AST5770 Solar and stellar physics

University of Oslo, 2022

Sven Wedemeyer

Discussion — Conclusion

Sometimes discussion & conclusions are combined in one section. Not for you here! ;-)

Results	Discussion	Conclusion
 Detailed but yet focused description of the new results found in this study Thorough analysis of the introduced data, using the introduced methods Results presented with good figures (and tables if 	 Interpretation of the new results (described in the previous section), setting them into context / comparing them to results in the literature (and possibly complementary data) 	 The essence and take-away message Brief summary of the most important results and conclusions!
applicable)	Avoid details and repetitions!	

- Be thorough but still focused on the main results of your analysis
- Discussion based on the material you presented in the previous sections!
- Possible questions to address:
 - Are this results expected in comparison of published results? Or do they contradict? If so, why? And what are the implications? How do your results change the field?
 - How could your results inform future observations/models?
 - What are the limitations of your study (due to data accuracy, methods, assumptions)? And how could they impact your results?

Discussion — Conclusion

• Discussing and drawing conclusions

- Use logic! Think of a court case:
 - → How do you present and defend your results?
 - You need robust evidence for any statement you make (e.g., in form of a supporting reference) or a solid result of your analysis
 - ➡ No handwaving or vague statements!

• Conclusion section:

- NOT a detailed summary but only a very **brief** presentation of the **essence**
- Only repeat the main aspects of your main results but not in all detail.
- Avoid too many details and focus on the main message(s)!
- Note: You may find this difficult to write as it requires some knowledge of the literature and experience. That's why it is important to practise! ;-)

Abstract

Purpose

- The abstract is a brief summary of the paper (usually one paragraph).
- Contains the essence !

• Length

- Usually: ~ 5% of total length of the whole paper but max. 200 words
- Some journals may have specific limits.

• Format

- The abstract stands for itself.
 - ➡ No figures, no tables, no footnotes, no references to other places in the paper!
 - ➡ Avoid if possible references to other papers (some journals do not allow them at all). Exception: if paper mainly checks results of another paper
- Keep abbreviations, equations and symbols to a minimum
- As always: Write concise and clear sentences. (Split too long sentences!)
- Some journals (e.g., Astronomy & Astrophysics) offer structured abstracts (with headings like context, aim, method, ...)

Abstract

• Structure

- Follows the structure of the paper and summarises the most important parts at each step.
- Typical structure:
 - **Context** (wider scientific topic/question), typically 1-2 sentences, sometimes dropped.
 - Aim: What is the intention of your paper? What scientific question do you address? What does this paper try to prove/disprove?
 - Method: x A brief summary of the most important data and methods used in this study. What observatories/instruments? Which spectral line? But not too many details, essence only!
 - **Results:** What are the most important results of your analysis? Brief summary!
 - **Conclusion:** What do you conclude? The major message of the paper! Can also point out limitations, need for further studies. May contain an outlook if meaningful.
- For assignment #5: First draft of abstract in form of bullet points is sufficient (but write full sentences if you like and want to receive early feedback.)

Consistency check

- **Once written** check that discussion, conclusion and abstract are consistent
 - Is there any important information in the conclusion that is missing in the abstract?
 - Any information given in the conclusion and abstract must stem/connect to other parts in the paper. (You must not add new/additional information only in the abstract!)
 - Have you mentioned the main results and conclusions in the abstract?

• For the final assignment: Apply such a consistency check to the whole paper.

AST5770 - UiO - S. Wedemeyer

Solar/stellar flares

Recap — Flares

Physical mechanism — overview/

Shibata & Magara (2011)

Shibata & Magara (2011)

Can occur <u>outside</u>

Active Regions!

Recap — Flares

Flares as a scalable phenomenon

• Magnetic field on the Sun is structured on a larger range of scales

Sun

- "Stored" magnetic energy in stressed magnetic field scales correspondingly
- Magnetic reconnection can trigger energy release in structure over a large range of spatial scales.
- From small to large:
 - Nanoflares
 Microflares
 Observed
 on the
 - (normal) flares
 - Superflares
 - Megaflares
 - Observed on other stars
 - M-dwarfs know for strong flares (e.g., AD Leo, Proxima Cen)
 - Can outshine whole star for minutes

AST5770 - UiO - S. Wedemeyer

Filaments Prominences CMEs

Further reading:

Gibson (2018) Parenti (2014) Vial & Engvold (2015) – Astrophysics and Space Science Library 415

Jean-Claude Vial Oddbjørn Engvold *Editors*

AS

Solar Prominences

Deringer

Solar filaments vs. Prominences

Filament:

- Known since systematic H-alpha observations started over a century ago.
- Huge arcs of plasma appear dark against bright background on solar disk
- Cooler and denser than surroundings and atmosphere below
- Filaments held in place by magnetic fields
- Filaments can last for several days or sometimes up to months!
- Most common around solar maximum

• Types:

- Active Region Filament: in / near an active region (multiple bipolar pairs of sunspots, neutural line filaments).
- Intermediate filaments (at the border of active regions)
- Quiet Region Filament (polar crown, hedgerow, curtains, floating arches, arcs, fans, etc.)

Giant filament

NASA SDO/HMI

SDO/AIA 304 2015-02-10 17:54:56 UT

NASA SDO/HM

Filaments and prominences

Giant filament

SDO/AIA 304 2015-02-10 17:54:56 UT

AST5770 - UiO - S. Wedemeyer

Filaments and prominences

Giant filament

Filament above polarity inversion line (PIL)

SDO/AIA 304 2015-02-10

Filament on disk — prominence at the limb

- **Prominences:** Same as filaments but seen sideways above the limb of the Sun
- Plasma in prominences/filaments at chromospheric temperatures (7000 $\leq T \leq$ 20 000 K).
- Denser than surrounding atmosphere.
 - prominence/filament core made of partiallyionized plasma,
 - ➡ Feature is surrounded by coronal plasma at temperatures of ~1 MK
- Interface between the two environments is called
 Prominence-Corona-Transition Region (PCTR).

Prominences

- Filament: Visible (not always) in absorption when observed in surroundings at coronal temperatures
- High density + low temperature:
 - Plasma optically thick at certain wavelengths (e.g., most of the hydrogen and helium resonance lines and continua).
 - ➡ Filaments appear darker than the surrounding quiet Sun when observed on disk, e.g. in Ha 6562.8 A or in He II 304 A
- Prominence: Plasma seen against dark and cold space in background
 - \implies Prominence appears in emission

Prominences

Prominences: Same as filaments but seen sideways above the limb of the Sun

• Appear bright as they are hotter than the cool background (space)

High-resolution image on the solar limb obtained with Hinode/SOT Ca II H-line 3968 Å. Image reproduced by permission from Okamoto *et al.* (2007); copyright by AAAS.

Prominences

ZIRIN CLASS I: QUIESCENT (long-lived)A: Hedgerow (Quiescent, or QRF)B: Curtain, Flame, Fan (Quiescent, or QRF)C: Arch, Platform Arch (QRF)D: Cap, Irregular Arch, FragmentE: Disparition Brusque QRF eruption.

ZIRIN CLASS II: <u>ACTIVE</u> (solar flare-associated, moving or transient) F: Eruptive Prominence G: Surge H: Spray I: (post) flare Loop

Class I (quiescent, long lived)

A: hedgerow

B: curtain, flame, fan

C: arch, platform arch

Ascending prominence

"Disparition Brusque":

("lifting off") eruption.

(end of the quiescent phase),

I: flare loop

E: detached disparition brusque

Class II (active, moving or transient)

- F: eruptive prominence G: surge

H: spray

Dimensions and properties

- Typical dimensions:
 - thickness: ~5 Mm
 - height: ~26 Mm (up to 50 Mm)
 - length: ~50 Mm (up to 200 Mm, especially quiescent filaments)
- Temperature in a prominence $\approx 10^4$ K = 1/100 than in the surrounding corona,
 - ➡ Lateral pressure equilibrium
 - \Rightarrow Density in prominence ~100 times the coronal density!
 - Transition from coronal background to prominence material under research
- Most prominences occur below a latitude of 60°
- 80% show no obvious motion (Wang et al. 2010).
- Many quiescent filaments exhibit morphological asymmetry
- Quiescent filaments can become very long and last for one or more solar rotation!

• How to explain the observed structures so that they obey MHD force balance? (Needed for keeping the structure stable for so long!)

• Long and thin

"Anatomy" of filaments and prominences

- Filament consists of a spine, legs, and barbs (names given a long time ago...)
- **Spine**: long, very thin, darkish filament feature.
 - Long and thin (in models sometimes referred to as "slab".
- Legs: Ends of the spine, can be one or multiple end points
- **Barbs:** Lateral extensions from spine

"Anatomy" of filaments and prominences

- Filament consists of a spine, legs, and barbs (names given a long time ago...)
- **Spine**: long, very thin, darkish filament feature.
 - Long and thin (in models sometimes referred to as "slab".
 - Above polarity inversion line (PIL)

"Anatomy" of filaments and prominences

close-up

- Filament consists of a spine, legs, and barbs (names given a long time ago...)
- **Spine**: long, very thin, darkish filament feature.
 - Long and thin (in models sometimes referred to as "slab".
 - Above polarity inversion line (PIL)

Polarity inversion line

"Anatomy" of filaments and prominences

 Note: Width of filament spine may appear wider than actually true due to perspective effects.

Barbs and magnetic field

Chirality (Handedness)

- Magnetic fields get twisted
- Can you have opposite handedness:
 - Sinistral (left)
 - Dextral (right)

Filaments and p

Chirality (Handedness)

- Magnetic fields get twisted
- Can you have opposite handedness:
 - Sinistral (left)
 - Dextral (right)

dextral

Filaments

Chirality

- Chirality relations between prominence (filament) and surrounding environment:
 - 1. Chromospheric fibrils observed in filament channels;
 - 2. filament extensions (barbs) from central spine; and
 - 3. Overlying coronal loops.
- Note: adequate spatial resolution needed for a proper determination of chirality determinations, directions and flow patterns
- Projection effects can complicate/limit such studies!

Injection of plasma into prominence/filament

- Reconnection events between emerged bipolar at end points (legs)
- Injects plasma into pre-existing filament channel (magnetic field structure)

Cavity

- Space below coronal loops appears to be "void" or at least plasma with much lower density than compared to prominence below
- Prominence: higher density (surrounding corona has low density) Plasma beta!
- Magnetic field lines frozen into plasma, move along with it

Possible models

- Different models suggested that explain different aspects
- How to get the magnetic field configuration to match the observations!?

Example for how to acknowledge reproduced figures **Fig. 6** "Painting the dips" of a magnetic skeleton results in sheet-like prominences, independent of magnetic topology. **a** Demonstration of the small region this would represent for a sample, dipped field line within a flux rope field model, and **b** demonstration for many field lines within the rope (after Gibson and Fan 2006a). **c** Painted dips within 3D sheared-arcade model. Image reproduced with permission from Aulanier et al. (2002), copyright by AAS. **d** Painted dips within 3D analytic model of spheromak-type magnetic flux rope. Image reproduced with permission from Lites and Low (1997), copyright by Springer

Magnetic field topology

- Magnetic field in filament channel has a strong axial component, carries electric currents
- **Twisted** filament strands helically wrapped around the axial field.
- Helical flux rope held down by overlying arcade that is anchored in the neighboring network elements
- *"This magnetic configuration cannot accurately be modeled with a potential field or a linear force-free field, but rather needs a nonlinear force-free field (NLFFF) model."* (Aschwanden 2019)

Note: Magnetic helicity is a measure of the helical twist

Fig. 5 3D magnetic configurations with dipped field capable of supporting prominences. Field lines from DeVore and Antiochos (2000) **a** sheared arcade and **b** flux rope; **c** Amari et al. (1999) and **d** Fan and Gibson (2004) flux ropes. Images reproduced with permission, copyright by AAS

Need for simulations

- Different models explain different aspects but difficult to find a comprehensive model that explains all observations
- → MHD simulations may also yield the answer here (but challenging as usual)

Sigmoids

- Soft-Xray (SXR) "sigmoids": active regions with characteristic S or inverse-S shape
- Large range in size:
 - Regions of sheared loops forming (inverse) S-shape together, persist for several days
 - Sharply defined individual sigmoidal loop, short-lived/ transient (several hours)
- Sigmoids may appear and disappear without eruption (within several days)
- Magnetic field twisted and stressed
 - ightarrow Prone to eruption

Eruptive filaments

- Eruption can be triggered at instabilities at filament legs
- Stereoscopic triangulation: true 3D velocity and acceleration of rising filaments
- Gradual filament eruption as "slow" as v = 10² km/s, a = dv/dt = 3 m s⁻², over 17hours, followed by a gradual CME
- Other stereoscopic observations imply initial mass off-loading
 - May trigger rise and catastrophic loss of equilibrium of a flux rope
- Rotating erupting prominence: Untwisting of magnetic field

Still many aspects regarding the triggering of filament/ prominence eruptions and Coronal Mass Ejections under investigation

Giant "tornadoes"

• True or apparent rotation — debated

Prominence eruption

2012 Aug 31 19:49

- August 31, 2012 Eruption of a long filament, producing a CME
- CME speed > 5 10⁶ km/s, not directed to Earth (but disturbed magnetosphere, caused aurora)
- Ejection from different viewpoints: SDO, STEREO, SOHO

Prominence eruption

- August 31, 2012 Eruption of a long filament, producing a CME
- CME speed > 5 10⁶ km/s, not directed to Earth (but disturbed magnetosphere, caused aurora)
- Ejection from different viewpoints: SDO, STEREO, SOHO

Prominence eruption

SDO/AIA — April 21, 2015, prominence eruption, 6 hour time lapse yellowish: AIA1

yellowish: AIA171, orange: AIA304

Coronal Mass Ejection

- In most cases associated with an eruptive prominence or/and a flare BUT CME and flare not always seen together!
- Often bubble-shaped, bright filaments with a helical structure
- Naming: It is rather prominence mass than mass from the corona itself that is ejected.

Coronal Mass Ejection

- A SOHO/Lasco C2 image of a CME.
- Central bright helical structure = erupting filament
- CMEs may contribute as much as 10% to the whole mass loss by the solar wind.

1998/06/02 13:31

 Before coronagraphs/space telescopes: detected only occasionally during a solar eclipse

SOHO (ESA & NASA)

Coronal Mass Ejection

CME propagation

• Depending on initial speed, several days until reaching Earth's orbit (or Earth itself)

AST5770 - UiO - S. Wedemeyer

Space Weather

Space Weather

space

Space weather refers to conditions on the Sun and in the space environment that can influence the performance and reliability of space-borne and ground-based technological systems, and can endanger human life or health.

Space Weather

Solar flare	Associated X-ray flux - I	Dessible offects on Earth	
classification	(W/m ²)	Possible effects of Earth	
В	<i>I</i> < 1 <i>E</i> -06	none	
C	$1E-06 \le I < 1E-05$	Possible effects on space missions.	
Μ		Blackout in radio transmissions	
	$1E-05 \le I < 1E-04$	and possible damages in astronauts	
		outside spacecraft.	
X		Damage to satellites, communication	
	$I \ge 1E-04$	systems, power distribution stations	
		and electronic equipment	

Table 1.1: Description of solar flare classes (TANDBERG-HANSSEN; EMSLIE, 2009)

- Example: March 1989 X15 flare + 2 CMEs leading to a geomagnetic storm
 - Some satellites lost control for several hours.
 - GOES satellite communications interrupted, weather images lost.
 - Sensor malfunction on Space Shuttle Discovery
 - Currents induced in power lines in **Quebec**, Canada, leading to **power outage** for 9 hrs.