Lecture 24

AST5770 Solar and stellar physics

University of Oslo, 2022

Sven Wedemeyer

Corona — Recap

- Active Regions (AR) (with prominent coronal loops)
- Quiet Sun (QS)
- Coronal hole (CH)
- QS corona ~ 1MK but several MK reached in AR
- Catastrophic cooling plasma cooling, condensing, falling back down — "coronal rain"
- Many details like width of coronal loop strands, temperature distribution, and required heating still under research
 - Multi-stranded vs. monolithic loops?
 - Important for thermal structure and required heating

Coronal heating — recap

A long-standing central question

- Coronal heating in regions with high temperature >> 1 MK
 - Transient, localised
 - Magnetic reconnection (flares)
- Continuous heating of the "quiescent" parts:
 - Many processes known that can transport sufficient energy into upper atmosphere
 - Two classes:
 - I. AC---- MHD waves (Alfvén waves)
 - II. DC— Small-scale reconnection (nano flares)
 - Remaining questions:
 - Which process contributes how much?
 - How does that differ between different regions?
 - How to dissipate the energy in the upper atmosphere?

Solar Wind and Heliosphere — Recap

Heliosphere

- Solar magnetic field extends into interplanetary space (Parker spirals!)
- Fast and slow solar wind: Fast wind emerges from coronal holes (open field!)
 - Wind depends on magnetic field, varies with solar cycle
- Solar wind meets interstellar medium creates heliosphere, our "local bubble" (heliopause at ~120 AU)

Stellar coronae

Observations

- Spectral line observations of other stars (incl. differential emission measure) compared to AR/Sun
- Clear indications for existence of coronae for late-type stars (spectral type F and cooler)
- Also observed emission at shorter wavelengths (EUV, X-rays) and radio wavelengths consistent with coronal emission expected for this type of stars

Procyon

ξ Uma B

44 Boo

31 Com

F5 IV–V

G0 V

G0V

G0 III

 α Cen

Capella

 σ Gem

 λ And

G2V + K2V

G5 III+G0 III

K1 III

G8 IV-III

Stellar coronae

Observations

- Plasma properties can be derived, e.g. electron densities from EUV observations
- Note: Stellar observations are spatially unresolved
 - Average properties only
- Caution: How are these properties affected by unresolved variations?!?

Just as an example...

Table 9.3. Electron densities, n_e , for quiescent stellar coronae, derived from spectra obtained with the Extreme Ultraviolet Explorer, EUVE^a

Source	$n_{\rm e}({\rm cm}^{-3})$	Fe Lines	Ref. ^b
Procyon (F5 IV–V)	$(1-10) \times 10^9$	X–XIV	1
	$(1-30) \times 10^9$	X–XIV	2
α Cen (<u>G2 V</u> + <u>K2 V</u>)	$(2-20) \times 10^8$	X–XIV	3
Capella (G5 III+G0 III)	10 ⁹	XII–XIV	4
$(P = 104d, d = 1\overline{67R_{\odot}})$	$(1-20) \times 10^{11}$	XXI–XXII	4
	$(1-20) \times 10^{12}$	XIX–XXII	1
σ Gem (K1 III+)	10 ¹²	XXI–XXII	1
$(P = 19.6d, d = 59R_{\odot})$	$< 310^{12}$	XXI–XXII	5
ξ UMa B (<u>G0 V</u> +) (P=3.98d, d=12 R_{\odot})	5×10^{12}	XXI–XXII	1

^{*a*} For binary stars, the components expected to dominate the observed spectrum have been underlined. For close binaries, the orbital period *P* and mean separation *d* are also listed. For comparison, the electron density in bright loops in solar active regions is $\sim 3 \times 10^8$ cm⁻³ (Section 8.6).

^b References: 1, Schrijver et al. (1995); 2, Schmitt et al. (1996a); 3, Mewe et al. (1995);

4, Brickhouse (1996); 5, Monsignori-Fossi and Landini (1994).

Stellar Evolution

Stellar evolution

Hertzsprung-Russell diagram

- Stars clearly not distributed randomly
- Connections between
 - T_{eff}/Spectral class
 - Luminosity/absolute brightness
 - Radius
- Constraints for models of structure and evolution of stars
- Theory shows: Groups of stars represent different stages of their evolution but depends on mass (and chemical composition)

Stellar evolution

Introduction

- Stellar evolution equations highly non-linear
- Complicated solutions that cannot always be anticipated based on fundamental principles, much depends on detailed numerical computations
- Simplifications and approximations usually needed (e.g., for convection, rotation, magnetism,...)

• Basic principles

- Hydrostatic equilibrium required to keep a star stable and shining for extended time
- The battle against gravity energy source needed to keep the star stable
- Slow adjustments of structure during evolution to maintain stability, some phase with more rapid changes
- Time scales important determine which processes are matter the most at a given evolution stage

Star formation and pre-main sequence evolution

Star formation and pre-main sequence evolution

- Process of star formation still poorly understood
- Predictions not easily possible
 - How much of the gas in an interstellar cloud at given density and temperature will end up in stars?
 - → Star formation efficiency? Initial mass function?
- Stars formed in (giant) molecular clouds
 - Mass ~ $10^5 M_{\odot}$
 - Extent ~ 10 parsec
 - Temperatures 10 100 K
 - Densities of 10 300 molecules/cm³
 - Dust content ~1 % (makes clouds very opaque at visual wavelengths)
 - In hydrostatic equilibrium with surrounding interstellar medium

Star formation and pre-main sequence evolution Interstellar cloud collapse and fragmentation

- Cloud initially in hydrostatic equilibrium
- Now: Perturbation (e.g., shock wave from nearby supernova, collision with another cloud)
- (Critical) **Jeans mass**

 $M_{\rm J} \approx 4 \times 10^4 M_{\odot} \left(\frac{T}{100 \,\mathrm{K}}\right)^{3/2} \left(\frac{n}{\mathrm{cm}^{-3}}\right)^{-1/2}$

T: temperature *n*: molecular density

- Cloud with $M < M_J$ remains stable (pressure equilibrium)
- Cloud with $M > M_J$ starts to collapse under its own gravity (free-fall collapse)
- $M_{\rm J} \sim 10^3 10^4 \,\rm M_{\odot}$ for typical T and n in molecular clouds
- Collapse dynamical timescale $\tau_{\rm dyn} \propto \varrho^{-1/2}$
 - ~millions of years due to low densities
 - Cloud transparent in far-infrared radiation
 - ightarrow Cools efficiently.
 - \implies Early stages of the collapse are isothermal.

- Density increases.
- ➡ Jeans mass decreases ←
- ➡ Only smaller fragments can remain stable
- ➡ Fragmentation
 - Continues until mass of smallest fragments becomes $M < 0.1 M_{\odot}$.

Star formation and pre-main sequence evolution

Formation of a protostellar core and disk

- Density increases.
- ➡ Gas becomes increasingly opaque in IR, cools less.
- ➡ Temperature and gas pressure increase
- Cloud core establishes hydrostatic equilibrium
- Dynamical collapse slowed down to slow contraction
- ➡ A protostar if formed!
- Conservation of angular momentum of infalling gas
- ➡ Accretion disk around protostar is formed
- Can be observed at infrared to submillimeter wavelengths

T Tauri stars: pre-main sequence (age ~ 10°yrs), accretion disk still optically, large IR excess observed

Star formation and pre-main sequence evolution Dissociation and ionisation

- Gas initially molecular hydrogen H₂, behaves like an ideal gas (γ_{ad} > 4/₃)
 - Protostellar core dynamically stable.
 - Core temperature reaches eventually ~2000 K
 - H₂ starts to **dissociate**
 - → Strong increase of specific heat, γ_{ad} drops below critical value of 4/3
 → Hydrostatic equilibrium is no longer possible
 → Another dynamical collapse phase!

Dissociation of $\chi_{H_2} = 4.48 \text{ eV}$ H₂: per molecule Ionisation of H: $\chi_H = 13.6 \text{ eV}$

per atom

Ionisation of He: $\chi_{He} = 79 \text{ eV}$

per atom

Pleiades (M45)

- Released gravitational energy goes into further dissociation of H₂ molecules without significant rise in temperature.
- Hydrostatic equilibrium restored once H₂ is completely dissociated
- Further dynamical collapse phases due to ionisation
 - occur when first H and then He are ionised at T $\sim 10^4$ K.
- Once ionisation of protostar complete, hydrostatic equilibrium established at much reduced radius

Star formation and pre-main sequence evolution

Pre-main sequence phase (PMS)

- Accretion finally slows down and stops
- ➡ Pre-main sequence star.
 - Luminosity is now provided by gravitational contraction
 - Virial theorem Gravitational potential energy exceeds internal energy:
 1/2 original potential energy converted to internal kinetic energy, 1/2 to radiation (and stellar wind)
 - \Rightarrow Internal temperature of star increases as $T \propto M^{2/3} \varrho^{1/3}$
- Surface cools and a temperature gradient builds up
 Outwards directed heat transport
 - \Rightarrow Evolution now occurs on thermal timescale au_{KH} .
- At that stage, average internal temperature also follows from virial theorem:
 - \Rightarrow T ~ 8 10⁴ K (independent of the mass of the protostar !)
 - → Low temperature results in high opacity and thus short mean free path of photons
 - → Remember: Criterion for convective stability!
 - \Rightarrow PMS star becomes fully convective!

Star formation and pre-main sequence evolution

Stages of star formation

- 1. Interstellar cloud collapse
- 2. Cloud fragmentation
- 3. Formation of a protostellar core
- 4. Accretion
- 5. Dissociation and ionization
- 6. Pre-main sequence phase

- Note: Massive stars reach the ZAMS while still undergoing strong accretion.
 - ightarrow lonising their surroundings
 - Creating an HII region around themselves

t = 0: Formation of a hydrostatic core

ZAMS: Zero Age Main Sequence TAMS: Terminal Age Main Sequence.

Star formation and pre-main sequence evolution

Hayashi line

 Fully convective stars of the same given mass placed along nearly vertical line in HRD (T_{eff} ≈ constant)

\Rightarrow Hayashi line

- Region left of Hayashi line (higher T_{eff}): Stars cannot be fully convective, some part of stellar interior must be in radiative equilibrium.
- Region right of Hayashi line (lower T_{eff}): Stars not in hydrostatic equilibrium.
 - Fully convective.
 - Very small superadiabaticity ($\nabla \nabla_{ad}$) sufficient to transport very energy flux
 - Interior structure ~ adiabatic
 - ➡ Luminosity of a fully convective star basically independent of its structure!

$\log T_{eff}(K)$

- Shape of Hayashi line determined by opacity in photosphere (dependence on ρ, T).
- Fully convective stars: low T_{eff}
 - Opacity mostly due to H- absorption which increases strongly with temperature

Star formation and pre-main sequence evolution

Star formation and pre-main sequence evolution

Pre-main-sequence evolution tracks for 0.3 – 2.5 M_{\odot}

- Newly formed star after dynamical collapse phase: settles on Hayashi line appropriate for its mass
- Further evolution (PMS) follows track depending on mass (and chemical composition)
- ➡ Gravitational contraction and increase of T_{eff}
- → Deuterium and lithium burning Mass fraction of deuterium in interstellar gas ~10⁻⁵
- Solid lines = evolution tracks for a given mass
- Dotted lines = isochrones

 (connecting points on tracks with same age (t = 10⁵ 10⁷ yr)
- Nearly vertical solid lines: approximate locations of deuterium and lithium burning

Main sequence evolution

Interior structure on the ZAMS

• Occurrence of convective regions (gray)

M (M_{sun})

Note: Outer interior appears much compressed due to strong decrease in density with radius

Main sequence evolution

Leaving the ZAMS

- Slow gradual formation of inert He core
- ightarrow Adjustments of interior structure
- Away from ZAMS towards higher luminosities and larger radii
- Low-mass stars (M < 1 M \odot) evolve towards higher T_{eff} , radius increases slightly
- Higher-mass stars evolve towards lower T_{eff}, 2-3 times increase in radius
- Nuclear energy generation rate ϵ_{nuc} very sensitive to (core) temperature.
- Nuclear reactions act like a
 thermostat
- Keep core temperature almost constant.
- CNO cycle a better thermostat than the pp chain due to higher exponent of temperature dependence

Main sequence evolution

Leaving the ZAMS

- Slow gradual formation of inert He core
- ightarrow Adjustments of interior structure
- Away from ZAMS towards higher luminosities and larger radii
- Low-mass stars (M < 1 M☉) evolve towards higher T_{eff} , radius increases slightly
- Higher-mass stars evolve towards lower T_{eff}, 2-3 times increase in radius

Solar evolution

Faint Young Sun paradox

- Models imply that Sun's brightness slowly increased (and will continue to increase)
 - ➡ 4.5 billion years ago:~30% fainter than today!
 - ➡ But evidence for liquid water on Earth already 4 billion years ago!
 - ➡ How was that possible at much lower solar irradiation levels?
 - Most likely compensated by other factors like green house effect (outgassing of CO2), increased volcanism stimulated by gravitational influence of a much closer moon, ...
 - Implications for habitability of Earth and of exoplanets in general (formation of life!?)

What Made Earth Habitable

Life began not long after Earth formed, even though the sun was only 70% as bright as it is now. Scientists think that high levels of greenhouse gasses such as carbon dioxide helped keep the early planet warm.

Post-main sequence evolution

Overview — **Dependence on mass**

- Evolution depends on mass Basic division:
- Low-mass stars (up to $\sim 2 M_{\odot}$)
 - Develop a degenerate helium core long-lived red giant branch phase.
 - Unstable ignition of He-burning: helium flash (for 0.8 M_{\odot} to ~2 M_{\odot})
 - Shed envelopes by a strong stellar wind at end of evolution, remnants: white dwarfs.

Intermediate-mass stars

- Develop helium core that remains non-degenerate
- Stable ignition of He-burning
- After central He burning phase: formation of carbon-oxygen core (becomes degenerate)
- Shed envelopes by a strong stellar wind at end of evolution, remnants: white dwarfs.
- Massive stars (> $8 M_{\odot}$)
 - Ignition of carbon burning in non-degenerate core
 - For M >11 M_☉: Burning of heavier elements in core until Fe core formed (which collapses)
 - Catastrophic final stage (supernova, remnant: neutron star, black hole)

 $\tau_{\rm KH}$

Post-main sequence evolution

Schönberg-Chandrasekhar limit

Discovered by Schönberg and Chandrasekhar in 1942.

- Main sequence (MS): central hydrogen burning, stars in thermal equilibrium $au_{
 m nuc} \gg$ \Rightarrow Hydrogen-exhausted core is gradually formed I
- End of MS phase: nuclear energy production in core has ceased.
 - \Rightarrow Inert helium core surrounded by a H-burning shell and a H-rich envelope.

$$l(m) = \int_m \epsilon_{\text{nuc}} \, \mathrm{d}m = 0 \qquad \mathrm{d}T/\mathrm{d}r \propto l = 0$$

- He core is isothermal
 - → Pressure gradient needed to support such star against own gravity: $dP/dr = (RT/\mu)d\varrho/dr$ must be due density gradient alone
 - \rightarrow Would require steep gradients!!
- Stability possible if only isothermal core has a <u>small mass</u> M_c compared to total mass M

$$\frac{M_{\rm c}}{M} < q_{\rm SC} = 0.37 \left(\frac{\mu_{\rm env}}{\mu_{\rm c}}\right)^2 \approx 0.10$$

- $M_c/M > q_{sc}$: Pressure in isothermal core cannot sustain weight of overlying envelope! Unstable.
- Typical value $q_{\rm sc} \approx 0.10$ (He-core with $\mu_c = 1.3$ and H-rich envelope).

Mirror principle

- "Mirror principle" for stars with active shell-burning source: Burning shell acts as mirror between the core and envelope
 - core contraction \Rightarrow envelope expansion
 - core expansion \Rightarrow envelope contraction

• 1 M_{\odot} (representative of low-mass stars):

- Central core becomes degenerate after leaving MS
- Helium flash at top of red giant branch
- Degeneracy eventually lifted, He burning becomes stable star moves to the zero-age horizontal branch (log L \approx 1.8).

- **2** M_{\odot} : Borderline case exhibiting He flash
- $5 M_{\odot}$ (representative of intermediate-mass stars): Quiet He ignition and He burning in a loop
- $7 M_{\odot}$: At end of evolution: Core becomes strongly degenerate.
- 10 M_{\odot} (qualitatively similar to 7 M_{\odot}): At end of evolution: carbon burning in the centre

Tracks in the core density—temperature plane

- Evolution tracks in $\log Q_c \log T_c$ -plane (c: core)
- At end of H-burning: core contracts while outer layers expand (higher density)
 - Occurs for each nuclear burning stage.
- Core of 7 M_☉ stars: electron degeneracy before C-ignition temperature is reached,
 → C-O white dwarf.

• Core of 1 and 2 *M*_o stars:

- low mass (0.3 *M*_o),
- become degenerate before igniting He-burning
- Degenerate He cores keep getting more massive and hotter due to H-shell burning.
- Ignite helium in an unstable manner (He flash)

