AST5770 Solar and stellar physics

University of Oslo, 2022

Sven Wedemeyer

AST5770 - UiO - S. Wedemeyer

Solar filaments, prominences, CMEs Recap

Filaments and prominences — recap

Filament on disk — prominence at the limb

- Called prominence when above limb, filament when seen on disk
- Seen in absorption (filament) or emission prominence compared to surrounding/background
- Plasma cooler (T ~ 10 000 K) and denser than surrounding corona (at ~1 MK)
- Interface between the two environments is called
 Prominence-Corona-Transition Region (PCTR).
- Long and thin structures
- Quiescent filaments can reach lengths > 100 Mm and persist for days or weeks
- Active Region filaments smaller (still large) and shorter-lived
- Filaments can erupt when becoming unstable

Filaments and prominences

"Anatomy" of filaments and prominences

- Filament consists of a spine, legs, and barbs
- Magnetic field structure + dense plasma supported against gravity
- Magnetic twist important
- Overlying coronal loops may hold filament in place

Coronal Mass Ejection

Central bright helical structure = erupting filament
 Unwinding of filament

 In most cases CMEs associated with an eruptive prominence or/and a flare BUT CME and flare not always seen together!

- CME propagates away from Sun, reaches Earth orbit within a few days
- Can cause geomagnetic storms (space weather)
- Space weather forecast needed!
 Currently under development.

AST5770 - UiO - S. Wedemeyer

Magnetic features in the solar atmosphere (smaller than sunspots)

10 000 km

granulation

Photosphere of the Sun = $\tau(\lambda$ =500nm) =1 narrow layer where visible continua become optically thick

G-band (430nm)

<u>Sunspot</u>

Umbra

Penumbra

<u>"Quiet Sun"</u>

- Away from active regions with strong magnetic fields
 - Granulation pattern (as result of thermal convection at the solar "surface")
- Magnetic elements

Magnetic pores

Pores

- Umbra only like sunspots but without a penumbra.
- Appear when a strong magnetic field emerges through solar surface (inhibits convective transfer of heat from below as in sunspots, appears dark)
- "Small" (1000 6000 km in diameter) but can include smaller bright structures (convective heat transfer from below not completely suppressed there)
- Dispersed magnetic fields around pores can produce bright points and chains in intergranular lanes in surrounding

Photospheric magnetic field

Magnetograms (via Stokes V at 632nm from Spectro-Polarimeter (SP) onboard Hinode/SOT

Magnetic field as function of spatial scale

- (Average) magnetic field strength measured for structures ("flux tubes") with different sizes
 - From large sunspots to the smallest detectable magnetic elements
- Surprisingly constant field strength per area
- Remember: Magnetic fields "compete" with thermal pressure (and convective motions)
 - ➡ Equipartition field strength sets limits

Magnetic field as function of spatial scale

- Observable consequences strongly depend on area covered by magnetic field structure
 - Large: darker than surrounding
 - Small: brighter (!) than surrounding
- Remember: Sunspots strong magnetic fields impede convective heat transport from below, resulting in lower temperature
- What about small magnetic elements?

AST5770 - UiO - S. Wedemeyer

Magnetic field in the solar atmosphere

Photospheric magnetic field in Quiet Sun regions

• Remember:

- 1. Magnetic field **emerges** through the "surface" (photosphere)
 - Magnetic field structure on a large range of spatial scales
- 2. Field is **advected**

Advection — supergranulation scales

- Away from strong fields (sunspots):
 High plasma-β in the photosphere
- Frozen-in magnetic field
- Field is advected with the photospheric velocity field towards the edges of supergranules
- Concentrated there, resulting in stronger magnetic flux concentrations
- Observable as magnetic network
- Encloses inter-network regions

- Magnetogram (grayscale)
- Horizontal flow field (arrows)
- Supergranule boundaries: yellow

AST5770 - UiO - S. Wedemeyer

Magnetic field in the solar atmosphere

Advection — magnetic field on granulation scales

- Advection into intergranular lanes (downflow lanes between granules)
- Concentration into stronger flux concentrations but fewer than in the network

Granulation image, Fe I 630.25 nm line

Overlaid magnetogram contours 30, 50, 70 and 90 G

(Dominguez Cerdena et al., 2003)

AST5770 - UiO - S. Wedemeyer

Magnetic field in the solar atmosphere

Photospheric magnetic field in Quiet Sun regions

- Distribution of longitudinal magnetic fluxes observed with different instruments (Hinode/NFI magnetograms, SOHO/MDI high resolution + full disk magnetograms)
- Magnetic flux value vs. its occurrence scales follows a power law (=linear in log-log)
- ➡ Scalable phenomena
- ➡ Beyond current detection limit?

Magnetic flux Φ

(Flux = per area!) cgs unit: Maxwell (Mx) 1 Mx = 1 G cm⁻²

Longitudinal = component parallel (along) magnetic field vector

Photospheric magnetic field in internetwork regions

magnetic network

AST5770 - UiO - S. Wedemeyer

AST5770 - UiO - S. Wedemeyer

The solar atmosphere

Radiative transfer effects

- Remember: Magnetic pressure
 counterbalances thermal (gas) pressure
- $B_i >> B_o$
- ➡ Lower thermal pressure inside region with strong magnetic field P_{g,i} << P_{g,o}
- \implies Lower gas density (=fewer atoms) $\rho_i << \rho_o$
- ➡ Lower opacity inside the magnetic flux structure
- Remember: Optical depth according to opacity along line of sight

- ➡ Optical depth lower inside magnetic field structure than outside
- ➡ Looking deeper into the Sun inside the magnetic field structure
- Lower height of optical depth unity = **Wilson depression** (in sunspots),

- Effect also visible for weaker magnetic field structures on smaller spatial scales
- Difference: Convective energy transport not suppressed (as much) as under sunspots!

- Observing at inclination angle $\theta > 0$ (oblique) ($\mu = \cos \theta$)
- Geometrically: Longer line of sight path element per change in height
- "Picking up" more opacity already higher up in atmosphere due to projected

Consequence 1 (outside magnetic field structures)

- Optical depth unity reached already higher up!
- View directly from top allows look deepest into atmosphere
- Mapped height in the atmosphere (i.e. z where τ=1) increases with viewing angle θ

- Observing at inclination angle $\theta > 0$ (oblique) ($\mu = \cos \theta$)
- ➡ Geometrically: Longer line of sight path element per change in height
- "Picking up" more opacity already higher up in atmosphere due to projected
- ➡ Now looking through a "thin flux tube"

Consequence 2:

- Views deeper into the atmosphere through the flux tube
- Temperature is higher deeper down
- Higher temperature sampled at inclined viewing angle but only on the side where one sees trough the flux tube

- View from top $\theta = 0$
- "Picking up" less opacity when looking through a "thin flux tube" from top

Consequence 3:

- Views deeper into the atmosphere through the flux tube
- Temperature is higher deeper down
- Higher temperature sampled
- Magnetic feature appears bright!
- ➡Magnetic bright point

Limb darkening

In the visible continuum:

- Solar disk darker at the edge (limb) than at the centre of the solar disk!
- Decreasing brightness implies decreasing temperature (assuming simple blackbody radiation)
- Remember: Observation at increasing angle $\theta\,$ (=decreasing μ) maps layer at increasing height in the atmosphere
- Temperature decreases with height for the height range mapped by this continuum range!
- Note: Optical depth unity reached at bottom of photosphere (basically defines it) in visible continuum, "looks" deepest into the atmosphere

View from the top (at disk-centre) $\mu = \cos \theta = 1$

View from the side (at the limb) $\mu = \cos \theta = 0$

> Visible continuum soнo/мDI

Limb darkening

In the visible continuum:

- Solar disk darker at the edge (limb) than at the centre of the solar disk!
- Decreasing brightness implies decreasing temperature (assuming simple blackbody radiation)
- Remember: Observation at increasing angle $\theta\,$ (=decreasing μ) maps layer at increasing height in the atmosphere
- Temperature decreases with height for the height range mapped by this continuum range!
- Note: Optical depth unity reached at bottom of photosphere (basically defines it) in visible continuum, "looks" deepest into the atmosphere

Limb brightening

- In the mm continuum: Solar disk brighter at the edge (limb) than at the centre of the solar disk (on <u>average</u>, do not look at ARs)!
- Increasing brightness implies increasing temperature (assuming simple blackbody radiation)
- Remember: Observation at increasing angle θ (=decreasing μ) maps layer at increasing height in the atmosphere
- Temperature increases with height for the height range mapped by this continuum range!
- Note: Optical depth unity reached in the chromosphere, i.e. much higher than the visible continuum

View from the top (at disk-centre) $\mu = \cos \theta = 1$

View from the side (at the limb) $\mu = \cos \theta = 0$

> 1.3 mm continuum _{ALMA}

Centre-to-limb variation (CLV)

- Centre-to-limb variation depends on mapped height range in the atmosphere
 - Photosphere: darkening
 - Chromosphere: brightening
 - Opposite gradient of the temperature stratification!
- CLV measured from observations help to construct (1D) average atmosphere models (even for different types of region from Quiet Sun to sunspot umbra)

Centre-to-limb variation (CLV)

- 3D numerical simulations for different stellar types
- Intensity maps for as function of inclination angle µ from disk-center to limb (visible continuum).
- All show limb darkening.
- Observational imprint of photospheric temperature stratification!

Faculae

- Faculae = bright areas most easily seen near solar limb (hot wall effect!)
- Areas with (small-scale) magnetic elements (in photosphere)
- Area on Sun covered with faculae varies over solar cycle
- Corresponding increase in brightness (across whole disk) more than compensates for darkening by sunspots!
- ~0.1% brighter at solar maximum than at solar minimum

Plage = chromospheric counterpart of a facular region

Different regions — photosphere

Active Region (Large) area with strong magnetic field	Sunspot Areas of concentrated very strong field, appear dark	Umbra Central compact part, dark Penumbra Surrounding, filamentary	
Dutside Active Regions, weaker magnetic field	Faculae bright (filamentary) areas Network Concentrations of strong magnetic field, filamentary/ mesh-like		
	Inter-network Areas with weak magnetic field inside network cells		

Different regions — chromosphere

Active Region (Large) area with strong magnetic field	Sunspot Areas of concentrated very strong field, appear dark	Umbra Central compact part, dark Penumbra Surrounding, filamentary	
	Plage bright area, higher temperature, often proceeds formation of sunspots	Filame Plages	nts
Quiet Sun Outside Active Regions, weaker magnetic field	Network Concentrations of strong magnetic field, filamentary/ mesh-like		
	Inter-network Areas with weak magnetic field inside network cells		

y [arcsec]

- Different parts of the line formed at different heights
- Looking a bit higher in the atmosphere
- Spatial scales corresponding to granulation visible
- Prominent scale with super granulation, here with cell sizes of ~30Mm
- Extension of magnetic field from photospheric footprints into the chromosphere

Ca ll 854 nm, $\Delta \lambda = -193.9$ pm

photosphere

chromosphere

formation height

AST5770 - UiO - S. Wedemeyer

Magnetic field in the solar atmosphere

Structure of Quiet Sun regions

Structure of Quiet Sun regions

- Modern telescopes with high spatial + temporal + spectral show a new picture of the "Quiet" Sun
- Dynamic intermittent structure across many scales, plethora of physical processes

Structure of Quiet Sun regions

- Magnetic field in the photosphere: Footpoints with vertical field
- Chromosphere: Magnetic field connects polarities, forms loops (horizontal field, "canopy")
- Smaller loops can connect lower (small-scale canopies, horizontal field in photosphere)
- Different diagnostics (spectral lines/continua) show different layers and aspects
 - Horizontal chromospheric field clearer at some wavelengths (e.g. : H α core) than at others

 Assumption of local thermodynamic equilibrium (LTE)
 valid as long as conditions (e.g. change in temperature) do not change significantly over this distance!

Density

- At **bottom of photosphere** (z=0km): particle density $n \approx 1.5 \ 10^{17} \text{ cm}^{-3}$
- Assume gas consists only of hydrogen
- ➡ Mass density ρ=n m_H ≈ 2.3 10⁻⁷ g cm⁻³
- \blacksquare Opacity at 500 nm $\kappa \approx 0.3$ cm² g⁻¹
- → Mean free path of photons $I = (\kappa \rho)^{-1} \approx (7 \ 10^{-8} \ \text{cm}^{-1})^{-1}$

➡ I ≈ 140 km

- Assumption of local thermodynamic equilibrium (LTE) valid at lower density in the layers above?
- What is the opacity there?

2 1015

3 10-9

2 1010

3 10-14

≥ 1010

≥ 10-14

Nн

[cm⁻³]

ρ

[g cm⁻³]

Density

- At **bottom of photosphere** (z=0km): particle density $n \approx 1.5 \ 10^{17} \text{ cm}^{-3}$
- Assume gas consists only of hydrogen
- → Mass density $\rho=n m_{\rm H} \approx 2.3 \ 10^{-7} \ {\rm g \ cm^{-3}}$
- \blacksquare Opacity at 500 nm $\kappa \approx 0.3$ cm² g⁻¹
- → Mean free path of photons $I = (\kappa \rho)^{-1} \approx (7 \ 10^{-8} \ \text{cm}^{-1})^{-1}$

➡ I ≈ 140 km

- Assumption of local thermodynamic equilibrium (LTE) valid at lower density in the layers above?
- What is the opacity there?

- For comparison: mass density on Earth at sea level $\rho \approx 1.2 \ 10^{-3} \text{ g cm}^{-3}$ (5000 times denser!)
- If opacity were the same:
- \rightarrow Mean free path = 31 m !?!

How can that be?

Ionisation degree

10¹⁷

• Fully ionised in solar interior

Khomenko; Priest 2014

- Ionisation degree drops to 10⁻⁴ in photosphere
- Increases to high values in the chromosphere

Note: So far only a static atmosphere considered

➡Ionisation degree will be impacted by dynamics in chromosphere!

(Next time...)

Opacity

- High temperature
 - \rightarrow High degree of ionisation
 - ➡ Many free electrons
 - ➡ High opacity
- Opacity sources:
 - Many different types
 - Which process contributes how much opacity depends on photon energy (wavelength) and local thermodynamic properties (if in LTE).
 - Deviations from LTE:
 - Radiation field (coupling different regions that can be far apart, deviations from LTE = non-LTE (NLTE))
 - Significant temporal variations from equilibrium conditions

Continuum absorption coefficient per particle in solar atmosphere at $\tau_{500}=0.1$

 λ [µm]

The solar atmosphere

Continuum absorption coefficient per particle Opacity in solar atmosphere at $\tau_{500}=0.1$ Bound-free (ionisation — edges) h C Lyman edge Bound-bound absorption (line transitions) 10⁻²⁴ Free-free absorption: free electron gains energy during collision with an ion by absorbing a photon κ $[m^2]$ (inverse process: emission Si — bremsstrahlung) Electron 10-26 Photon lon Mg¹S Negative hydrogen ion H⁻ Rayleigh scattering Electron scattering: passing EM waves make electrons oscillate Low energy: Thomson High energy: Compton and radiate in other directions Mg³P 10⁻²⁸ Rayleigh scattering (polarisation, dipole moment) Al free free H⁻bound - free Molecules and dust (at low temperatures), κ • In the Sun: H₂, CO, SiO,... (Rosseland) Balmer At very high magnetic field strengths: edge gyroresonance and gyrosynchrotron (not in 10⁻³⁰ Quiet Sun but flares) 0.1 10

(Stix/Unsöld & Baschek 1999)

Opacity

- Bound-free (ionisation edges)
- Bound-bound absorption (line transitions)
- Free-free absorption: free electron gains energy during collision with an ion by absorbing a photon (inverse process: emission

— bremsstrahlung)

- Negative hydrogen ion H⁻
- Electron scattering: passing EM
 waves make electrons oscillate and radiate in other directions

Electron

lon

Photon

- Rayleigh scattering (polarisation, dipole moment)
- Molecules and dust (at low temperatures),
 - In the Sun: H₂, CO, SiO,...
- At very high magnetic field strengths: gyroresonance and gyrosynchrotron (not in Quiet Sun but flares)

