AST5770 Solar and stellar physics

University of Oslo, 2022

Sven Wedemeyer

Practical information

• Remember: Next week no lectures, no group exercises

• EST video: <u>https://youtu.be/leq1Pa2b_dw</u> on YouTube: ("Reaching for the Sun", 57min)

• Any question regarding the feedback on assignment #2?

Solar cycle

Recap

• Solar cycle — sunspots first at 30deg N/S, then gradually towards equator

Butterfly diagram: DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Measuring magnetic fields

Recap

- **Direct methods:** Zeeman effect (polarisation)
- **Indirect methods**, e.g. Ha, Ca II H/K spectral lines

- Zeeman Doppler Imaging (ZDI): Zeeman splitting of spectral lines plus Doppler shifts due to stellar rotation
- Deriving magnetic field configuration of stars from spatially unresolved observations
- Problem: Uncertain north-south distribution of starspots (ambiguity)

Valua

Measuring magnetic fields

Direct interferometric imaging

- Works only for stars with significant angular extent in the sky (physical size vs. Distance)
 - Few examples so far (limited by achievable angular resolution)
 - Observation with CHARA of ζ Andromedae (Roettenbacher et al 2016)

Maacurad naramatar

- K-type cool giant star (15 times larger than Sun)
- Observations in 2011 and 2013 over several consecutive days to cover the star's rotation period

	weasureu parameter	value
60-Inch talescope	Angular polar diameter, θ_{LD} (mas)	2.502 ± 0.008
Half-million-gellon water lank in case of fire	Polar radius (R_{\odot})	15.0 ± 0.8
100-inch telescope	Oblateness (major to polar axis)	1.060 ± 0.011
Control/Office Exhibit Building Beam Combining Lab MI. Wilson Observatory Museum	Inclination, <i>i</i> (°)	70.0±2.8
Site Manager's Residence	Pole position angle (°, E of N)	126.0 ± 1.9
	Values from the literature	
CHARA Beam Synthesis Facility	Distance, d (pc)	17.98 ± 0.83 (ref. 29)
Engineering Shop	Effective temperature, T _{eff} (K)	4600±100 (ref. 9)
	Luminosity, log L/L_{\odot}	1.98 ± 0.04 (ref. 9)
Six CHARA Array 1-meter telescopes CHARA Array of Georgia State University	Primary mass (M_{\odot})	2.6±0.4 (ref. 9)
CHARA facilities are indicated with a bold outline	Secondary mass (M_{\odot})	${\sim}0.75$ (ref. 9)
CHARA, USA: array of 6 telescopes	Iron metallicity [Fe/H]/[Fe/H]₀	-0.30 ± 0.05 (ref. 9)

Table 1 | Parameters of ζ And

Measuring magnetic fields

Direct interferometric imaging — ζ Andromedae

Time sequence of interferometric images

➡Time-dependent model of the star's surface

 Dark polar spot seen in both observation epochs but lower-latitude spot structures in both hemispheres do not persist between observations

Roettenbacher et al 2016

Measuring magnetic fields

Direct interferometric imaging — ζ Andromedae

Time sequence of interferometric images

(Potential) problem:

a

- Conclusion: Inferred magnetic field configuration difficult to produce with a global dynamo
- Is there enough data for this conclusion?
- Interferometry is challenging but promising
- Can provide important constraints on stellar dynamos and the resulting magnetic fields!

➡Time-dependent model of the star's surface

Dark polar spot seen in both observation epochs but lower-latitude spot structures in both hemispheres do not persist between observations

Stellar activity

Stellar activity What is stellar activity?

- Stellar activity refers to all phenomena in a stellar atmosphere that result in
 - Variability of the emitted radiation (on different timescales, except for pulsations, or influences of accompanying objects/disks)
 - **Heating** of the outer atmosphere (existence of a chromosphere, temperatures above radiative equilibrium)
- Mostly found for cool late-type stars due to the presence of surface convection and the resulting highly structured magnetic fields in their atmospheres
 - Initially activity thought to be produced by the dissipation of acoustic waves in the atmosphere (acoustic heating; Biermann 1948; Schwarzschild 1948).
 - Today understood that dissipation of magnetic energy is essential.
 - → Magnetic activity is synonym of stellar activity.

Further reading: Hall, Living Rev. Solar Phys., 5, (2008), 2

Stellar activity What is stellar activity?

- We have learned so far about...
 - ... main-sequence stars:
 - Differences of global properties (mass, radius, T_{eff},...)
 - Differences in their inner structure incl. extent and location of convection zones
 - ... the Sun:
 - generation of magnetic via a dynamo
 - resulting solar activity cycle
- What do we now expect to see in terms of activity cycles for other main sequence stars?

Stellar activity

How to detect activity cycles?

- The usual problem: Stellar observations are **spatially not resolved**, starspots not observed directly* — no "starspot number" can be derived directly
 *except for a few interferometric observations
- Visible brightness changes of Sun only few milli-mags anyway
- ➡ More **sensitive indicators**? ➡ indicators based on spectral lines! (Example below: Ca II)

Stellar activity

Activity indicators

- Other activity indicators use impact of magnetic field on the cores of the Ca II H and K spectral lines (integrated across the (unresolved) stellar disk))
 - ➡ Measures of the overall magnetic activity level of the star, for instance:

Activity indicators

N: Counts (flux) in the passbands

• S-index over several solar cycles:

9.6.

15.8, excl

10.9, excl

8.2, excl

7.3, excl

1990

1980

Year

1985

Stellar activity cycles

Call observations

- Magnetic activity cycles found for many stars (survey at Mount Wilson Observatory)
- Survey ended in 2000's after more than 30 years of Ca II HK observations

Shortest measured stellar activity cycle in a solar-like star

- GOV star ı Horologii (iota)
- Magnetic activity cycle of 1.6 yr
- M=1.25 M_☉
- $R = 1.18 R_{\odot}$
- Rotation period 8.5 d
- Rotation speed $v \sin i \sim 7 \, km \, s^{-1}$
 - → 3 times faster than the Sun, among the faster rotating stars of that spectral type
- Consistent with coronal activity cycle found from XMM x-ray measurements

Ca II observations

- Statistical analysis of many (cool) stars: Ca II flux vs. rotation period
- Increase of Ca II flux with decreasing rotation period
- ➡ Faster rotators have higher activity generation of stronger magnetic field via a dynamo

Rutten & Schrijver (1987)

Ca II observations

- Similar: Ca II activity indicator (R'_{HK}) vs. Rossby number (Rossby number: ratio of observed rotation period to convective turnover time)
- Clear indication of the **importance of stellar rotation and convection** for the efficiency of stellar dynamos and the resulting (magnetic) activity level

Activity cycle vs. rotation

- Statistics for many stars shows trend:
- Longer activity cycles for longer rotation periods
- Range between
 active branch (stars
 with strong activity) and
 inactive branch (stars
 with weak
 chromospheric activity)
- Branches divided by Vaughan–Preston Gap
 - Due to properties of stellar dynamos?
 - Or a statistical artefact?

Boro Saikia et al. (2018) A&A 616, A108 (2018)

Activity cycle vs. rotation

- For same stars: ratio of cycle frequency $\omega_{
 m cyc}$ and rotation rate Ω vs. Rossby number Ro
- Remember:

The Sun is only a weakly/moderately active star.

Boro Saikia et al. (2018) A&A 616, A108 (2018)

1.6

1.8

Stellar dynamos

- BCOOL survey: Magnetic field strength correlates with Rossby number in solar-like stars and subgiants.
- Trend: Stronger magnetic fields for smaller Rossby numbers
- Supports rotation being important for global stellar dynamos and thus the generation of magnetic field

Stellar activity

Basal flux limit

- Next to Ca II, spectral lines of other species used as activity indicators (here Mg II and C II)
- Large spread in values for the flux in these lines
- Lower limit:
 Basal flux limit
- (Was) thought of being produced by acoustic waves that would be present even for a star without magnetic field
 (Biermann 1948; Schwarzschild 1948)
- Wilson-Bappu Effect (1957): Linear relation between the absolute magnitude and log of Ca II K line widths for G-type and later stars (dwarfs and giants) $M_v = 27.59 - 14.94 \log W_o$

.5

Stellar activity

Basal flux limit

- Next to Ca II, spectral lines of other species used as activity indicators (here Mg II and C II)
- Large spread in values for the flux in these lines
- Lower limit:
 Basal flux limit
- (Was) thought of being produced by acoustic waves that would be present even for a star without magnetic field (Biermann 1948; Schwarzschild 1948)
- Wilson-Bappu Effect (1957): Linear relation between the absolute magnitude and log of Ca II K line widths for G-type and later stars (dwarfs and giants)

 $M_v = 27.59 - 14.94 \log W_o$

Cool stars, despite having lower luminosity overall, can exhibit strong activity Connected to existence of surface convection influencing the magnetic field production (dynamo)

Impact on stellar oscillations

- Magnetic field modifies the near-surface propagation speed, convective velocity and interior stratification
 - ➡ Results in frequency shifts of p-modes!
- Solar p-mode shifts first detected in 1990, depend on frequency and degree
- Even the lowest degree solar p-modes are shifted by the magnetic cycle
- The amplitude of shifts depend on stellar properties (spectral type, T_{eff}, age...)
- Asteroseismology can provide additional constraints for stellar activity cycles
- Note the effect being much smaller for F-type stars
- ➡ Global dynamo needs surface convection
- \Rightarrow Found for cool stars, not for hot stars

Stellar activity

Across the HRD

- Activity across the HRD as indicated by the existence of chromospheres (and coronae), resulting emission (e.g. Ca II), and (measurable) magnetic fields
- Clearly connected to presence of surface convection

Stellar dynamos

Fully convective stars

- Stars with low mass M< 0.3-0.4 M_{\odot} are fully convective
 - No inner radiative zone and no tachocline
 - → How do they generate the strong magnetic fields / activity that are/is observed?
- Observational challenging: stars at and beyond transition (sp. type > M5) are very faint objects, reliable magnetic field measurements etc. difficult
 - BUT: coolest stars seem to be active (detected H α in emission with no obvious discontinuity, flares observed for very cool M-dwarfs)
 - Relationship rotation rate activity level poorly known for M-type dwarf stars
 - Many M-dwarfs relatively rapid rotators
- Theoretical models succeed in explaining dynamos for fast rotating low-mass stars but still difficult for slower rotators

Stellar dynamos

Fully convective stars

- Example: Proxima Centauri representative of slowly rotating fully convective M-dwarfs
- Numerical simulations (Yadav et al. 2016) show rotating convection spontaneously generates differential rotation in the convection zone (without the need of a tachocline)

Stellar dynamos

Fully convective stars

- Example: Proxima Centauri representative of slowly rotating fully convective M-dwarfs
 - Drives magnetic cycles with axisymmetric magnetic field repeatedly changing polarity at all latitudes as time progress.
 - Resulting cycle length of ~9yr in line with observations of Proxima Centauri

Stellar dynamos and activity

Rotation-activity relation

- Despite lack of a tachocline: Fully convective M-dwarfs fit the same rotation-activity sequence as solar-type stars with outer convection zones!
 - Activity and magnetism of late-type stars increase with decreasing Rossby number, then saturate
- Most likely explanation (Wright & Drake 2016):
 - Both rotation and turbulence (convection) important for (global) dynamos in <u>all</u> late-type stars (Lehtinen et al 2020)
 - Fully and partially convective stars have rotation-dependent dynamos that share important properties
 - Tachocline not a vital ingredient.
 - Differential rotation
 - + Coriolis force is sufficient!
 - Still many open questions, active field of research!

Magnetic field in the solar atmosphere

Sunspot umbra

penumbra

quiet Sun

Ouiet Sur

Magnetic field in the solar atmosphere

G-band observation — magnetic field concentrations visible with high contrast in this band

Mag. field

Flux emergence

Magnetic field in the solar atmosphere

Flux emergence

Top View

Side View

One Million Kelvin Ten Million Kelvin

Magnetic field in the solar atmosphere

Flux emergence

- Emergence of bipolar regions with a large range of contained magnetic flux
 - Many regions with little flux, fewer with a lot of flux
- Varies over solar cycle

Ephemeral regions = short-lived, small bipolar regions (do not develop sunspots)

Magnetic field in the solar atmosphere

Flux emergence

• Emergence of bipolar regions with a large range of contained magnetic flux

- Many regions with little flux, fewer with a lot of flux
- Varies over solar cycle

Ephemeral regions = short-lived, small bipolar regions (do not develop sunspots)

Martin (2018)

Magnetic field in the solar atmosphere

Advection — supergranulation scales

- Magnetic field emerges to the surface
- Away from strong fields (sunspots):
 High plasma-β in the photosphere
- Frozen-in magnetic field
- Field is advected with the photospheric velocity field towards the edges of supergranules
- Concentrated there, resulting in stronger magnetic flux concentrations
- Observable as magnetic network
- Encloses inter-network regions
- Magnetogram (grayscale)
- Horizontal flow field (arrows)
- Supergranule boundaries: yellow

Magnetic field in the solar atmosphere

Advection — granulation scales

- Advection into intergranular lanes (downflow lanes between granules)
- Concentration into stronger flux concentrations but fewer than in the network

Granulation image, Fe I 630.25 nm line

Overlaid magnetogram contours 30, 50, 70 and 90 G

(Dominguez Cerdena et al., 2003)

Magnetic field in the solar atmosphere

- Different parts of the line formed at different heights
- Looking a bit higher in the atmosphere
- Spatial scales corresponding to granulation visible
- Prominent scale with super granulation, here with cell sizes of ~30Mm

y [arcsec

 Extension of magnetic field from photospheric footprints into the chromosphere

Ca ll 854 nm, $\Delta\lambda = -193.9$ pm

Magnetic field in the solar atmosphere

Magnetic field in the solar atmosphere

photosphere

chromosphere

formation height

continuum

line wing

line core

Magnetic field in the solar atmosphere

Structure of Quiet Sun regions

Magnetic field in the solar atmosphere

Structure of Quiet Sun regions

- Modern telescopes with high spatial + temporal + spectral show a new picture of the "Quiet" Sun
- Dynamic intermittent structure across many scales, plethora of physical processes

Magnetic field in the solar atmosphere

Structure of Quiet Sun regions

- Magnetic field in the photosphere: Footpoints with vertical field
- Chromosphere: Magnetic field connects polarities, forms loop with horizontal field, forms "canopies"
- Different diagnostics (spectral lines/continua) show different layers and aspects
 - Horizontal chromospheric field clearer at some wavelengths (e.g. : Hα core) than at others

Magnetic field in the solar atmosphere

Structure of Quiet Sun regions

Magnetic field extrapolation from photospheric magnetograms

Observed: Fibrils in Ca II K

Jafarzadeh et al 2021