AST5770 Solar and stellar physics

University of Oslo, 2022

Sven Wedemeyer

Sunspots Recap

The Sun's magnetic field has a complicated topology.

- Sunspot classification from α to δ (simple to complex)
- Sizes: a few 10 Mm (3Mm 60 Mm)
- Lifetimes: hours for small sunspots to (rarely) months
- Lifetime + contained magnetic flux scale with sunspot area

Andrus 2013

Recap

The Sun's magnetic field has a complicated topology.

- Sunspot classification from α to δ (simple to complex)
- Sizes: a few 10 Mm (3Mm 60 Mm)
- Lifetimes: hours for small sunspots to (rarely) months
- Lifetime + contained magnetic flux scale with sunspot area
- Magnetic field strength in umbra 2-4 kG
- Magnetic field configuration
 - Mostly vertically aligned in central umbra (photosphere)
 - "Uncombed penumbra": Mix of horizontally aligned and inclined magnetic field
- Strong fields inhibit convective energy transport below sunspot
 - Umbra: temperature below 4000K, brightness ~20% of Quiet Sun (appears dark)
- Evershed flow = outflows in penumbra along filaments with supersonic components — a result of of magnetoconvection and complicated magnetic field structure of the penumbra

Recap

- Magnetic pressure due to (strong) magnetic field results in lower density and thus lower opacity
- Optical depth lower inside magnetic field structure than outside (in sunspots: Wilson depression)

- Temperatures in sunspot umbra much below Quiet Sun values (sunspots appear dark in the photosphere relative to surrounding)
- Sunspot temperatures rise quickly in low chromosphere, surpass Quiet Sun temperatures

Bridges and dots

- Strong magnetic fields in umbra inhibit convection no granulation
- Decaying sunspots: magnetic field
 strength decreases
- ➡ Magneto-convection can prevail again at some locations at first
- Visible consequences:
 umbral dots and light bridges
- Both have a central dark lane and bright edges
- Light bridges:
 - Extend across umbra, splitting it and connecting penumbra on both sides
 - Blue and redshifted velocities
 detected!
 - ➡ Convection ongoing!

• During decay of a sunspot: Lightbridges expand until they split the sunspot

VTT/KIS

Sunspots

Bridges and dots

- Strong magnetic fields in umbra inhibit convection — no granulation
- **Forming sunspots**: magnetic field strength at surface still increases
- ➡ Magneto-convection can still prevail at some locations
- Visible consequences: umbral dots and light bridges
- Both have a central dark lane and bright edges
- Light bridges:
 - Extend across umbra, splitting it and connecting penumbra on both sides
 - Blue and redshifted velocities
 detected!
 - ➡ Convection ongoing!

Lightbridges can occur during formation and decay of a sunspot.

Light bridges ~ extremely elongated umbral dots.

Formation of light bridges and umbral dots

- Formation and evolution of light bridges not fully understood yet.
- Observed aspects:
 - Magnetic field weaker and more inclined than in surrounding umbra
 - Umbral dots form at tip of penumbral filaments, then move into umbra
 - Typical velocities ~ a few 0.1 km/s but also supersonic downflows with up to 10 km/s
- Possible explanation (implied by observations and simulations):
 - Emerging buoyant flux tube with hot gas and weak field below/near surface in connection with sub-photospheric flows; Convective upflow continuously transports horizontal fields to surface and creates a light bridge structure.
 - Uprising gas with weak field as natural consequence of magnetoconvection in a magnetic flux structure (like a sunspot)

Continuum intensity — photosphere

Swedish 1-m Solar Telescope (SST), Ca II H 396.8 nm, 02-Jul-2010, AR11084, 1 hour duration

Umbral flashes:

- Short-lived bright events in the umbra at low chromospheric heights (sampled, e.g., in Ca II H&K)
- Periodicity ~3 min
- Propagating (slow-mode) magneto-acoustic waves that propagate upward (along field)
- Manifestations of umbral oscillations with above-average amplitudes

Oscillations and waves

- Stratification/properties in sunspot different than in Quiet Sun (QS) plus influence of strong magnetic field
 - ➡ Oscillatory behaviour different in sunspots
 - Umbra: shift towards shorter periods compared to QS
- Three major types of oscillations/waves in sunspots:

• 5-min umbral oscillations — photospheric

- Coherent* over a significant fraction of umbra
- Amplitudes ~0.1km/s (or less)
- Also in light bridges: periods ~5min period (sometimes sub-min), excited by p-mode leakage from layers below

• 3-min umbral oscillations — upper photosphere/chromosphere

- Coherent on smaller spatial scales.
- Amplitudes exceed several km/s in chromosphere (lower below)
- Vertically propagating (phase speeds ~ local sound speed)
- Seen in chromospheric line cores as sawtooth pattern

Running penumbral waves

*coherent waves: constant relative phase

Oscillations and waves

- Running penumbral waves
 - Coherent propagating wave fronts, running radially outwards from inner to outer edge of penumbra
 - Clearly visible near the umbra-penumbra boundary (in strong chromospheric lines)
 - Chromospheric phenomenon (but (possibly?) also some photospheric parts with small amplitude)
 - Penumbral waves guided by inclined magnetic field
 - Magnetic field inclination increases from the inner to the outer penumbra.
 - Causes increasing apparent path length (projection!) that appears as outward propagation with decreasing velocity.
 - Radial phase speeds of 8–35 km/s, decreasing phase speed with distance.
 - Same underlying physical mechanism umbral flashes: slow-mode magnetoacoustic waves that propagate upward
 - Excited by photospheric umbral oscillations/flashes at low chromospheric levels

Simulating sunspots

- Magneto-convection essential for sunspots but a challenging time-dependent problem
- Consistent models needed to explain all observed phenomena
- 3D MHD simulations of two spots with opposite polarity (Rempel et al. 2009)
 - computational box ~100Mm x 50Mm x 6Mm
 - Abs. magnetic field strengths $|B| \sim 3-4 \text{ kG}$

Continuum intensity

Simulating sunspots

- Magneto-convection essential for sunspots but a challenging time-dependent problem
- Consistent models needed to explain all observed phenomena
- 3D MHD simulations of two spots with opposite polarity (Rempel et al. 2009)
 - computational box ~100Mm x 50Mm x 6Mm
 - Abs. magnetic field strengths $|B| \sim 3-4 \text{ kG}$

Magnetogram

Rempel et al. (2009)

Sunspots Simulating sunspots

Rotating Sunspots

Observations:

- Detected already in 1910 (Evershed)
- Rotation angles up to 540° were measured
- Rotation angles about umbral center up to 200° over period of 3–5 days
- Young sunspot groups rotate faster than old spot groups
- Rotation rates (approx.) in line with helioseismologic measurements
- Similar ratio of clockwise to counterclockwise rotations in both hemispheres

Possible explanations:

- 1. **True rotation** of a magnetic field structure due to forces that act in azimuthal direction
- 2. **Apparent rotation** as helically twisted vertical magnetic field structure moves upward through the photosphere
 - Rotating sunspots tend to produce more flares
 accompanied by eruption (more later)

Energetic phenomena Active Regions

Energetic phenomena in Active Regions

Magnetic reconnection

- Plasma motions in penumbra drag down magnetic field
- Serpentine field lines, magnetic dips, and "bald patches"
- If pushed too close, magnetic reconnection can occur
 - ➡ Reconfiguration of magnetic field into an energetically preferable configuration and (explosive) release of energy (previously stored in magnetic field)

Energetic phenomena in Active Regions

Magnetic reconnection

- Antiparallel magnetic field lines disconnect at an X point and reconnect with other field lines
- Converts magnetic energy into kinetic energy plasma is heated and accelerated
- Plays a critical role for a large number of phenomena on a large range of scales (e.g., solar flares, CME, geomagnetic storms at Earth...)

Energetic phenomena in Active Regions

Ellerman bombs (Discovered by Ellerman 1917)

- Bidirectional outflow from reconnection region causes a doublehump in spectral line profiles of Si IV, C II, and Mg II
- Cool material in atmosphere above causes absorption line
- Observed as <u>small-scale brightenings</u> in low chromosphere in areas with strong magnetic fields and near emerging flux regions

Energetic phenomena in Active Regions Light bridges

- Observed: Plasma ejections along a light bridge of a stable and mature sunspot (e.g., in H $\!\alpha$ surges, EUV jets at 171 Å)
 - Likely a by-product of magnetic reconnection

Energetic phenomena in Active Regions

Peacock jets / Fan-shaped jets

- Many dynamic phenomena in chromosphere above light bridges
- Observed above some light briefler is the start in the start of a fan / peacock tail

Energetic phenomena in Active Regions

Peacock jets / Fan-shaped jets

- Many dynamic phenomena in chromosphere above light bridges
- Observed above some light bridges: Fast jets in the shape of a fan / peacock tail

- Cool material (<15 000 K)
- Maximum speeds of up to 175 km/s!
- Extend up to 50 Mm.
- Accelerate upwards for an extended amount of time until reaching max. velocity at height between ~7 to ~50 Mm.
- Influence of the magnetic field clearly seen in the acceleration/deceleration (in contrast to gravity alone)
- Please note the length of jets (or any feature) may appear different for various diagnostics as they are sensitive to different formation height ranges / plasma properties
- Likely explanation: Horizontal field aligned along the light bridge shear with the pre-existing vertical field in umbra

➡ Magnetic reconnection

➡ Acceleration of plasma upwards along magnetic field

 $\Delta \lambda = -860 \text{ mÅ}$

Energetic phenomena in Active Regions

Jet Surge

AIA 304 - 2012/07/20 - 16:56:08Z

Solar flares

Flares

 Flares = Intense eruptions on the Sun with emission of radiation across the whole spectrum (γ- and X-rays, UV, visible / white light ... radio) and energetic particles

NASA/GSFC/SDO

Typical evolution stages

18-Mar-2003 10:48:11UT 18-Mar-2003 11:48:12UT 18-Mar-2003 12:00:10UT

Temporal evolution

- Sudden brightening that involves all layers of the solar atmosphere
- Emission across the whole electromagnetic spectrum but different temporal variation (incl. rapid increase) depends on wavelength region
- Total energy released in flares varies from event to event
 - Range: 10²⁷ 10³² ergs, most of it emitted within a few 10min
 - For comparison: One H-bomb = 10 million TNT = $5 \ 10^{23}$ ergs

Three major phases

- **Pre-flare phase:** flare trigger phase leading to the major energy release
 - Slow increase of soft X-ray flux
- **Impulsive phase** (incl. peak): main rapid energy release phase
 - Most evident in increased hard X-ray, γ-ray, and millimetre/radio emission
 - Soft X-ray flux rises rapidly!
 - Short time-scales (1s and below), whole phase lasting for min ~10min
- Gradual phase (post-flare)
 - Slow (or now) energy release / "afterglow" on longer time scales
 - No further emission in hard X-ray
 - Soft X-ray flux starts to decrease gradually.
 - Loop arcades (or arches) start to appear
 - Can last several hours

Classification

- **GOES** (Geostationary Operational Environmental Satellite): Several satellites
 - Measure (among many things) irradiance in several X-ray bands
 - Classification of a flare according to the measured peak irradiance

- Additional numbers after class letter:
 - X2 = 2 times as intense as an X1
 - X3 = 3 times as intense as an X1
 - . . .
- X10 (or stronger) are rare and unusually intense

Ha sub-classification by brightness

Classification

- Alternative classifications schemes based on other measurable indicators, e.g.:
 - Radio flux at 5G Hz •
 - Area with enhanced emission in H α •

F – faint, N – normal, B – bright	Hα classification			Radio flux at	Soft X-ray class	
	Importance Class	Area (Sq. Deg.)	Area 10⁻ ⁶ solar disk	5000 MHz in s.f.u.	Importance class	Peak flux in 1-8 Å w/m ²
	S	2.0	200	5	A	10 ⁻⁸ to 10 ⁻⁷
	1	2.0–5.1	200–500	30	В	10-7 to 10-6
	2	5.2–12.4	500–1200	300	С	10 ⁻⁶ to 10 ⁻⁵
	3	12.5–24.7	1200–2400	3000	M	10 ⁻⁵ to 10 ⁻⁴
	4	>24.7	>2400	3000	Х	>10-4

GOES observations

- GOES detects the X-ray irradiance of the whole Sun
- A single flare significantly varies the detected X-ray irradiance despite affecting only small region on the Sun!

Different colors = different bands

GOES class according to **0.1-0.8nm band (red)**

Sequence of several flares including 4 X-class flares within 3 days

GOES observations

- GOES detects the X-ray irradiance of the whole Sun
- A single flare significantly varies the detected X-ray irradiance despite affecting only small region on the Sun!
- Flares also produce energetic particles, some ejected into interplanetary space
- GOES measures energetic proton flux

Updated 2002 Apr 22 23:56:05 UTC