AST5770 Solar and stellar physics

University of Oslo, 2022

Sven Wedemeyer

Practical information

Updates

- Deadline for 2nd assignment postponed by one week to March 11
- Template for 3rd assignment available.
- Next group sessions March
 - 14:15 15:00: "interactive writing workshop".
 - The aim is to help you with any problem/challenge you have with writing the introduction . For instance, unsure how to connect two things, how express facts, etc.
 - Please send me questions and/or difficult(even unfinished) paragraphs you may have
 by the end of March 8 so that we can work on them as examples.
 (I can keep it anonymous.)

AST5770 - UiO - S. Wedemeyer

Helioseismology continued

p-modes

• Large separations

$$(n, l) \longleftrightarrow (n-1, l)$$

• Small separations

 $(n, l) \longleftrightarrow (n-1, l+2)$

- n = number or radial nodes
- *l* = number of nodes on the solar surface

5min = 300 s

$$v = 1/300 \text{ s} = 3.333 \text{ mHz}$$

SOHO (ESA & NASA)

Types of solar eigenmodes:

	p-modes (sound waves)		g-modes (buoyancy modes)
	restoring force = pressure		restoring force = gravity
•	Excited by turbulence associated with convection, mainly by the more vigorous motions at the surface (granulation)	•	Randomn vertical displacements (buoyancy) in a convectively stable medium
•	Propagate in the interior but evanescent in the solar atmosphere	•	 Propagate in the radiative interior and in the atmosphere but evanescent in the
•	So far only p-modes have been detected on the Sun with certainty!		convection zone
		•	No definite observational proof for g- modes on the Sun yet.
•	p-modes propagate throughout the solar		
	interior at sound speed c_s		 Current upper limit on solar interior g-modes lies below 1 cm/s. Would probe the centre of the Sun!
	Spend most time where c_s is lowest	•	
	Spend most time at the surface (as c_s is	• \	
	lowest there, remember $c_s \sim T^{1/2}$)		
	Detectable at the surface		

Oscillation equations

- Equation of continuity and momentum equation, describing stratification now perturbed
- ➡ Equations describing radial structure of adiabatic oscillations
- Simplifying assumptions:
 - **Cowling approximation** (neglects any perturbations to the gravitational potential)
 - Radial changes of stratification small over the scales of the considered oscillations
 - Linear perturbation in radial direction, adiabatic
 - Usage of spherical harmonics for any non-radial
 (i.e. horizontal) component (here primarily set by degree *l*)

Oscillation equations

- Equation of continuity and momentum equation, describing stratification now perturbed
- ➡ Equations describing radial structure of adiabatic oscillations

$$\frac{1}{r^2} \frac{d}{dr} (r^2 \xi_r) - \frac{\xi_r g}{c^2} + \frac{1}{\rho_0} \left(\frac{1}{c^2} - \frac{l(l+1)}{r^2 \omega^2} \right) P_1 = 0$$
$$\frac{1}{\rho_0} \frac{dP_1}{dr} + \frac{g}{\rho_0 c^2} P_1 - (\omega^2 - N^2) \xi_r = 0 .$$

• Analytical solutions of these equations for an isothermal medium:

 $\xi_r \sim \rho_0^{-1/2} \exp(ik_r r)$ $P_1 \sim \rho_0^{1/2} \exp(ik_r r)$

• Solutions are oscillations but can also be evanescent (complex k_r)

Oscillation equations

- Equation of continuity and momentum equation, describing stratification now perturbed
- ightarrow Equations describing radial structure of adiabatic oscillations at frequency ω

$$rac{d^2 \xi_r}{dr^2} = rac{\omega^2}{c_s^2} \left(1-rac{N^2}{\omega^2}
ight) \left(rac{S_\ell^2}{\omega^2}-1
ight) \xi_r$$

- Unperturbed background
- cs: sound speed
- Perturbation:
- ξ_r : radial displacement
- ω : angular frequency

$$N$$

Brunt–Väisälä frequency $N^2 = g\left(rac{1}{\Gamma_1 P}rac{dp}{dr} - rac{1}{
ho}rac{d
ho}{dr}
ight)$

$$S_l$$

Lamb frequency
 $S_l^2 = rac{l(l+1)}{r^2}c^2$

-1

Helioseismology

Oscillation equations

• Equation of continuity and momentum equation, describing stratification — now perturbed

 S_l

Lamb frequency

 $S_l^2 = \frac{l(l+1)}{r^2}c^2$

- ightarrow Equations describing radial structure of adiabatic oscillations at frequency ω
- Dispersion relation:

N

Brunt–Väisälä frequency

 $N^2 = g \left(rac{1}{\Gamma_1 P} rac{dp}{dr} - rac{1}{
ho} rac{d
ho}{dr}
ight) ,$

$$k_r^2 = \frac{\omega^2 - \omega_{\rm A}^2}{c^2} + S_l^2 \frac{N^2 - \omega^2}{c^2 \omega^2} \label{eq:kr}$$

Unperturbed background c_s : sound speed Perturbation: ξ_r : radial displacement ω : angular frequency k_r : radial wavenumber ω_A Acoustic cutoff frequency $\omega_A = c/2H$

• density scale height *H*: locally approx. constant
$$H \equiv -\rho_0/(d\rho_0/dr) = \left(\frac{g}{c^2} + \frac{N^2}{q}\right)$$

Oscillation equations — $k_{h-}\omega$ -plane

Dispersion relation:

$$k_r^2 = \frac{\omega^2-\omega_{\rm A}^2}{c^2} + S_l^2 \frac{N^2-\omega^2}{c^2\omega^2} \label{eq:kr}$$

- In the two regimes of acoustic waves and gravity waves:
 k_r² > 0
- Between: regime of evanescent waves (exponential damping) $k_r^2 < 0$
 - Evanescent waves occur if period so long that the whole (exponentially stratified) medium has time to adapt to the perturbation, achieving a new equilibrium.
 - Wave does not propagate, but rather the medium as a whole oscillates

- ω_A : Acoustic cutoff frequency
- *N* : Brunt–Väisälä frequency
- *S*_l: Lamb frequency

k_h - ω -plane, solid curves: $k_r^2 = 0$

Oscillation equations — $k_{h-}\omega$ -plane

Oscillation equations — $k_{h-}\omega$ -plane

Dispersion relation:

$$k_r^2 = \frac{\omega^2-\omega_{\rm A}^2}{c^2} + S_l^2 \frac{N^2-\omega^2}{c^2\omega^2} \label{eq:kr}$$

• Fundamental mode (f-mode): essentially without compression, resembles a surface wave on deep water

$$\omega = \sqrt{gk_{
m h}}$$

In diagnostic diagrams:
 f-mode = lowest ridge

 ω_A : Acoustic cutoff frequency

Critical frequencies in the Sun

- Mode "trapped" in a layer with oscillatory wave behaviour for this type of mode if the layer is in-between two evanescent layers
- \Rightarrow Spectrum of oscillation frequencies is <u>discrete</u>.

Critical frequencies in the Sun

Critical frequencies in the Sun

Note: The exact mode spectrum is set by the interior structure and thus expected to differ as function of **spectral type** etc.

Reflection of p-modes

- Lower penetration depth with increasing degree I
- Modes with high I mostly in the top of the convection zone (near surface)
- Modes with low I can probe the deep interior

Reflection of p-modes

We have now a theoretical framework for oscillation modes in the Sun and their connection to the physical properties of the solar interior (incl. the stratification), which is otherwise not directly observable! Use this knowledge to invert real observations!

Probing the solar interior — inversion results

- The measured mode spectrum now allows for deriving the stratification of the solar interior
- Derived sound speed differs from the standard model of the Sun!

Relative difference between the squared sound speed as inferred from 2 months of MDI data and the standard solar model of Christensen-Dalsgaard et al. (1996)

Probing the solar interior — inversion results

- Derived sound speed differs from the standard model of the Sun!
- Radial and latitudinal variations of the sound speed in the Sun relative to a standard solar model.
- Temperature does differ correspondingly
- Red = positive variations (`hotter' regions)
- Blue = negative variations (`cooler' regions)

Implications

- So far, despite (relatively small deviations): **good agreement** between sound speed predicted by models of the solar interior and helioseismological measurements
- New determination of chemical abundances updated (suggested) values
 - Among them, C, N, O: significant **opacity sources in the solar interior**
 - ➡ Changed abundances result in (slightly) different density and temperature stratification
 - ➡ Disagreement with standard solar interior models, most notably just below convection zone including predicted depth of convection zone
- Different explanations debated
 - Possible: New solar abundances are not precise enough yet as a lot of effects to be taken into account
 - Active field of research, advanced use of 3D spectral line synthesis (based on 3D magnetohydrodynamical models)
 - Relatively new and challenging
- Please also note that the standard solar model assumes perfect spherical symmetry and no rotation!

See spectra line data files provided for the assignments.

Rotational splitting

- So far neglected dependence on *m* (azimuthal, number of nodes passing through poles)
- Closer look: Frequency spectrum is (finely) split regarding m due to the Sun's rotation

➡ Rotational splitting

- Waves propagate prograde or retrograde ($u_{-m,l}
 u_{+m,l}$)
- Can be exploited to derive the rotation rate throughout the solar interior
- Discovery of a rapid change in rotation rate at the bottom of the convection zone
- That layer is called **tachocline**
 - Depth: $r = 0.712 \pm 0.005 R_{\circ}$ with a
 - Thickness $\Delta r = 0.04 \pm 0.01 \ R_{\odot}$

fast rotation rate (P \approx 25 days) slow rotation rate (P \approx 35 days)

Rotation and meridional flows

- From helioseismology: meridional flow poleward at /close to the surface (down to ~30 Mm), speeds ~ 20 m/s
- "Return flow" towards equator at a depth \sim 0.77 R_{\odot} (deep convection zone)
- Bottom of convection zone = lower turning point for oscillation modes with I \approx 20
- Below convection zone (0.2 0.7 $R_{\odot}):$
 - rotation approx. constant with radius
 - spherically symmetric
 - Well-described by rigid-body rotation
- Not much known about rotation of the innermost core (probed only by very low-l degree p-modes, internal g-modes not accessible)

Rotation and meridional flows

• Further observations + simulations imply several layers of flow cells in radial direction

Rotation and meridional flows

- Rotation speed in the convection zone (and at the surface) varies with latitude and depth!
- Differential rotation: The Sun's equator rotates faster than the poles.

Time-Distance Methods

• Seismology on Earth:

- Measure arrival time of the initial onset of the disturbance at different locations on the surface
- If we know the variation of seismic velocity with depth within the earth, then we can calculate the travel time of rays between an earthquake and a receiver.
- ➡ Locate the epicentre of any earthquake
- ➡ Also: Learn about variations of the velocity due to differences in structure/density inside Earth (the Earth is not a perfect homogeneous sphere!)

Time-Distance Methods — local helioseismology

Time-distance helioseismology — similar idea for the Sun:

- Select point on surface as the "source"
- Assume an annulus at some great circle around that point as a destination
- Calculate correlations between all points in the annulus
- Any pulse in the correlation function reveals time and distance
- Probes the sub-surface medium through which the sound waves have traveled
- Deviations in the arrival times due to inhomogeneities under the surface
- Remember: Probed depth depends on wavelength of observed p-mode
- ➡ Mapping of sub-surface structure

Time-Distance Methods — local helioseismology

- Time-distance helioseismology
 similar idea for the Sun:
 - Select point on surface as the "source"
 - Assume an annulus at some great circle around that point as a destination
 - Calculate correlations between all points in the annulus
 - Any pulse in the correlation function reveals time and distance
 - Probes the sub-surface medium through which the sound waves have traveled
 - Deviations in the arrival times due to inhomogeneities under the surface
 - Remember: Probed depth depends on wavelength of observed p-mode
 - ➡ Mapping of sub-surface structure

Sunquake

c_s increases

- Disturbance triggered by a solar flare on 9 July 1996
- Seismic wave ripples outward
- Wave travels not surface, but reaches surface further out at later times.
- Wave seems to speed up! Why?

Kosovichev et al (1998)

Time-Distance Methods — local helioseismology

- Subsurface structure of sunspots (Kosovichev et al. 2000)
- Sunspots good targets for this technique due to large change in temperature (and thus in sound speed)
- → Sunspots surprisingly shallow: warmer than surroundings already ~ 4000 km below surface
- Remaining uncertainty: unknown influence of magnetic field on the wave propagation

Mapping the far side

- Two-skip far-side seismic holography
- Difference (delay) in travel time of sound waves from active region on the far-side of the Sun as compared to Quiet Sun ~10 s (on a total travel time of ~6 hr)
- Confirmed by other observations (STEREO satellites)
- Very helpful for space weather forecast knowing about Active Regions before they rotate on the visible (Earth) side

Focal point (location on the other side that is mapped)

Mapping the far side

- Two-skip far-side seismic holography
- Difference (delay) in travel time of sound waves from active region on the far-side of the Sun as compared to Quiet Sun ~10 s (on a total travel time of ~6 hr)
- Confirmed by other observations (STEREO satellites)
- Very helpful for space weather forecast knowing about Active Regions before they rotate on the visible (Earth) side

Braun and Lindsey 2001.03.16_00h

Focal point (location on the

Sun as a star — implications for asteroseismology

- "Our usual problem": Stars (except for the Sun) observed not (well) spatially resolved
- Stellar observations return simpler power spectrum with **only modes with low** *l*
 - Up to l = 3 for intensity variations
 - Up to l = 4 for radial velocity variations
 - Imprints of higher modes (with more nodes on stellar surface) cancel out when not spatially resolved, much information on non-radial oscillations lost

• Low-*l* modes:

- Probe the deep interior (of the Sun)
 - \rightarrow Sometimes called "global" modes.
- Different peaks in power spectrum for given *l* correspond to different values of *n* (radial nodes, *n* =15...25 are typical)

- First reliable detection of oscillations on α Centauri (our nearest solar analogue)
- Power spectrum shifted towards lower frequencies for lpha Centauri compared to the Sun

- Frequency of the fundamental radial mode l = 0, is proportional to a star's dynamical time scale (t_{dyn})
- Large frequency spacing $\Delta \nu$ (between adjacent radial modes in oscillation spectrum) proportional to the dynamical time scale

- Frequency of the fundamental radial mode l = 0, is proportional to a star's dynamical time scale (t_{dyn})
- Large frequency spacing $\Delta \nu$ (between adjacent radial modes in oscillation spectrum) proportional to the dynamical time scale

➡ Freq. spacing depends on stellar properties, changes as star evolves.

Summary

- Asteroseismology provides additional constraints on the determinations of stellar parameters (e.g., masses, radii, mean densities, ages)
 - Important tests for stellar structure and evolution models
 - Important constraints for stellar interiors and thus generations of magnetic fields (dynamo) and stellar activity
- Synergies with exoplanet missions that look for small variations in the host star
 - Missions like Kepler, CoROT, TESS, ...
 - Mostly on radial pulsations as limited to low -*l* modes
- Stellar pulsations to be discussed as part of late evolution stages