## AST5770

## Solar and stellar physics

Sven Wedemeyer, University of Oslo, 2023

## Practical information

## Data / material for assignments

- Data:
- Templates:
/mn/stornext/d9/svenwe/lecture/AST5770/data
/mn/stornext/d9/svenwe/lecture/AST5770/assignment
- Everybody please check: Can you access these directories?
- On the course webpage
- Templates
- Submission dates and requirements
- A document with information about data \& assignments
- Evaluation matrix


## Recap

- What is a star: gas + self-gravity + luminous + nuclear fusion
- Distances to the stars
- Sun at 8 light-min $=1 \mathrm{AU} \approx 150 \times 10^{6} \mathrm{~km}$
- Nearest star (after the Sun) at 4.3 ly
- Measuring distances via parallactic angles (parallax)
- Apparent motion of a star against (far away) background as seen over a year (Earth's orbit!)
- Distance d [pc] = 1/p ["] (p: parallax)
- Definition of parsec: $1 \mathrm{pc}=206265 \mathrm{AU}=3.26 \mathrm{ly}$

- Gaia mission mapped billions of stars in the Milky Way
- Apparent size in the sky
- Sun ~ 1/2 degree
- Interferometric imaging begins to slightly resolved huge nearby stars
- Most source remain point sources for now


## Recap

- Radiative flux F (energy radiated per time unit through an area)
- Radiative flux density $\mathbf{F}_{\boldsymbol{\lambda}}, \mathbf{F}_{\mathbf{v}}$ : F per wavelength or frequency unit
- Bolometric = over all wavelengths
- Brightness (related to the flux)
- Apparent brightness $\mathbf{m}$ - as in the sky
- Absolute brightness $\mathbf{M}$ - as if at a distance of 10 pc
- Both measured on a logarithmic scale in units of magnitudes

Johnson/Bessell UBVRI filters

- Colour: Brightness measured with standard filters
- Brightness measured in a selected filter marked with corresponding index or as capital letter, e.g. $\mathrm{m}_{\mathrm{v}}=\mathrm{V}$
- Colour index: difference of brightness measured in different bands, e.g. $m_{B}-m_{v}=B-V$



## Observational stellar parameters

## Stellar spectrum

Solar Radiation Spectrum


## Observational stellar parameters

## Stellar spectrum



- Measured Sun's intensity as function of wavelength
- The black body spectrum for an effective temperature of Teff $=5778 \mathrm{~K}$
- Data from Neckel and Labs (1984) - Also provided for your project assignment.


## Observational stellar parameters

## Blackbody spectrum

- Radiation flux density (spectrum) resembles a blackbody spectrum, which is given by the Planck function $\mathbf{B}_{\mathbf{v}} \mathbf{( T )}$.
- $B_{v}(T)$ : spectral density of electromagnetic radiation emitted by a blackbody in thermal equilibrium at a given temperature $T$.
$\Rightarrow$ The flux density $F_{v}$ of a blackbody:

$$
F_{v}=\pi B_{v}(T)
$$

$\Rightarrow$ Bolometric flux by integration over all frequencies:

$$
F=\int_{0}^{\infty} F_{\lambda} d \lambda=\int_{0}^{\infty} F_{\nu} d v=\int_{0}^{\infty} \pi B_{v}(T) d v=\sigma T^{4} \Rightarrow F=\sigma T_{\mathrm{eff}}^{4}
$$

- Stefan-Boltzmann constant:

$$
\sigma=\frac{2 \pi^{5} k_{\mathrm{B}}^{4}}{15 h^{3} c^{2}}=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}=5.67 \times 10^{-5} \mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \mathrm{~K}^{-4}
$$

## Observational stellar parameters

## Stefan-Boltzmann law

- Radiation flux density (spectrum) resembles a blackbody spectrum, which is given by the Planck function $B_{v}(T)$.
- $B_{v}(T)$ : spectral density of electromagnetic radiation emitted by a blackbody in thermal equilibrium at a given temperature $T$.
$\boldsymbol{\epsilon}$ The flux density $F_{v}$ of a blackbody:

$$
F_{v}=\pi B_{v}(T)
$$

$\Rightarrow$ Bolometric flux by integration over all frequencies:

## Stefan-Boltzmann law

$$
F=\int_{0}^{\infty} F_{\lambda} d \lambda=\int_{0}^{\infty} F_{v} d v=\int_{0}^{\infty} \pi B_{v}(T) d v=\sigma T^{4} \Rightarrow F=\sigma T_{\mathrm{eff}}^{4}
$$

- Stefan-Boltzmann constant:

$$
\sigma=\frac{2 \pi^{5} k_{\mathrm{B}}^{4}}{15 h^{3} c^{2}}=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}=5.67 \times 10^{-5} \mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \mathrm{~K}^{-4}
$$

## Observational stellar parameters

## Stefan-Boltzmann law

- Example: Sun
- Bolometric flux density of the Sun measured just outside Earth's atmosphere by a satellite:
$\Rightarrow$ solar constant $=1.36 \mathrm{~kW} \mathrm{~m}^{-2}$
- Radiation emitted from the Sun's "surface" at radius $1 R_{\odot}$
- Diluted over a sphere with radius $d=1$ AU with surface area $A=4 \pi d^{2}$
- Correction for "dilution" effect with the factor $\mathrm{d}^{2} / \mathrm{R}_{\odot}{ }^{2}$ gives flux density at Sun's surface ( $1 \mathrm{R}_{\odot}$ ):

$$
F_{\odot}=6.3 \cdot 10^{7} \mathrm{Wm}^{-2}
$$

- Stefan-Boltzmann law: $F_{\odot}=\sigma T_{\text {eff }, \odot^{4}} \longrightarrow$ effective temperature of the Sun: $\mathbf{T e f f f}, \odot \approx \mathbf{5 7 7 0} \mathbf{K}$



## Stellar parameters

## Luminosity

- Total radiative energy output of a star
given by flux that emerges across the total surface of a star.
- Assumption: star is spherical with radius R

Stefan-Boltzmann law:
$\Rightarrow$ Surface area $A=4 \pi R^{2} \quad F=\sigma T_{\text {eff }}{ }^{4}$
$\Rightarrow$ Luminosity of a star $\quad L=4 \pi R^{2} \sigma T_{\text {eff }}{ }^{4}$

- Units: W (SI) or erg s-1 (cgs)
- Convenient to use the bolometric luminosity of the Sun as unit

$$
L_{\odot}=3.84 \times 10^{26} \mathrm{~W}
$$

## Stellar spectra

- Blackbody spectra
for different temperatures
- Increasing Teff
$\Rightarrow$ Bolometric flux F (integral under the curve) increases with $T_{\text {eff }}{ }^{4}$
$\Rightarrow$ Wavelength of peak becomes shorter: Wien's displacement law $\quad \lambda_{\max }=\frac{b}{T}$

Wien's displacement constant

$$
\left(b=2.89777 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K} \approx 2900 \mu \mathrm{~m} \cdot \mathrm{~K}\right)
$$

Stellar spectra


- A real stellar spectrum ...
- ... is reasonably well described at longer wavelengths
- ... deviates in particular at shorter wavelengths and/or in wavelength regions with many (absorption) lines!


## Observational stellar parameters



Ca II


## Stellar spectra

## Hydrogen lines and continua



## Stellar spectra

## Spectrum of the Sun

## Spectral classification

## Line strength

- Strength of a spectral line depends on the number of atoms/molecules with electrons in the starting orbit for the spectral line under consideration
- Example: $\mathbf{H - \alpha}$ line at 656.3 nm in absorption, $\mathrm{n}=2 \rightarrow \mathrm{n}=3$
$\boldsymbol{\Rightarrow} H$ atoms needed that have electrons in level $n=2$,
$\boldsymbol{\Rightarrow}$ Must already have absorbed a photon to raise $\mathrm{n}=1 \rightarrow \mathrm{n}=2$

$\Rightarrow$ Requires high enough temperature
- Level populations and thus strength of a spectral line depends thermodynamic properties of the gas (and chemical abundance)
- Line strength measured as equivalent width
- Area between spectral line and continuum and reshape into rectangle that extends from 1 to 0
- Width of covered area



## Spectral classification

## Line strength

- Strength of a spectral line depends on chemical abundance of the element and thermodynamic properties such as the gas temperature
High


## Spectral classification

## Line strength

- Analysis of many spectral lines of different elements (and ionisation stages) allows to determine the gas temperature


## Reversed

 axis!High

## Spectral classification

## Line strength

- Saha equation: Ionization degree for any gas in thermal equilibrium

$$
\frac{n_{i+1} n_{e}}{n_{i}} \propto \exp \left[-\frac{\left(\epsilon_{i+1}-\epsilon_{i}\right)}{k_{B} T}\right]
$$

n : Number density of atoms in the i-th ion state (i electrons removed)
$\varepsilon$ : ionisation energy


## Spectral classification

- Spectral types defined according to occurrence and strength of spectral lines
$\boldsymbol{\sigma}$ Sorting the different types into a sequence



## Spectral classification

- Measuring brightnesses, colour indices, spectral lines (+Stefan-Boltzmann law)
$\boldsymbol{\sigma}$ Spectral types can sorted into a sequence as function of temperature



## Stellar spectra

- Brightnesses, colour indices + occurrence and strength of spectral lines for different ionisation stages
$\boldsymbol{\theta}$ Information about temperature and chemical composition
$\boldsymbol{\epsilon}$ Sorting the different types into a sequence
$\Rightarrow$ Spectral types can sorted into a sequence as function of temperature



## Spectral classification

- Different classification schemes
- Harvard spectral classification
- Further developed and extended
$\Rightarrow$ Morgan-Keenan system
- A star is classified by a
- Spectral class
- Decimal sub-division (0-9) with effective temperature decreasing with in increasing digit
- Luminosity class



## Spectral classification

## Main spectral classes

| O | violet | $>28000 \mathrm{~K}$ | less than few visible absorption lines, weak Balmer <br> lines, ionised helium lines |
| :--- | :--- | :--- | :--- |
| B | blue | $10000-28000 \mathrm{~K}$ | neutral hydrogen lines, more prominent Balmer lines |
| A | blue | $7500-10000 \mathrm{~K}$ | strongest Balmer lines, other strong lines |
| F | blue-white | $6000-7500 \mathrm{~K}$ | weaker Balmer lines, many lines including neutral metals |
| G | white-yellow | $5000-6000 \mathrm{~K}$ | Balmer lines weaker still, dominant ionised calcium lines |
| K | orange-red | $3500-5000 \mathrm{~K}$ | neutral metal lines most prominent |
| M | red | $<3500 \mathrm{~K}$ | strong neutral metal lines and molecular bands |

Supplementary classes of cool stars

| $\mathrm{R}(\mathrm{C})$ | red | $<3000 \mathrm{~K}$ | Carbon compounds, S-process elements |
| :--- | :--- | :--- | :--- |
| $\mathrm{N}(\mathrm{C})$ | red | $\sim 3000 \mathrm{~K}$ | Carbon compounds, S-process elements <br> S |
| red | (especess elements, molecular bands ZrO and TiO) |  |  |

- R,N or C-type: "carbon stars" - red giant stars and Asymptotic Giant Branch (AGB) stars.
- regular M-type giant stars have more oxygen and carbon -> referred to as "oxygen-rich" stars.
- S-type stars: carbon and oxygen are approximately equally abundant
- prominently spectral features due to the s-process elements
(e.g. zirconium monoxide (ZrO).


## Spectral classification

## Main spectral classes

| O | violet | $>28000 \mathrm{~K}$ | less than few visible absorption lines, weak Balmer <br> lines, ionised helium lines |
| :--- | :--- | :--- | :--- |
| B | blue | $10000-28000 \mathrm{~K}$ | neutral hydrogen lines, more prominent Balmer lines |
| A | blue | $7500-10000 \mathrm{~K}$ | strongest Balmer lines, other strong lines |
| F | blue-white | $6000-7500 \mathrm{~K}$ | weaker Balmer lines, many lines including neutral metals |
| G | white-yellow | $5000-6000 \mathrm{~K}$ | Balmer lines weaker still, dominant ionised calcium lines |
| K | orange-red | $3500-5000 \mathrm{~K}$ | neutral metal lines most prominent |
| M | red | $<3500 \mathrm{~K}$ | strong neutral metal lines and molecular bands |

Supplementary classes of cool stars

| $\mathrm{R}(\mathrm{C})$ | red | $<3000 \mathrm{~K}$ | Carbon compounds, S-process elements |
| :--- | :--- | :--- | :--- |
| $\mathrm{N}(\mathrm{C})$ | red | $\sim 3000 \mathrm{~K}$ | Carbon compounds, S-process elements <br> S |
| s-process elements, molecular bands |  |  |  |
| (especially ZrO and TiO) |  |  |  |

Very low mass /sub-stellar spectral classes (mostly brown dwarfs)

| L | IR | $1500-2500 \mathrm{~K}$ | lines of alkali metals (e.g. N) and metallic compounds <br> (e.g. FeH) |
| :--- | :--- | :--- | :--- |
| Y | IR | $800-1500 \mathrm{~K}$ | methane absorption lines |
| T | IR | $<800 \mathrm{~K}$ | water and ammonia lines |

## Spectral classification

## Luminosity class

| Ia - 0 | hypergiants |
| :---: | :---: |
| I | supergiants |
| II | bright giants |
| III | giants |
| IV | subgiants |
| V | main sequence (dwarfs) |
| VI | subdwarfs |

## Spectral classification

- A star is classified by a

- Harvard spectral classification
- Further developed and extended
$\Rightarrow$ Morgan-Keenan system
- Examples

| Sun | G2V |
| :--- | :---: |
| Sirius A | A0V |
| Proxima Cen | M5.5V |
| Betelgeuse | M11 |
| Aldebaran | K5III |

## Spectral classification

## Additional classification

- Special spectral types
- W for Wolf-Rayet stars with no hydrogen lines in their spectra
- D for white dwarfs
- Extra information can be added to the spectral type of a star if it differs from the other regular types / show peculiarities
- e: presence of pronounced emission lines
- v : variable spectral features.
- ...
- Example: M5.5Ve
- Please note that
- the accuracy of a spectral classification depends on the quality of the available data
- a spectral classification can change as a star changes


## Spectral classification

## Stellar populations

- Observations show that decreasing metal content correlated with increasing age of stars.
- Stars (in our galaxy) can be further divided into populations according to their chemical composition or metallicity
- Population I: "recent" stars, high metallicity
- Population II: old stars, low metallicity
- Population III: first stars in the universe (very low metal content)
- Originally, pop I+II, pop III added in 1978

- Total number of stars in the Milky Way only known roughly: 100-400 billion stars


## Stellar classification

## Hertzsprung-Russell diagram

- Stars not randomly distributed
- Distribution yields important clues for stellar structure and evolution
- Different stellar types and evolution stages:
- Main sequence
- Giants and supergiants
- Dwarf stars


## Hertzsprung-Russell Diagram



## Stellar classification

## Hertzsprung-Russell diagram



## Stellar classification

Hertzsprung-Russell diagram


## Physical stellar parameters

- The fundamental (global) parameters that describe a star are
- mass M,
- radius $R$,
- luminosity L.
- They are commonly expressed in units of the solar values $M_{\odot}, R_{\odot}$, and $L_{\odot}$
- The parameters will change with time. Age of a star also an important parameter.
- Stellar atmosphere (layer from where we receive most of the observable information) is characterised by the following parameters:
- effective temperature $T_{\text {eff }}$
- gravity acceleration g
- chemical composition (expressed as metallicity)
- magnetic field strength
(although the magnetic field is typically difficult to be expressed by just one parameter)
- Often stellar properties can only be derived with significant uncertainties,


## Physical stellar parameters

## Mass

- According to our definition of a star, nuclear fusion in its interior is required.
$\Rightarrow$ Minimum mass of a star $M_{\text {min }} \approx 0.08 \mathrm{M}_{\odot}$.
$\boldsymbol{\epsilon}$ Objects with $\mathrm{M}_{\min }<0.08 \mathrm{M}_{\odot}$ (but more mass than planets): brown dwarfs $\left(M_{b d}<0.08 M_{\odot}\right)$.
- Highest masses M > 100M
- Known examples with up to $\sim 250 M_{\odot}$
- Number of stars with a certain mass decreases strongly with mass!
$\Rightarrow$ only few very massive stars but very many low-mass stars.
$\Rightarrow$ very massive stars are therefore typically far away
- Strong stellar winds and outflowing gas result in clouds surrounding these stars can make the determination of the stellar mass less reliable.


## Physical stellar parameters

## Radius

- Main sequence stars
- Typical values: $0.1 R_{\odot}$ to $\sim 25 R_{\odot}$.
- Radii increase as function of effective temperature along the main sequence
- Red dwarfs at the cool end being much smaller than the Sun
- Hot main sequence stars being much larger than the Sun.
- Red giants, supergiants, ...
- Diameters larger than the orbit of Mars.
- Examples: Antares (680-800 R $)$, Betelgeuse ( $900 R_{\odot}$ ), and Mu Cephei (972-1,260 R厄).
- Largest stars: radii currently estimated to up $\sim 2000 R_{\odot}$.
- White dwarfs
- $R<0.02 R_{\odot}$




## Physical stellar parameters



## Physical stellar parameters

## Luminosity $\quad \Rightarrow L=4 \pi R^{2} \sigma T_{\text {eff }}{ }^{4}$

- The bolometric luminosity of stars spans r many orders of magnitude: $10^{-4} \mathrm{~L}_{\odot}-10^{6} \mathrm{~L}_{\odot}$
- Depends to $4^{\text {th }}$ power on $T_{\text {eff }}$
$\Rightarrow$ Small difference in $T_{\text {eff }}$ results in a large change in L!
(Same true for uncertainties)
- Example 1: blue-white supergiant Deneb (a Cyg) — one of the brightest stars in the sky:
L ~ 60000 - 200000 L 。
$\boldsymbol{\epsilon}$ Large uncertainty is due to the poorly known distance!
- Example 2: Red supergiant Betelgeuse $L \approx 100000 \mathrm{~L}$ 。


