AST5770 Solar and stellar physics

University of Oslo, 2022

Sven Wedemeyer

AST5770 - UiO - S. Wedemeyer

Small-scale dynamics

2017-05-25 : t= 0 09:12:26

40

X [arcsec]

Radiative transfer effects — recap

- Observing at different inclination angles θ
- Longer line of sight path element per change in height
- Lower density and thus opacity when looking through magnetic flux structures
- ➡ Radiative transfer effects:

Hot wall effect

(when looking at significant angle)

- Magnetic feature <u>appears</u> to be brighter on one side!
- Seen in faculae towards the limb!

• Magnetic bright points

- (Close to) vertical view: look deeper into the atmosphere inside magnetic flux structure
- Note: Seen for small/weak magnetic field structures where convective heat transport from below is not hampered
 - For sunspots: Wilson depression and lower temperature (sunspots appear dark)

Radiative transfer effects — recap

Centre-to-limb variation (CLV)

- Centre-to-limb variation depends on mapped height range in the atmosphere
 - Photosphere: darkening
 - Chromosphere: brightening
 - Opposite gradient of the temperature stratification!
- CLV measured from observations help to construct (1D) average atmosphere models (even for different types of region from Quiet Sun to sunspot umbra)

Intermittent and dynamic

 Scan (in wavelength) through spectral line (here Ca II K) gives first impression of the change with height (sampling different layers, but careful: height varies across FOV)

SST/CHROMIS 2017-05-25 09:12:00 Ca II K -1.287 Å (-98 km/s)

The chromosphere — A highly dynamic place

• Chromosphere often dominated by chromospheric fibrils, very dynamic on short time scales — challenges for observation and simulation

SST/CHROMIS Ca II K line core

• Different parts of spectral formed at different atmospheric heights

Call K 393 nm

Ca II K continuum at 3999.8980

Temperatures in Quiet Sun chromosphere > 4000K - ~10 000K (also in internetwork regions) — compare to VAL model etc.

-10 0 10 20 30 -30 -20 Courtesy:1Henriqueso Jafarzadeho, Rouppe van der Voort

TEMPERATURE

BRIGHTNESS

The CO problem

- **Observations of spectral** lines of CO in the Sun!
- CO needs sufficiently low ullettemperatures, will otherwise be dissociated into C and O
- In contrast to high temperatures as implied by **UV observations**

(and as seen in model atmospheres as VAL)

Solution: The solar atmosphere is not static but highly dynamic and intermittent on short time scales and small spatial scales

ASTS770 - UIQ - S. Wedemeyer

The solar atmosphere

The CO problem — solved

- Explained by numerical simulations!
- CO can form and persist (for some time) in cool pockets!
- CO dissociated by moving hot shock waves in chromosphere, builds up again in cold post-shock regions
- CO as integral part of a highly dynamic environment
- CO observations (cold gas) and UV observations (hot gas) explained with same model

Structure of Quiet Sun regions

- Modern telescopes with high spatial + temporal + spectral show a new picture of the "Quiet" Sun
- Dynamic intermittent structure across many scales, plethora of physical processes

• Magnetic field in chromosphere is highly dynamic

- Propagating shock waves compress magnetic field
- Fast moving filaments of enhanced field

Thermal structure of a (very) Quiet Sun chromosphere

- Numerical simulation without magnetic fields (representing a hypothetical extremely quiet region)
- Horizontal cut through chromosphere at z=1000 km, gas temperature
- Hot shock fronts (~7000 8000 K) and cool post-shock regions (down to ~2000 K)
- Mean T_{gas} ~ 4000 K
- Pattern produced by interaction of shock fronts
 - Typical length scale ~1000 km (1.3")
 - Timescales of 20 30 s
- Post-shock regions: Adiabatic expansion behind shock leads to low temperatures

Numerical simulations — Quiet Sun

Bifrost (Gudiksen et al. 2011)

Numerical simulations — Quiet Sun

Bifrost (Gudiksen et al. 2011)

504 x 504 x 496 cells 24Mm x 24Mm z: -2.4Mm .. +14Mm

No large-scale magnetic structure

Avg. signed flux = 0

Numerical simulations — Enhanced network region

Numerical simulations — Enhanced network region

CO⁵BOLD (close-up)

Data from this (set of) simulation(s) available for the assignments

- Complicated field structure with rotating and/or swaying subgroups
- Continuous reorganisation of structure
- More complicated than individual "flux tubes"

Vortex flows

- Plasma that flows down in inter granular lanes carries angular momentum
 - \rightarrow Conservation of angular momentum
 - ➡ Photospheric vortex flows ("bathtub effect")
 - Photospheric vortex flows observed on a range spatial scales
 - (Larger) vortex flows can be detected by tracking motions of photospheric bright points

Vortex flows in 3D simulations

Chromospheric swirls

- ➡ SST observations, Ca II 854.2 nm line core
- Rotating dark ring (fragments)
- ightarrow Chromospheric swirls
- Diameter ~ 2'' and more (1.5 5.5 Mm)
- Width ~ 0."2 -0."5
- Doppler-shifts ~2 5 km/s and more
- Observed in continuum at the same time: photospheric bright points below the swirl
 - Lifetimes 7 19 min (12.7 min ± 4.0 min)
 - Estimate: Over the whole Sun
 - ~ 11 000 swirls at all times

Explanation: **Rotating magnetic field structure** that produces observable signatures in all atmospheric layers from photospheric bright points to chromospheric swirls and bright features in the corona

2

Numerical simulations

- Horizontal cross-section (x-y) in the chromosphere at z=1000km
- Horizontal velocity $v_{hor} = (v_x^2 + v_y^2)^{1/2} \sim 10 \text{ km s}^{-1}$
- Features resemble swirls!
- ➡ Magnetic tornadoes

Magnetic tornadoes

cross-section of horizontal velocity at z=1000 km regions with high horizontal velocity magnetic field lines velocity field (streamlines)

grey surface: granulation superimposed color: magnetic field

CO⁵BOLD/VAPOR

Magnetic tornadoes

- vortex flow in the photosphere:
- magnetic field "frozen in"
- photospheric vortex flow rotates magnetic flux structure
- Magnetic coupling of the atmospheric layers
- ➡ Rotation is mediated into the upper layers
- chromosphere and above:
 - plasma is forced to follow the rotating magnetic field lines
 - spiral motions(both up and down)
- Direct consequence of conservation of angular momentum in surface convection and the presence of magnetic field
- Seen in numerical simulations for M-dwarf stars, too!

Magnetic tornadoes

[Mm]

Spicules

- Ubiquitous needle-like phenomenon¹⁵ on the Sun, visible at the limb (already seen by Secchi 1887)
- Now disk counterparts observed (also referred to as fibrils or mottles)
- At any time $\sim 4 \times 10^5$ spicules
- Dynamic and short lived features (lifetimes typically 5–10 min)
- Jets with plasma shooting up at high_s
 speeds along magnetic field
- Reach heights of a few Mm (~10Mm)
- Triggered by p-modes at the footprints of the magnetic field structure
 - May serve as magnetic tunnels through which the coronal plasma is "refuelled" (Athay 2000).

Hinode Call H (Courtesy of Carlsson & Rouppe van der Voort)

Spicules

- Type II spicules (De Pontieu et al. 2007a) with shorter lifetimes (10–150 s), smaller diameters (< 200 km compared to < 500 km for type I spicules), and shorter rise times.
 On disk
- Act as tracers/waveguides for Alfvén waves with amplitudes of the order of 10-25 km s⁻¹
- Carry, in principle, enough energy to play an important role for heating of the quiet Sun corona and for acceleration of the solar wind

Spicules

- Combination of different MHD wave mode observed (incl. torsion)
- Oscillations coupled transverse and width with intensity
- transverse and azimuthal shear components

Modelling the chromosphere — A numerical challenge

- Many physical processes need to be taken into account
 - Radiative transfer
 - (Magneto-)hydrodynamics
 - Thermodynamics (equation of state)
 - Gravity
 - Ionisation
 - Conduction
 - Ion-neutral effects
 - (Chemistry)
 - . . .
- Deviations from equilibrium conditions:
 - Ionisation degree
 - Atomic level populations (non-LTE)
 - Molecules ... (within limits for the Sun)

Modelling the chromosphere — A numerical challenge

- Many physical processes need to be taken into account
 - Radiative transfer
 - (Magneto-)hydrodynamics
 - Thermodynamics (equation of state)
 - Gravity
 - Ionisation
 - Conduction
 - Ion-neutral effects
 - (Chemistry)
 - ...
- Deviations from equilibrium conditions:
 - Ionisation degree
 - Atomic level populations (non-LTE)
 - Molecules ... (within limits for the Sun)

- Chromosphere (weakly) ionized
 - Thermodynamics affected by interaction between ionized and neutral particles
- Next step: multi-fluid / multi-species
 3D radiative MHD code (species, e.g.: ions, neutrals, free electrons, ...)
- Hall and ambipolar diffusion in the electric field

Modelling the chromosphere — A numerical challenge Ion-Neutral interactions

- So far ideal MHD but chromosphere partially ionized
- Next step: Single fluid MHD + Generalized Ohm's Law
 - Good approximation as long as collision times are short

AST5770 - UiO - S. Wedemeyer

Waves and oscillations in the solar atmosphere

Acoustic waves and shocks

- Observations in spectral lines with cores formed in the chromosphere show periodic changes
 - \implies Bright grains with Dopplers shifts of several km/s

SST/CRISP Ca II 8542 line center -90 -100y [arcsec] -110Call 854.2 nm, line center -120

Call H

^{-0.4-0.2 0.0 0.2 0.4} Δλ (Ångström)

Acoustic waves and shocks

- Observations in spectral lines with cores formed in the ³⁰⁰⁰ chromosphere show periodic changes
 - ➡ Bright grains with Dopplers shifts of several km/s
 - \rightarrow Caused by upwards propagating waves that steepen into shock waves in the chromosphere!
- Successfully explained by 1D simulations (Carlsson & Stein 1992-1997, RADYN code)
 - Time Time-dependent hydrodynamics, driven by • empirical piston at the bottom, detailed treatment of physics (e.g., non-LTE, ionisation)
 - Radiative transfer calculations, • produces observables that can be tested

Before that: static theoretical models (Ulmschneider 1971, etc)

Simulation No smearing

2000

1000

ິທ

Δλ (Ångström)

Carlsson & Stein

-0.4-0.2 0.0 0.2 0.4 Δλ (Ångström)

Acoustic waves and shocks

- Reconstructing temperature stratification from UV emission averaged over these components (as for semi-empirical models) does show an increase!
- Reason: Non-linear dependence of UV intensity on temperature!!

Waves in a magnetic environment **Careful:** Based on average stratification; more variations to be expected for a time-dependent 3D atmosphere! Plasma-β! Solar Wind Acceloration Region ß > 1 Chromospheric 103 plasma typically $\beta < 1$ \rightarrow MHD wave modes to be 10² Corona considered **Jary 2001** Height (Mm) ➡ Magnetic flux 10¹ structures can serve β < 1 as wave guides 100 Chromosphere Remember: Photosphere 10-1 Magnetic tension B > 1 as restoring force 10-2 ➡ Waves 10-3 10-2 10^{-1} 100 10-4 102 10¹ Beta (16mnKT/B²) В Lorentz $\mathbf{J} \times \mathbf{B} = (\nabla \times \mathbf{B}) \times \mathbf{B} / \mu = (\mathbf{B} \cdot \nabla)$ Force

- Remember: Dispersion relations, evanescence, cutoff frequencies etc.
- Here now expanded to magnetohydrodynamic waves
- Different wave modes, incl.
 - Acoustic waves: Gas pressure fluctuations. Restoring force: pressure gradient.
 - Fast and slow magnetoacoustic waves: Acoustic character, modified by the magnetic field, coupling between magnetic field and pressure fluctuations.
 - Alfvén waves: Waves propagating along magnetic field, magnetic tension as restoring force; Only in the presence of a magnetic field, absent otherwise.

Wave type	Behavior	Weak field	Strong field
Fast	Isotropic $v_{\rm ph} \sim \max(v_s, V_{\rm A})$	Gas pressure v k	Magnetic pressure $\mathbf{v} \perp \mathbf{B}_0$
Slow	Propagates approximately along \mathbf{B}_0 $v_{\rm ph} \sim \min(v_s, V_{\rm A})$	Magnetic tension v⊥k	Gas pressure $\mathbf{v} \ \mathbf{B}_0$
Alfvén	Propagates along B_0	Magnetic tension	
	$v_{\rm ph} = V_{\rm A}$	$\mathbf{v} \perp \mathbf{k}$ and \mathbf{B}_0	

- Different wave modes (incl. acoustic waves, magneto acoustic waves, Alfvén waves, ...)
- Fast and slow magnetoacoustic mode due to two possible solutions in the dispersion relation
- Phase speed of Alfvén waves in between phase speed of slow and fast modes.
 - ➡ Also referred to as "intermediate mode"

MHD waves

Magnetic flux "tubes" act as wave guide but also offer other possibilities for oscillation and waves, e.g. by periodic deformation, displacement, and/or twisting of the flux tube

MHD waves

Magnetic flux "tubes" act as wave guide but also offer other possibilities for oscillation and waves, e.g. by periodic deformation, displacement, and/or twisting of the flux tube

Sausage mode

Courtesy of: The University of Sheffield — Edwin and Roberts (1983)

Kink mode

Fluting modes

Periodic deformations of tube cross-section, deviating from circular shape

AST5770 - UiO - S. Wedemeyer

Waves in the solar atmosphere

10

Hα 656.3

- Oscillations and waves occur in many different places in the solar atmosphere
 - Sunspots
 - Pores
 - Large-scale magnetic structures (e.g. filaments, coronal loops)
 - Chromospheric fibrils
 - Small-scale magnetic elements
 - . . .
- Observable forms/affected properties
 - Intensity oscillations Thermodynamic quantities
 - Velocity oscillations Doppler Shifts
 - Magnetic oscillations Magnetic field strength and inclinations
 - Note: Different wave modes leave different imprints, which in principle helps to identify different wave modes (not always easy!)

SST/CRISP Halpha line center 01-Jul-2012

- Often a combination of wave modes
- Waves do interact/interfere
- Wave mode conversion (e.g. when crossing in/out of a magnetic field structure