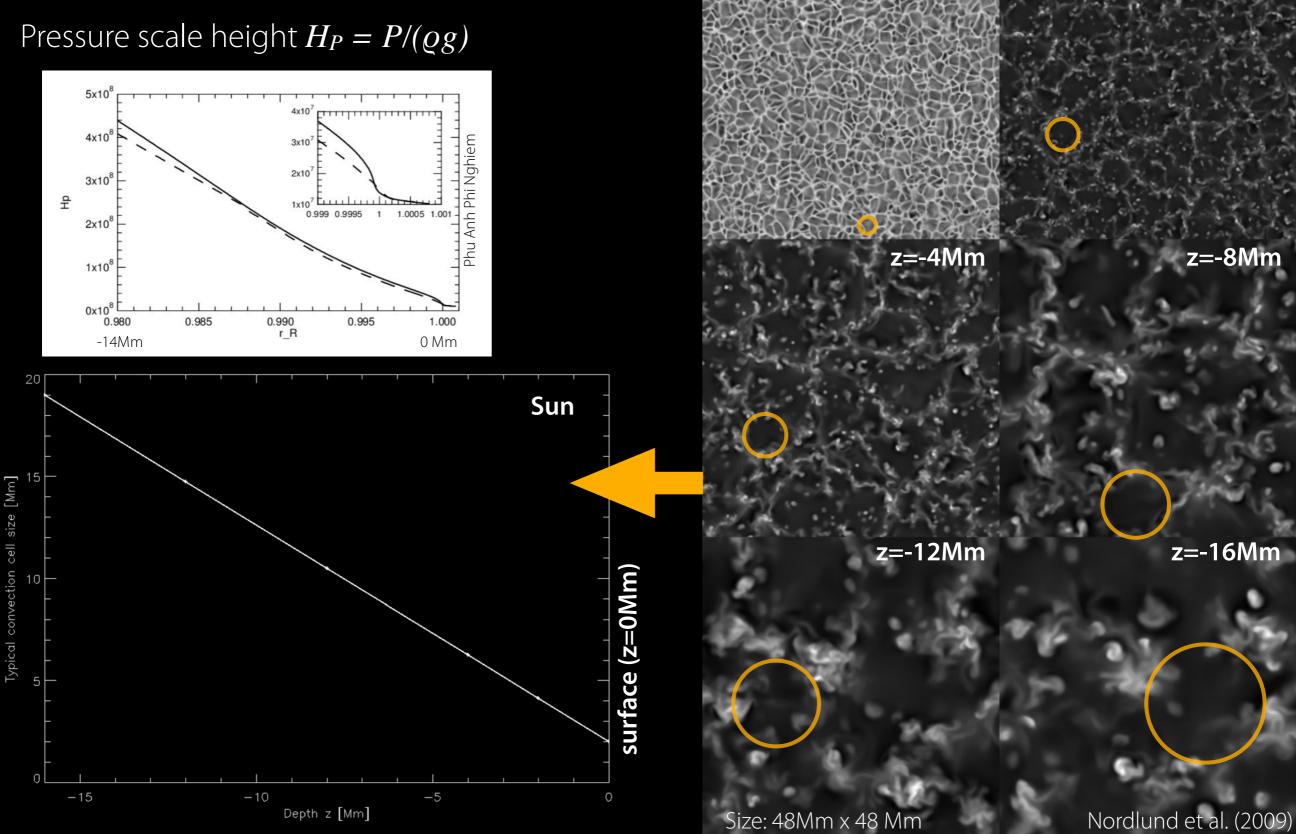
Wedemeyer (2003)

z=-2Mm

surface (z=0Mm

Convection

Spatial scales



Convective turnover time scale

- Turnover time scale $t_{\rm to} \propto H_P / v_{\rm c}$
- Solar convection zone highly stratified!
- Convective turnover time scale varies by 4 orders of magnitude from surface bottom of the convection zone
- Surface: $t_{to} \approx 200 \text{ s}$
- Bottom of convection zone: $t_{to} \approx 25 \text{ d}$

Spatial scales — Convection cell sizes

- Pressure scale height $H_P = P/(\varrho g)$
- Upshot Convection cell size
 - Scales with pressure scale height
 - Increases with depth due to increasing pressure, density, temperature
 - About 2Mm at surface but many Mm deeper in the interior
 - Rough estimates, more precise numbers require detailed numerical simulations (and/or a more detailed description of convection)
- Note the dependence on g^{-1}
- ➡ What does it mean when we consider a giant star with logg~ 0 instead of the Sun with logg=4.4?

