AST5770

Solar and stellar physics

Sven Wedemeyer, University of Oslo, 2023

Course aim

• Aim:

- Gain a broad overview in solar and stellar physics
- Practical experience with analysing and visualising real data
- Practical experience with scientific writing

• Content

- Sun's structure and variation on large and small scales.
- Basic concepts about the physical phenomena that occur in the Sun's atmosphere.
- How to carry out (theoretically) and interpret observations of the Sun and other stars? (Practical exercises.)
- Similarities and differences between the Sun and other stars

Previous courses / covered topics

AST2210 – Observasjonsastronomi	 Basic understanding of telescopes/instruments Observation techniques including spectroscopy of stars
AST3310 – Astrofysiske plasma og stjernenes indre	 Stellar interiors (energy production, stratification) Interior of the Sun
AST4310 – Strålingsprosesser i astrofysikk	 Radiative transfer Interpretation of stellar spectra

• The most important concepts will be briefly repeated.

• Something missing or unclear? Please let me know!

General aim and setup

- Aim: Gain experience with writing a **longer scientific report** (similar to what would be published in a scientific journal.
- Writing process is an essential tool for developing the scientific analysis, the derived results and conclusions
 - ➡ Iterative process with rewriting and improving the different sections repeatedly towards creating a consistent and comprehensive document.
 - \Rightarrow The final project assignment is the final scientific report.
 - ➡ In order to get started with individual parts: Five mandatory assignments to help you getting started and develop the final report.
- The final report will be based on the mandatory assignments.
- You get 2-3 weeks extra to work on the final report after delivery of the last mandatory assignment

Setup and submission deadlines

- **IMPORTANT**: The final project assignment can only by submitted and graded **if all five** mandatory assignments have been delivered previously.
- Minor adjustments for the deadlines possible but communicated well in time (if)

Assignment		Submission deadline	Content	
Mandatory (not graded)	I	Feb 9	Practical exercises	
	=	Mar 3	Tentative science question and project plan, reading list; Introduction and background	
	=	Mar 24	Description of data and method(s)	
	IV	Apr 21	Analysis and results	
	V	May 12	Discussion and conclusion	
Final project assignment (graded, 100%)	F	June 2	Complete report	

Important advice

- You should working on all mandatory assignments **in parallel** as soon as they become relevant/feasible.
 - Examples:
 - While working on assignment I, start to look at the provided data sets and start reading syllabus/lecture notes and scientific articles
 - While working on the data analysis, review your description (and choice) of data and method
- You can start on the document for the final project assignment already in parallel to mandatory assignment I.
- All templates and a document with more information will be linked on the course webpage

Important note

- It is not expected that your project assignment contains novel scientific results.
- The aim is to learn
 - HOW to define interesting scientific questions.
 - HOW to work with scientific data.
 - HOW to present the scientific topic and the performed analysis in a <u>consistent</u> report.
- **Tip:** It is ok to start from a published paper and do a similar analysis with the data provided for this course (if possible). (But please no copy & paste.)
- You are encouraged to discuss possible topics with me early on.

Technical info

- The assignments are to be prepared with **Latex**
 - Templates for all assignments will be provided.
- Data available for assignments: Observations / simulations for the Sun and other stars
 - Introduced in the group sessions/lecture.
 - Accessible on ITA's disk system: /mn/stornext/d19/RoCS/svenwe/lecture/AST5770/
 - Do you have access? If not, let us now immediately!

• Data analysis

- Recommended: Python / IDL
- Use ITA machines for working with larger data volumes.
- Do not store big data files in your ITA home directory.
- Do not run large jobs on login servers (like tsih2)

The AST5770 Allstars - Our favourite examples

Sun

Proxima Centauri

G-type main sequence star

Red dwarf star (M-type, main seq.)

Betelgeuse

Sirius A

Red giant star (M-type)

A-type main sequence star

Not to scale

The AST5770 Allstars - Our favourite examples

Sun

Our host star! Close by! We can observe the Sun in much detail! Ultimate reference star!

Betelgeuse

Proxima Centauri

The **closest star** to us (after the Sun)

Sirius A

Giant star. One of the few that can be observed (somewhat) resolved.

The **brightest** star in the night sky.

Vot to scale

Introduction The AST5770 Allstars - Our favourite examples

NASA./SDO

Mellostorm CC-BY-SA-3.0

ALMA (ESO/NAOJ/NRAO)/ E. O'Gorman/P. Kervella

What is a star?

- We define a star as an **astronomical object** that
 - 1. consists of **gas** that is (partially) ionised (plasma) and
 - 2. is held together and formed into a sphere due to its **own gravity** and
 - 3. is **luminous** and
 - 4. releases energy due to **nuclear fusion** in its interior.
- Important: A star is shining by itself!
 - \Rightarrow An energy source is required.
 - Brown Dwarfs satisfy the three first criteria but not #4 (no (hydrogen) fusion in their cores)

Central questions

- Dynamos and activity cycles
 - How are **magnetic fields generated** in stars?
 - How can we explain **activity cycles**? (Cycle: large-scale magnetic field is reversed periodically?)
 - How can we explain the differences in **stellar activity** cycles observed for different types of stars as compared to the Sun and other solar-like stars?
 - Prediction of future solar cycles?

Central questions

- Coronal heating
 - How are the **outer layers** of our Sun (and of other stars) **heated** to extremely high temperatures (Sun: T > 10⁶ K)?
 - Which **physical mechanisms** are at work and how much do they contribute to the transport of energy upwards and to the heating?
 - How is the available energy **dissipated** into heat in the upper atmosphere?
 - Is this a common phenomenon for late-type main sequence stars and what can learn from observable variations?

Central questions

- Stellar activity Flares, coronal mass ejections, space weather and habitability
 - What are the exact physical mechanisms at work during **flares and coronal mass** ejections (CMEs) on the Sun?
 - How do they differ from flares on other stars which can even exhibit much stronger super- and megaflares?
 - How do these phenomena affect the interplanetary space ("**space weather**") and nearby planets (e.g., geomagnetic storms)?
 - How would understanding these phenomena allow us to forecast space weather events to protect our hi-tech infrastructure on Earth and to evaluate the habitability of exo-planets orbiting active stars?

Central questions

• Chemical evolution of the universe

- Chemical abundances from spectroscopic observations
- Lithium problem: Observed abundance of Li much lower than expected

• Plasma physics

• Stars serve as astrophysical laboratories that allows for the (remote) observation of plasma under conditions often difficult to obtain under terrestrial laboratory conditions.

Other central astrophysical problems

- Fast Radio Bursts (FRBs): point source-like millisecond flashes
 - Neutron stars and black holes as final stages in stellar evolution as potential sources?

The distance to the Sun

• Average distance to the Sun is <u>defined</u> as **one astronomical unit**

1AU = 149597870700 m

- Easier to remember: **1 AU** ≈ **150** × **10**⁶ km.
- Light needs ~ 8 min from the Sun's surface to Earth's orbit

- Earth's orbit is not a perfect circle, varies by about 3% during the year
 - Maximum distance (aphelion): $152.1 \times 10^{6} \text{ km}$
 - Minimum distance (perihelion): $147.1 \times 10^{6} \text{ km}$

Aphelion versus Perihelion. (Orbits exaggerated). Image credit: NOAA/NASA.

AST5770 - UiO - S. Wedemeyer

Stars in the sky – Distances and apparent sizes

Parallax

- Star closer to us seen at different angle against more distant stars during the course of a year.
- ➡ A star seems to be displaced periodically with respect to other stars.
- Caused by motion of the Earth around the Sun.
- Measuring the "displacement angle" accurately allows for determination of the star's distance d

$$p = \tan \frac{a}{d} \quad \Rightarrow \quad p \approx \frac{1 \,\mathrm{AU}}{d}$$

Parallax

- The other way around: Earth's orbit seen from a distance d
- The length **a** appears as $\mathbf{p} = \mathbf{1''}$ from a distance of d=206265 AU.
- ➡ This unit is called **parsec** (pc, from parallax and arcsecond).

1 pc = 206265 AU = 3.26 ly

 $(1Iy = 9.46 \times 10^{12} \text{ km})$

AST5770 - UiO - S. Wedemeyer

Stars in the sky – Distances and apparent sizes

Parallax

- Example: Proxima Centauri
- Measured parallax = 0.768''
- ➡ d [pc] = 1 / 0.768" = 1.302 pc = **4.243 ly**

- First parallax measured: Bessel 1838
- Hipparcos satellite (1989-1993)
 - Accuracy of 0.001" for 120,000 stars (+~2.5 million stars with lower accuracy.)
- Gaia mission (2013-2022)
 - Accuracy of ~ 10^{-4} "
 - Mapping billions of stars in the Milky Way

Proxima Centauri

Alpha Centauri

www.eso.org

GAIA

GAIA EARLY DATA RELEASE 3

1 811 709 771

stellar positions

1 806 254 432 brightness

in white light

1 542 033 472 brightness in blue light

1 540 770 489 colour

1 467 744 818 parallax and proper motions

1 614 173 extragalactic sources 1 554 997 939 brightness in red light

#SpaceCare #ExploreFarther

Apparent sizes of stars

- Object on the sky with diameter x at distance d
- \Rightarrow Apparent angular extent in the sky

$$\Delta \alpha = \arctan \frac{\Delta x}{d}$$

- Example 1 Sun:
 - $\Delta x = 2 \text{ R}_{\odot}$ with $\text{R}_{\odot} = 696 \ 342 \text{ km} \ (\Delta x \approx 1.4 \ 10^{6} \text{ km})$
 - d = 1AU
 - → $\Delta x = 1919'' \approx 31' \approx 1/2$ degree arcsec arcmin

AST5770 - UiO - S. Wedemeyer

Apparent sizes of stars

- Object on the sky with diameter x at distance d
- \Rightarrow Apparent angular extent in the sky

- $\Delta x = 2 \text{ R}_{\odot}$ with $\text{R}_{\odot} = 696 \ 342 \text{ km} \ (\Delta x \approx 1.4 \ 10^6 \ \text{km})$
- d = 1AU Remember: d varies by 3%
- \rightarrow $\Delta \alpha$ varies between 1887" and 1952"
- Moon's apparent size also varies by a few %
- Some eclipse are total, others only annular.

 $\Delta \alpha = \arctan \frac{1}{2}$

AST5770 - UiO - S. Wedemeyer

 $\Delta \alpha = \arctan \frac{1}{2}$

Apparent sizes of stars

- Object on the sky with diameter x at distance d
- \rightarrow Apparent angular extent in the sky

- Example 2 Proxima Cen:
 - $\Delta x = 2 \text{ R with } R = 1.07 \ 10^5 \text{ km}$
 - d = 4.246 ly

$$\Delta \alpha = \arctan \frac{\Delta x}{d} = \arctan \frac{2 \times 1.07 \times 10^5 \text{ km}}{4.246 \times 9.46 \times 10^{12} \text{ km}} = 1.1 \text{ milliarcsec}$$

→ Very small!

- ➡ Cannot be resolved (decently) with telescopes (yet).
- \blacksquare Remains a point source for now.

Extended

object

Х

d

Apparent sizes of stars

- Object on the sky with diameter x at distance d
- \Rightarrow Apparent angular extent in the sky

- $\Delta x= 2 \text{ R}$ with $\text{R} = 900 \text{ R}_{\odot}$
- d = 548 ly

$$\Delta \alpha = \arctan \frac{\Delta x}{d} = \arctan \frac{2 \times 900 R_{\odot}}{548 \times 9.46 \times 10^{12} \text{ km}} = 0.05 \text{ arcsec}$$

Small but can be (somewhat) resolved with extended interferometric arrays (ALMA!)

$$\Delta \alpha = \arctan \frac{\Delta x}{d}$$

erver

d

AST5770 - UiO - S. Wedemeyer

Extended

عمم : ما م

AST5770 - UiO - S. Wedemeyer

Extended

object

Х

bserver

d

Stars in the sky – Distances and apparent sizes

Apparent sizes of stars

- Object on the sky with diameter x at distance d
- \Rightarrow Apparent angular extent in the sky

$$\Delta \alpha = \arctan \frac{\Delta x}{d}$$

• Examples:

	Sun	Proxima Cen	Betelgeuse
$\Delta x = 2 R$	R⊙ = 696 342 km ∆x ≈ 1.4 10 ⁶ km	R = 1.07 10 ⁵ km Δx= 2 R	R = 900 R⊙ ∆x= 2 R
d	1AU = 1.6 10 ⁻⁵ ly	4.246 ly	548 ly
Δα	1919" ≈ 31' ≈ 1/2 degree	0.0011" 1.1 milliarcsec	0.05" 50 milliarcsec
	Can be observed spatially resolved.	 Remains a point source for now. 	At the limit for the largest interferometric arrays.

What differences do you see?

- Apparent brightness
- Colours

Cluster NGC 1783 (NASA/ESA Hubble Space Telescope)

Recap - radiative flux and radiative flux density

- Radiative flux (also called radiation flux) F energy radiated per time unit through an area (over a given wavelength or frequency range)
 - Physical units: $J s^{-1} m^{-2} = W m^{-2}$ (SI), erg s⁻¹ cm⁻² (cgs)
- Radiative flux <u>density</u> (also called spectrum) energy radiated per time unit through an area per <u>wavelength or frequency uni</u>t (F_{λ} , F_{ν})

$$F_{\lambda} = \frac{d\nu}{d\lambda} F_{\nu} = \frac{c}{\lambda^2} F_{\nu}$$

- In astrophysics, it is common to use F_{ν} . The SI unit is W m⁻² Hz⁻¹.
- At millimetre and radio wavelengths, common to use the unit Jansky: $1 Jy = 10^{-26} W m^{-2} Hz^{-1}$
- Radiative flux through integration over a given wavelength or frequency range

$$F = \int_{v_1}^{v_2} F_v \, dv \qquad F = \int_{\lambda_1}^{\lambda_2} F_\lambda \, d\lambda$$

Recap - irradiance and specific intensity

- Irradiance = radiative flux is received by an area (instead of emitted)
- Total Solar Irradiance (TSI):
 - measure of the radiation flux from the Sun that is received at the boundary of Earth's atmosphere.
 - Important in the context Sun's impact on Earth's climate.

• Specific intensity: $I_v = flux$ density F_v emitted per solid angle Ω :

$$F_{\rm v} = \int_{\Omega} I_{\rm v} \, \cos \theta \, d\Omega$$

• Physical units: $J s^{-1} m^{-2} = W m^{-2} H z^{-1} sr^{-1} (SI)$

Apparent brightness scale

- Apparent brightness **m** measured on logarithmic scale
- Dimensionless unit magnitudo [mag]
- Defined by Pogson in 1856:
 - star of first magnitude star = 100 times brighter than a 6th magnitude star.
 - $\Delta m = 5 \text{ mag} \langle \rangle$ brightness ratio of 100
 - $\Delta m = 1 \text{ mag} <-> 100^{1/5} = 2.512$ (Pogson's Ratio)

 $\Delta m = m_1 - m_2 = -2.5 \log(F_1/F_2)$ [mag]

- Flux ratio F_1/F_2 of the two stars.
- Origin of the scale defined by bright star α Lyrae, (m = 0 mag at all wavelengths)

Apparent brightness scale

bright

- -26.7 | Sun (m_☉)
- -12.6 | Full moon
 - -4.4 | Venus (max.)
 - -1.4 | Sirius (brightest star in the sky)
 - 0.5 | Betelgeuse (visual band, variable)
 - 6.5 | Limit for naked eye
 - 10.0 Limit for binoculars
 - 11.1 | Proxima Cen (visual band)
 - 15.1 Pluto
 - 31.5 | Limit of Hubble Space Telescope
- faint ~ 34 Limit of James Webb Space Telescope (infrared)

$\Delta m = 1 \text{ mag} = \text{factor } 2.512$

- Individual stars
 - Different distances to us
 - Different "energy output"

Absolute brightness

- Apparent brightness depends on properties of the star but also on distance!
- ➡ Distance dependence to be removed for direct comparison of stellar properties

• Absolute brightness M

- Also referred to as absolute magnitude
- Definition: brightness that a star has at a (fictive) **standard distance of 10 parsec** from the observer
- ➡ (independent of the distance!)

Distance modulus

- <u>Definition</u>:
 Distance modulus = difference between apparent and absolute brightness **m M**
- Additional astronomical **extinction A** (here in magnitudes) due to the interstellar medium along line of sight (LOS) between star and observer
 - \rightarrow further reduces the apparent brightness.
- Derivation: same star at its real distance $r = r_1$ and at the standard distance $r_2 = 10$ pc

$$\Rightarrow \Delta m = m_1 - m_2 = -2.5 \log(F_1/F_2) , \quad F \propto r^{-2}, F_1/F_2 \propto r_2^2/r_1^2$$

• $m - M = 5 \log r [pc] - 5 + A$.

 Note m-M=0 for a star at a distance of 10 pc (with A=0) (definition of the absolute brightness).

Absolute brightness \rightarrow brightness at standard distance of 10 parsec

	Apparent brightness m _v *	Absolute brightness Mv*	Distance modulus (m – M) _v *	Distance
Sun	-26.74	4,83	-31,57	1 AU
α Cen A Solar-like star	0,01	4,38	-4,37	4.4 ly
Sirius A brightest star (after Sun)	-1,47	1,42	-2,89	8.7 ly
Proxima Cen closest star (after Sun)	11,13	15,6	-4,47	4.2 ly
Betelgeuse	0,5	-5,85	6,35	550 ly

* All brightness at visible wavelengths, astronomical extinction ignored (A=0)

• Sun would be among the fainter stars observable with the naked eye when observed from a distance of 10 pc.

Bolometric brightness

- Bolometric = <u>all</u> wavelengths
- Integration of the wavelength-dependent radiation flux F_{λ} over <u>all</u> wavelengths, or equivalently F_{ν} over <u>all</u> frequencies

$$F = \int_0^\infty F_\lambda d\lambda = \int_0^\infty F_\nu d\nu$$

→ Apparent bolometric brightness mbol is a measure for the total radiative flux F of a star

Photometry and colours

- Use of different filters in an observation
- Transmission of only limited wavelength ranges
- Standardised filter system(s)
 - Most common: UBVRI(+)
 - Originally **UBV** (ultraviolet blue visual)
 - Extended into the infrared (IR)

UBVRI filter system + extension

Filter	descript.	λ [nm]	FWHM [nm]	
U	UV	365	66	
B	blue	440	94	
V	visual	548	88	
R	red	658	138	nce
I	IR	806	149	nitta
J	IR	1220	213	ansr
H	IR	1630	307	6 Tra
K	IR	2190	490	6
L	IR	3450	473	
M	IR	4750	460	ļ

- Brightness measured in a selected filter marked with corresponding index
- Example: Visual (V)
 - Apparent brightness: $m_V = V$ (Often only the filter ID is used!)
 - Absolute brightness: M_V

Photometry and colours, color index

- Measuring brightness with different filters captures
 variation of flux density as function of wavelength (spectrum)
 - ➡ Reveals difference between stars
- Colour index: difference of two brightness measured in different bands, $m_X m_Y$.
- Example: $m_B m_V = B V$

Photometry and colours, color index

- Measuring brightness with different filters captures
 variation of flux density as function of wavelength (spectrum)
 - ➡ Reveals difference between stars

Colour index:

Bolometric correction

- Filters cover only parts of the spectrum
- Especially measuring with few filters may give incomplete picture
 - Correction for missing wavelength ranges needed when absolute brightness across all wavelengths is wanted
 - → Bolometric correction (BC): $M_{bol} = M_V + BC$
- Note: hot stars radiate much in UV, not well captured by the available filter systems; (very) cool stars better covered with IR filters

Photometry and colours

 Note that different instruments at different telescopes can have other filter systems

