AST5770 Solar and stellar physics

University of Oslo, 2022

Sven Wedemeyer

Stellar evolution

Star formation

- Star formation: Collapse of giant molecular cloud, fragmentation
 - Stars typically form in groups (e.g., Pleiades)
- Formation of protostar once core becomes hot and dense enough to establish hydrostatic equilibrium
- Further contraction, approaching Zero Age Main Sequence (ZAMS) on Hayashi tracks (fully convective)

T Tauri stars:

pre-main sequence (age ~ 10⁶ yr), accretion disk still optically thick, large IR excess observed

Stellar evolution

Overview

Main sequence

- Begins when reaching Zero Age Main Sequence (ZAMS)
- Hydrogen fusion (H burning) in the core
- Longest evolution stage

• Post-main sequence evolution

- More complicated due to different fusion stages (element) in the core and/or shells
- Reached fusion stage highly mass-dependent
- Mirror principle for stars with shell burning expansion and contraction opposite of a shell (core envelope)
- Equation of state beyond ideal gas

Degenerate Matter

- He core: mixture of He nuclei and electrons.
- Electrons obey Pauli Exclusion Principle
 (2 electrons cannot occupy the same quantum state)
- If phase space is full at high density: Any additional electron cannot fit anymore unlike for an ideal gas at same temperature
- Higher pressure than for an ideal gas at same temperature

Electron Degeneracy Pressure

- Electrons would repel each other if tried to be forced closer together.
- Repulsion much stronger than the usual repulsion between charged particles.
- Degeneracy pressure > thermal pressure
 - ➡ Gas called **degenerate**.

white arrow = intrinsic spin black arrow = electron movement

RTρ

 $K_{1} = \frac{h^{2}}{20m_{e}} \left(\frac{3}{\pi}\right)^{\frac{2}{3}} \left[\frac{(1+X)}{2m_{H}}\right]^{\frac{2}{3}}$

 $K_{2} = \left(\frac{hc}{8}\right) \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \left[\frac{(1+X)}{2m_{H}}\right]^{\frac{1}{3}}$

Post-main sequence evolution

Degenerate Matter

- Degenerate gas behaves differently than ideal gas.
 - Ideal gas: Pressure depends on density and temperature. $P_{gas} = \frac{kT\rho}{m}$
 - Degenerate gas: Pressure depends only on density
 Pressure won't change if temperature changes (as long as T low enough to stay in degeneracy regime)

 \implies For a relativistically degenerate gas (i.e. $p_0 >> m_e c$):

The density (as the mean molecular weight) depends on chemical composition, which changes as result of nuclear fusion (He content!)

kTρ

 $m_{H}\mu$

 $P = K_1 \rho^{\frac{5}{3}}$

 $P = K_2 \rho^{\frac{4}{3}}$

 Note: No sharp transition between ideal gas equation of state and the corresponding degenerate equation of state! Continuous transition!

Tracks in the core density—temperature plane

- Evolution tracks in core density-temperature plane (log Q_c log T_c)
- - Degenerate core early during red giant phase.
- All low-mass stars, degenerate He core during red giant phase.
- Intermediate and highmass stars not degenerate while red giants.

Tracks in the core density—temperature plane

At end of H-burning:

core contracts while outer layers expand (mirror principle!)

- ➡ Higher core density
- Occurs for each nuclear burning stage.
- Core of 7 M_o stars: electron degeneracy before C-ignition temperature is reached,
 - ightarrow C-O white dwarf.
- Core of 1 and 2 *M*_o stars:
 - low mass (0.3 *M*_☉),
 - become degenerate before igniting He-burning
 - Degenerate He cores keep getting more massive and hotter due to H-shell burning
 - Ignite helium in an unstable manner (**He flash**)

Tracks in the core density—temperature

Schönberg-Chandrasekhar

(S-C) limit: Max. mass of an inert (isothermal) He core that can be supported (unstable if core more exceeds limit):

> $M_{\rm c}/M < q_{\rm sc} \approx 0.10$ ($M_{\rm c}$: core mass, M: total mass)

- M<1.5 M_☉: core becomes degenerate before reaching S-C limit
- M>6 M_☉: star leaves main sequence with core > S-C limit (core never isothermal before He-burning)
- 1.5 M_☉ >M < 6 M_☉: core grows until reaching S-C limit, then contracts rapidly until Heburning ignites in core

Expanding

outer

layers

Hydrogen shell

core

Inert helium

source

Helium flash in low-mass stars

- He burning (3 α reaction) thermally unstable under conditions in degenerate He core
- Degenerate pressure is independent of 7! (ideal gas: pressure increases, expands and cools)
- Energy released by fusion does not increase the pressure (negligible expansion / work)
- All nuclear energy released goes instead into raising the internal energy
- ➡ Temperature increases.
- ightarrow Nuclear energy production rate increases.
- ➡ Thermonuclear runaway.
- Energy output at max. equivalent to small galaxy (but only for a few seconds)
- Eventually temperature increased so much that degeneracy is lifted, gas starts behaving like an ideal gas
- Released energy increases pressure, causes expansion and cooling.
- All released energy absorbed in expansion of core, none reaches the surface!

Hydrogen-shell burning in intermediate-mass stars

A: Start at ZAMS

near end of MS phase

C: exhaustion of H in centre,

B: start of overall contraction phase,

convective core disappears

Schönberg-Chandrasekhar (S-C)

beginning of H-shell burning

limit, in thermodyn. equilibrium at

core mass remains below

$\log T_{eff}(K)$

- **C–D**: H-shell burning, relatively slow, lasting about 2×10^6 yr
 - (thick) burning shell initially occupies large region in mass
 - He-core gradually grows until exceeding the S-C limit,
- After C:
 - Core contraction speeds up (all layers below burning shell contract)
 - At the same time: all layers above shell (=envelope) expand ('mirror principle')
 - Changes at accelerating rate towards end of C-D phase.
 - Density + temperature gradients grow shell gets thinner

Model of internal evolution of a 5 M $_{\odot}$ **star**, initial composition X = 0.7, Z = 0.02.

Hydrogen-shell burning in intermediate-mass stars

$\log T_{eff}(K)$

- **C–D**: H-shell burning, relatively slow, lasting about 2×10^6 yr
 - (thick) burning shell initially occupies large region in mass
 - He-core gradually grows until exceeding the S-C limit,
- After C:
 - Core contraction speeds up (all layers below burning shell contract)
 - At the same time: all layers above shell (=envelope) expand ('mirror principle')
 - Changes at accelerating rate towards end of C-D phase.
 - Density + temperature gradients grow shell gets thinner

Model of internal evolution of a 5 M $_{\odot}$ **star**, initial composition X = 0.7, Z = 0.02.

Red giant phase

- **D**: Opacity in thin shell increases
 - Radiative energy transport
 inefficient, convection sets in
- **D-E**: Red giant phase
 - Convection in core + deep convection zone (up to surface)
 - Relatively short lived phase (~ 10% of main sequence) lifetime
- E: Outer convection zone reaches into former (thick) H-burning shell
 - Fusion product (CNO cycle) brought to surface ("dredge-up")
- E: envelope becomes loosely bound, relatively easy to remove mass from surface driven by large radiation (still open questions...)
 - ➡Strong **mass loss** on the red giant branch (stellar wind)
 - Mass loss rate (Reimers): $\dot{M} = -4 \times 10^{-13} \eta \frac{L}{L_{\odot}} \frac{R}{R_{\odot}} \frac{M_{\odot}}{M} M_{\odot}/\text{yr}$
 - Typically used: η ~ 0.25 0.5
 - 1 M_{\odot} star lost about 0.3 M_{\odot} when reaching tip of giant branch (E).

Model of internal evolution of a 5 M_{\odot} star,

initial composition X = 0.7, Z = 0.02.

Red giant phase and blue loop

$\log T_{eff}(K)$

- **E**: He core mass reaches 0.6 M_{\odot} , central temperature 10⁸ K
 - C, O-burning ignites in core (H-burning continues in thin shell)
 - For low-mass stars: degenerate core H-shell burning and mass growth at increasing until He-burning suddenly ignites (He flash)
- E-F: envelope contracts, stellar radius decrease, luminosity decreases
 - Star forced to evolve along its Hayashi line.
 - Outer convection zone becomes shallower, envelope becomes radiative
- **F-G-H**: Blue loop min. radius reached at G
- **H**: end of core He burning

Model of internal evolution of a 5 M $_{\odot}$ **star**, initial composition X = 0.7, Z = 0.02.

Model of internal evolution of a 5 M $_{\odot}$ **star**, initial composition X = 0.7, Z = 0.02.

Red giant phase and blue loop

- **E**: He core mass reaches 0.6 M_{\odot} , central temper
 - C, O-burning ignites in core (H-burning con
 - For low-mass stars: degenerate core H-sh growth at increasing until He-burning sudd
- E-F: envelope contracts, stellar radius decrease
 - Star forced to evolve along its Hayashi line.
 - Outer convection zone becomes shallower, radiative
- **F-G-H**: Blue loop min. radius reached at G
- **H**: end of core He burning

Model of internal evolution of a 5 M $_{\odot}$ **star**, initial composition X = 0.7, Z = 0.02.

Asymptotic Giant Branch

- **H**: end of core He burning
- ➡back on Hayashi track (close to E)
- ➡Beginning of asymptotic giant branch (AGB) phase

Model of internal evolution of a 5 M_{\odot} star,

initial composition X = 0.7, Z = 0.02.

Asymptotic Giant Branch

- **H**: end of core He burning
- ➡back on Hayashi track (close to E)
- ➡Beginning of asymptotic giant branch (AGB) phase
- H: start of early AGB phase He-burning shifts rapidly from core to shell (around former convective of core, now rich in C+O)
 - H-burning shell extinguishes
- K: outer convection zone reaches deep down again into region of previous H shell burning

➡second dredge-up.

 (For lower-mass stars: H-shell remained active, prevents convective envelope from extending deeper, no second dredge-up)

Asymptotic Giant Branch

- J: H-burning shell re-ignites Double shell-burning phase
- Beyond J: Radius of an AGB star typically (several) 1 AU ~ 100 solar radii
 - H shell active, providing "fresh" He to layers below.
 - He-shell burning switches on,
 pushes H-shell outwards, which then ceases
 - He burning eventually slows down again, H shell burning recovers
 - Several thermal pulses can occur pulses (not captured by shown model)
 - ➡Thermal Pulse (TP)-AGB phase

- 5M_o: period between initial pulses 10³-10⁵ yr
- Period is a function of mass

Asymptotic Giant Branch

- **Thermal Pulse** (TP)-AGB phase — several pulses can occur
- Strong mass loss occurs in connection with pulsation but mechanism not fully understood
 (pulsations + radiation pressure on dust particles !?)
 - Observed mass loss as function of pulsation period \rightarrow

- Star evolves towards larger radii along AGB
- ➡Pulsation period increases

-3.0

- ➡Mass-loss rate increases from $10^{-8} M_{\odot}$ /yr to ~ $10^{-4} M_{\odot}$ /yr
- Strongest mass loss sometimes referred to as **superwind** phase
- Pulsation periods of several years
- Pulsations induce shock waves
- Envelope expelled within $<10^{6}$ yr
- Remnant: Degenerate CO core cooling white dwarf.

Asymptotic Giant Branch (AGB)

- Circumstellar environment around AGB stars:
 - Complicated chemistry of the CSE
 - Detailed formation and destruction of molecules and dust grain important
 - Impact on chemical abundances

Post-main sequence evolution Asymptotic Giant Branch (AGB)

R Sculptoris

- $R \sim 340 R_{\odot}$ if at Sun's location, its photosphere would reach beyond the orbit of Mars!
- Strong mass loss expulsion of envelope and production of (inhomogeneous) circumstellar envelope (CSE)
- Contains dust and molecules

ALMA — mm interferometry (345 GHz, CO) [ALMA / M. Maercker et al.]

Post-main sequence evolution Asymptotic Giant Branch (AGB)

- Numerical simulation of an AGB star (star-in-a-box): $1 M_{\odot}$, 400 R_{\odot}
 - Possible due to the large size of convection cells and long time scales

st28gm06n25: Density, time(1)= 6.346 yrs

st28gm06n25: Surface Intensity(3r), time(1)= 6.346 yrs

Log. mass density

Emergent bolometric intensity

Post-main sequence evolution Red supergiant

• Numerical simulation of a magnetic red supergiant (5 M_{\odot})

st35gm04b1n004: Surface Intensity(3r), time(1)= 51.383 yrs

Surface intensity

Post-main sequence evolution Red supergiant

• Numerical simulation of 5 M_{\odot} red supergiant

Volume rendering of the magnetic field

Surface

Comparison low-mass to intermediate-mass evolution

• He core flash at tip of RGB phase	 Larger temperature differences on the horizontal branch Helium flash in shell Instabilities - variable stars
-------------------------------------	--

Post-AGB evolution

- H-rich envelope becomes very small due to mass loss (only 10^{-3} $10^{-2} M_{\odot}$ left depending on core mass)
- Star leaves AGB stellar radius decreases at ~ constant luminosity (horizontal track in HRD) as H-burning shell is still fully active (obeys core mass-luminosity relation)
- Typical timescale for post-AGB phase is $\sim 10^4$ yrs.

Post-main sequence evolution Planetary nebula

- When reaching $T_{eff} > 30\ 000\ K$:
 - weak but fast wind develops
 - strong **UV** flux
 - Destroys the dust grains in CSE, dissociates molecules, ionises gas
 - Part of CSE turns into an HII region, appears as planetary nebula
 - (Emission: fluorescence from recombination)
- H-burning shell finally extinguishes once envelope mass down to ~10⁻⁵ M_{\odot} (at T_{eff} \approx 10⁵ K)
- Exposed stellar core = White Dwarf

Exposed stellar core (White Dwarf)

Solar evolution

Solar evolution

Late evolution stages

Red giant star

Life Cycle

Birth

- High radiation pressure in the star's interior makes the radius large
- The surface becomes large.
- Radiation is spread over a large area: \bullet

3

- \rightarrow Low surface temperature
- \rightarrow Low surface gravity

of the Sun

2

Increase of the Sun's diameter from 0.01 AU to 2 AU

In Billions of Years (approx.)

AST5770 - UiO - S. Wedemeyer

Pulsating and Variable stars

Classes

- Different classes of variables within the **pulsational instability strip:**
 - Cepheid variables: He-burning stars during blue loop (3 - 18 M_☉)
 - RR Lyrae variables (0.5 0.7 M_☉, on horizontal branch, HB)
 - δ Scuti stars on main-sequence
 - Mira variables: luminous red giants
 - β Cep variables and slowly pulsating B (SPB) stars: massive main-sequence stars
 - Subdwarf B stars (sdBV) on extreme end of HB
 - White dwarfs
- Intermediate-mass stars cross instability strip up to three times during evolution: once during H-shell burning, twice during blue loop phase

Prominent classes

Cepheid variables:

luminous pulsating stars with periods ~2-100 days

- Well-defined correlation between pulsation period and luminosity
- Can be seen in other galaxies
- Measured period gives luminosity / absolute brightness
- Absolute vs. apparent brightness (distance modulus!) gives distance
- ➡ Cepheids important standard candles for the extragalactic distance scale.

 $m * M = 5 \log r [pc] * 5 + A$

RR Lyrae stars: Short periods of 1.5 - 2.4 h

- L~100 L_{\odot} ($M_v = 0.5 = \text{const}$) independent of period.
- Fainter, seen in globular clusters, but not in other galaxies

Mira variables: Periods ~100-700 days

- Large, irregular brightness variations
- Cool stars (2000 K) (He-shell burning)
- Strong absorption by dust + molecules
- Local *T* enhancements dissociate molecules, lead to increased *L*

Pulsational instability

- Pulsation = radial oscillation = standing sound wave (pressure!) resonating in stellar interior
- Radial pulsation modes:
 - Fundamental mode (one node at the centre, open end at stellar surface)
 - Overtone modes (additional nodes between the centre and surface)
 - Most radially pulsating stars, such as Cepheids, oscillate in fundamental mode.

Pulsational instability

- Two possible mechanisms that can drive pulsations:
 - ϵ -mechanism: Compression of region with nuclear burning results in temperature increase and thus increased energy generation rate ϵ_{nuc} .
 - ➡ Instability
 - In principle always present but amplitudes of induced oscillations usually too small to drive significant pulsations (potentially relevant for very massive stars though)
 - κ -mechanism: Layer is compressed so that density and opacity increases
 - Energy flux through this layer impeded, heating of the layer locally
 - Pressure increases and expands / pushes the layer outward.
 - Gas becomes more transparent again and releases trapped heat.
 - Can drive radial pulsations.
- Note: Some layers absorb heat and do work to drive the pulsation, while other layers may lose heat and thus damp pulsations

Pulsational instability

- Condition for κ-mechanism: opacity must increase when gas is compressed.
 - ➡ Depends on the temperature dependence of opacity sources in driving layer
 - ➡Interior stratification (temperature, density)
 - \blacksquare Partial ionisation zones inside star
 - 1. At T \approx 1.5 10⁴ K: ionisation and recombination of H and He (singly ionised)
 - 2. At T \approx 4 10⁴ K: ionisation and recombination of He (fully ionised, He III)
 - \Rightarrow location of instability strip in H-R diagram!

T _{eff} >7500 K — 'blue edge'	Instability strip	T _{eff} <5500 K —'red edge'
Both ionisation zones near surface (very low density!)	Ionisation zones located deeper in interior	Partial ionisation zones lie at very high density
Region non-adiabatic, mass and heat capacity too small to drive pulsations effectively	Mass and heat larger but still non-adiabatic enough to absorb sufficient heat to drive pulsations	Gas near adiabatic. Cannot absorb enough heat to drive pulsation.

Non-pulsating Variables

- **T Tauri stars**: PMS objects of 0.2 2 M_☉: Young objects with rapid rotation, fully convective, strong magnetic fields, flares, stellar wind; circumstellar absorbing clouds
- Flare stars: "solar-like" stars, rapid rotation + deep convection, magnetic fields can exhibited super/megaflares
- Magnetic variables Ap stars (spectral type A, peculiar): strong magnetic fields, relatively small brightness changes possibly due to star spots.
- **RS CVn (Canum Venaticorum) stars**: very close double stars(orbital periods of 0.5 day to several months), starspots. probably magnetically interacting, resulting in strong flares
 - Components of different luminosity classes (V + IV, i.e main-sequence + sub-giant)
- Luminous blue variable (P Cygni): Very massive stars (hypergiant, >50 M_☉) with irregular outbursts, possibly due to mass inflow from binary companion
- Eclipsing binaries

Overview over classes of pulsating variables

Туре	Prototype	M _V	Spectral Class	Pulsation Period Range	Characteristic Period	
Classical Cepheids	d Cephei	-0.5 to -6	F6 to K2	1d to 50d	5d to 10d	
Population II Cepheids	W Virginis	0 to -3	F2 to G6	2d to 45d	12d to 28d	
RR Lyrae stars	RR Lyrae	0.5 to 1	A2 to F6	1.5h to 24h	0.5d	
Long-Period variables	o Ceti (Mira)	1 to -2	M1 to M6	130d to 500d	270d	٢y
RV Tauri stars	RV Tauri	-3	G, K	20d to 150d	75d	obale
Beta Canis Majoris stars	b Canis Majoris	-3	B1, B2	4h to 6h	5h	Tellik &
Semiregular red variables	a Herculis	-1 to -3	K, M, R, N, S	100d to 200d	100d	
Dwarf Cepheids	d Scuti	4 to 2	A to F	1h to 3h	2h	

Overview over classes of cataclysmic variable stars

Туре	Time	Example	M _{max}	Dm	Energy per Outburst (J)	Cycle	Mass Ejected per Cycle (M ₀)	Velocity of Ejection (km/s)	Mass of Star (M _o)
Supernova I		Tycho's	-20	>20	10 ⁴⁴		< 1	10,000	1
Supernova II			-18	>20	1043		?	10,000	>4
Novae	Fast	GK Per = Nova Per	-8.5 to -9.2	11 to 13	6x10 ³⁷	10 ⁶ y ?	10^{-5} to 10^{-3}	500 to 4000	1 to 5
	Slow	DQ Her	-5.5 to -7.4	9 to 11				100 to 1500	0.02 to 0.3
	Recurrent	T Cr B	-7.8	8	10 ³⁷	18 to 80 y	5 x 10 ⁻⁶	60 to 400	2
Dwarf Novae		U Gem SS Cyg	+5.5	4	6x10 ³¹	40 to 100 d	10 ⁻⁹		~0.4

Zeilik & Greg

Variable stars / Binary stars

•

	Name	Definition
List of common types of	Algol	Semi-detached binary system with a cool subgiant and an early-type com- panion, with mass transfer from the Roche-lobe filling secondary to the primary star, which has resulted in the more evolved star being the least massive.
variable and	ζ Aur	Eclipsing binary consisting of a bright K (super) giant and a hot B star.
Dinary stars	BY Dra	The most active main-sequence emission-line stars of type dKe or dMe; many are binary systems.
	FK Com	Very active, rapidly rotating, late-type single giants, possibly coalesced binaries.
	RS CVn	In the strict definition, a close binary with stars of nearly equal masses, with the hotter component of spectral type F, G, or K, and luminosity class V or IV (but with the subgiant not filling its Roche lobe), with orbital periods between 1 day and 2 weeks. In the expanded definition, any tidally interacting binary system with at least a single cool star. RS CVn stars have negligible mass exchange.
	UV Ceti	Red-dwarf flare stars, variable, either single or members of binaries.
	T Tau	Irregularly variable pre-main-sequence stars.
	W UMa	In the strict definition: eclipsing contact binaries of main-sequence stars. In the relaxed definition, semidetached systems are sometimes included.