

Practical information

Data / material for assignments

- Data: /mn/stornext/d9/svenwe/lecture/AST5770/data
- Templates: /mn/stornext/d9/svenwe/lecture/AST5770/assignment
- Everybody please check: Can you access these directories?

- On the course webpage
 - Templates
 - Submission dates and requirements
 - A document with information about data & assignments
 - Evaluation matrix

Recap

• What is a star: gas + self-gravity + luminous + nuclear fusion

Distances to the stars

- Sun at 8 light-min = 1 AU \approx 150 \times 106 km
- Nearest star (after the Sun) at 4.3 ly

Measuring distances via parallactic angles (parallax)

- Apparent motion of a star against (far away) background as seen over a year (Earth's orbit!)
- Distance d [pc] = 1/p ["] (p: parallax)
- Definition of parsec: 1 pc = 206265 AU = 3.26 Jy
- Gaia mission mapped billions of stars in the Milky Way

Apparent size in the sky

- Sun ~ 1/2 degree
- Interferometric imaging begins to slightly resolved huge nearby stars
- Most source remain point sources for now

Johnson/Bessell UBVRI filters

Recap

- Radiative flux F (energy radiated per time unit through an area)
- Radiative flux density F_{λ} , F_{ν} : F per wavelength or frequency unit
- Bolometric = over all wavelengths
- Brightness (related to the flux)
 - Apparent brightness m as in the sky
 - **Absolute brightness M** as if at a distance of 10 pc

Both measured on a logarithmic scale in units of magnitudes

Colour: Brightness measured with standard filters

- Brightness measured in a selected filter marked with corresponding index or as capital letter, e.g. $m_V = V$
- Colour index: difference of brightness measured in different bands, e.g. $m_B m_V = B V$

Stellar spectrum

Solar Radiation Spectrum

Stellar spectrum

- Measured Sun's intensity as function of wavelength
- The black body spectrum for an effective temperature of Teff = 5778 K
- Data from Neckel and Labs (1984) Also provided for your project assignment.

Blackbody spectrum

- Radiation flux density (spectrum) resembles a blackbody spectrum, which is given by the Planck function B_ν (T).
 - B_{ν} (T): spectral density of electromagnetic radiation emitted by a blackbody in thermal equilibrium at a given temperature T .
 - \rightarrow The flux density F_{ν} of a blackbody:

$$F_{\rm v}=\pi B_{
m v}(T)$$

→ Bolometric flux by integration over all frequencies:

$$F = \int_0^\infty F_\lambda d\lambda = \int_0^\infty F_V dV = \int_0^\infty \pi B_V(T) dV = \sigma T^4 \Rightarrow F = \sigma T_{\text{eff}}^4$$

• Stefan-Boltzmann constant:

$$\sigma = \frac{2\pi^5 k_{\rm B}^4}{15h^3 c^2} = 5.67 \times 10^{-8} \text{W m}^{-2} \text{K}^{-4} = 5.67 \times 10^{-5} \text{erg s}^{-1} \text{ cm}^{-2} \text{K}^{-4}$$

Stefan-Boltzmann law

- Radiation flux density (spectrum) resembles a **blackbody** spectrum, which is given by the Planck function $B_v(T)$.
 - B_{ν} (T): spectral density of electromagnetic radiation emitted by a blackbody in thermal equilibrium at a given temperature T.
 - \rightarrow The flux density F_{ν} of a blackbody:

$$F_{\rm v}=\pi B_{
m v}(T)$$

→ Bolometric flux by integration over all frequencies:

Stefan-Boltzmann law

$$F = \int_0^\infty F_\lambda d\lambda = \int_0^\infty F_V dV = \int_0^\infty \pi B_V(T) dV = \sigma T^4 \Rightarrow F = \sigma T_{\text{eff}}^4$$

• Stefan-Boltzmann constant:

$$\sigma = \frac{2\pi^5 k_{\rm B}^4}{15h^3 c^2} = 5.67 \times 10^{-8} \text{W m}^{-2} \text{K}^{-4} = 5.67 \times 10^{-5} \text{erg s}^{-1} \text{ cm}^{-2} \text{K}^{-4}$$

Stefan-Boltzmann law

- Example: Sun
- Bolometric flux density of the Sun measured just outside Earth's atmosphere by a satellite:
 - ⇒ solar constant = 1.36 kW m⁻²
 - Radiation emitted from the Sun's "surface" at radius $1 R_{\odot}$
 - Diluted over a sphere with radius d = 1 AU with surface area $A = 4\pi d^2$
- Correction for "dilution" effect with the factor d^2/R_{\odot}^2 gives flux density at Sun's surface (1R_o):

$$F_{\odot} = 6.3 \cdot 10^7 \, Wm^{-2}$$

• Stefan-Boltzmann law: $F_0 = \sigma T_{eff,0}^4$ —> effective temperature of the Sun: $T_{eff,0} \approx 5770 \text{ K}$

Stellar parameters

Luminosity

Total radiative energy output of a star

given by flux that emerges across the total surface of a star.

Assumption: star is spherical with radius R

 \Rightarrow Surface area $A = 4\pi R^2$

→ Luminosity of a star

$$L = 4\pi R^2 \sigma T_{\text{eff}}^4$$

Stefan-Boltzmann law:

 $F = \sigma T_{eff}^4$

- Units: W (SI) or erg s-1 (cgs)
- Convenient to use the bolometric luminosity of the Sun as unit

$$L_{\odot} = 3.84 \times 10^{26} \,\mathrm{W}$$

Stellar spectra

 Blackbody spectra for different temperatures

- Increasing T_{eff}
 - \rightarrow Bolometric flux F (integral under the curve) increases with T_{eff}^4
 - ightharpoonup Wavelength of peak becomes shorter: Wien's displacement law $\lambda_{
 m max}$

$$\lambda_{\max} = \frac{b}{T}$$

Wien's displacement constant

 $(b = 2.89777 \times 10^{-3} \,\mathrm{m \cdot K} \approx 2900 \,\mu\mathrm{m \cdot K})$

Stellar spectra

- A real stellar spectrum ...
 - ... is reasonably well described at longer wavelengths
 - ... **deviates** in particular at shorter wavelengths and/or in wavelength regions with many (absorption) lines!

Stellar spectra

Hydrogen lines and continua

- Energy of photon E = h v
- Photon absorbed at matching energy differences in the atom
- Hydrogen energy levels: $E_n \propto n^{-2}$
- Rydberg formula $\lambda^{-1} \propto (n_1^{-2} n_2^{-2})$

→ Notable deviations from blackbody!

Stellar spectra

Line strength

- **Strength of a spectral line** depends on the number of atoms/molecules with electrons in the starting orbit for the spectral line under consideration
- **Example:** H- α line at 656.3nm in absorption, n=2 \rightarrow n=3
 - \rightarrow H atoms needed that have electrons in level n=2,
 - \rightarrow Must already have absorbed a photon to raise n=1 \rightarrow n=2
 - → Requires high enough temperature

• Level populations and thus strength of a spectral line depends thermodynamic properties

of the gas (and chemical abundance)

- Area between spectral line and continuum and reshape into rectangle that extends from 1 to 0
- Width of covered area

Line strength

 Strength of a spectral line depends on chemical abundance of the element and thermodynamic properties such as the gas temperature

Line strength

 Analysis of many spectral lines of different elements (and ionisation stages) allows to determine the gas temperature

Line strength

• Saha equation: Ionization degree for any gas in thermal equilibrium

$$\frac{n_{i+1}n_e}{n_i}$$
 $\propto \exp\left[-\frac{(\epsilon_{i+1}-\epsilon_i)}{k_BT}\right]$

n: Number density of atoms in the i-th ion state (i electrons removed)

ε: ionisation energy

- Spectral types defined according to occurrence and strength of spectral lines
- → Sorting the different types into a sequence

- Measuring brightnesses, colour indices, spectral lines (+Stefan-Boltzmann law)
- → Spectral types can sorted into a sequence as function of temperature

Stellar spectra

- Brightnesses, colour indices + occurrence and strength of spectral lines for different ionisation stages
 - → Information about temperature and chemical composition
 - → Sorting the different types into a sequence
 - → Spectral types can sorted into a sequence as function of temperature

- Different classification schemes
- Harvard spectral classification
- Further developed and extended
- **→** Morgan–Keenan system

- A star is classified by a
 - Spectral class
 - Decimal sub-division (0-9) with effective temperature decreasing with in increasing digit
 - Luminosity class

Main spectral classes					
О	violet	> 28 000 K	less than few visible absorption lines, weak Balmer		
			lines, ionised helium lines		
В	blue	10 000 – 28 000K	neutral hydrogen lines, more prominent Balmer lines		
A	blue	7 500 – 10 000K	strongest Balmer lines, other strong lines		
F	blue-white	6 000 – 7 500K	weaker Balmer lines, many lines including neutral metals		
G	white-yellow	5 000 – 6 000K	Balmer lines weaker still, dominant ionised calcium lines		
K	orange-red	3 500 – 5 000K	neutral metal lines most prominent		
M	red	< 3500 K	strong neutral metal lines and molecular bands		
Supplementary classes of cool stars					
R (C)	red	< 3 000 K	Carbon compounds, S-process elements		
N(C)	red		Carbon compounds, S-process elements		
S	red	$\sim 3000 \mathrm{K}$	s-process elements, molecular bands		
			(especially ZrO and TiO)		

- **R,N or C-type: "carbon stars"** red giant stars and Asymptotic Giant Branch (AGB) stars.
 - regular M-type giant stars have more oxygen and carbon -> referred to as "oxygen-rich" stars.
- S-type stars: carbon and oxygen are approximately equally abundant
 - prominently spectral features due to the s-process elements (e.g. zirconium monoxide (ZrO).

Main spectral classes					
О	violet	> 28 000 K	less than few visible absorption lines, weak Balmer		
			lines, ionised helium lines		
В	blue	10 000 – 28 000K	neutral hydrogen lines, more prominent Balmer lines		
A	blue	7 500 – 10 000K	strongest Balmer lines, other strong lines		
F	blue-white	6 000 – 7 500K	weaker Balmer lines, many lines including neutral metals		
G	white-yellow	5 000 – 6 000K	Balmer lines weaker still, dominant ionised calcium lines		
K	orange-red	3 500 – 5 000K	neutral metal lines most prominent		
M	red	< 3500 K	strong neutral metal lines and molecular bands		
Supplementary classes of cool stars					
R (C)	red	< 3 000 K	Carbon compounds, S-process elements		
N(C)	red		Carbon compounds, S-process elements		
S	red	$\sim 3000 \mathrm{K}$	s-process elements, molecular bands		
			(especially ZrO and TiO)		
Very low mass /sub-stellar spectral classes (mostly brown dwarfs)					
L	IR	1 500 – 2 500 K	lines of alkali metals (e.g. N) and metallic compounds		
			(e.g. FeH)		
Y	IR	800 – 1 500 K	methane absorption lines		
T	IR	< 800 K	water and ammonia lines		

Luminosity class

Ia - 0	hypergiants	
I	supergiants	
II	bright giants	
III	giants	
IV	subgiants	
V	main sequence (dwarfs)	
VI	subdwarfs	

A star is classified by a

- Harvard spectral classification
- Further developed and extended
- **→** Morgan–Keenan system

Examples

Sun	G2V
Sirius A	AOV
Proxima Cen	M5.5V
Betelgeuse	M1I
Aldebaran	K5III

Additional classification

- Special spectral types
 - **W** for Wolf-Rayet stars with no hydrogen lines in their spectra
 - **D** for white dwarfs
 - •
- **Extra information** can be added to the spectral type of a star if it differs from the other regular types / show **peculiarities**
 - e: presence of pronounced emission lines
 - v: variable spectral features.
 - •
 - Example: M5.5Ve
- Please note that
 - the accuracy of a spectral classification depends on the quality of the available data
 - a spectral classification can change as a star changes

Stellar populations

- Observations show that decreasing **metal content** correlated with increasing age of stars.
- Stars (in our galaxy) can be further divided into populations according to their chemical composition or metallicity
 - Population I: "recent" stars, high metallicity
 - Population II: old stars, low metallicity
 - Population III: first stars in the universe (very low metal content)
- Originally, pop I+II, pop III added in 1978

Total number of stars in the Milky Way only known roughly:
 100 - 400 billion stars

Stellar classification

Hertzsprung-Russell diagram

- Stars not randomly distributed
- Distribution yields important clues for stellar structure and evolution
- Different stellar types and evolution stages:
 - Main sequence
 - Giants and supergiants
 - Dwarf stars
 - •

Stellar classification

Hertzsprung-Russell diagram

Stellar classification

Hertzsprung-Russell diagram

- The fundamental (global) parameters that describe a star are
 - mass M,
 - radius R,
 - luminosity L.
- They are commonly expressed in units of the solar values M_☉, R_☉, and L_☉
- The parameters will change with time. **Age** of a star also an important parameter.
- **Stellar atmosphere** (layer from where we receive most of the observable information) is characterised by the following parameters:
 - effective temperature T_{eff}
 - gravity acceleration g
 - chemical composition (expressed as metallicity)
 - magnetic field strength (although the magnetic field is typically difficult to be expressed by just one parameter)
- Often stellar properties can only be derived with significant uncertainties,

Mass

- According to our definition of a star, nuclear fusion in its interior is required.
 - \rightarrow Minimum mass of a star $M_{min} \approx 0.08 M_{\odot}$.
 - → Objects with $M_{min} < 0.08 M_{\odot}$ (but more mass than planets): brown dwarfs $(M_{bd} < 0.08 M_{\odot})$.
- Highest masses $M > 100 M_{\odot}$
 - Known examples with up to $\sim 250 M_{\odot}$
- Number of stars with a certain mass decreases strongly with mass!
 - → only few very massive stars but very many low-mass stars.
 - → very massive stars are therefore typically far away
- Strong stellar winds and outflowing gas result in clouds surrounding these stars can make the determination of the stellar mass less reliable.

Radius

Main sequence stars

- Typical values: $0.1 R_{\odot}$ to $\sim 25 R_{\odot}$.
- Radii increase as function of effective temperature along the main sequence
- Red dwarfs at the cool end being much smaller than the Sun
- Hot main sequence stars being much larger than the Sun.

Red giants, supergiants, ...

- Diameters larger than the orbit of Mars.
- Examples: Antares (680 800 R_{\odot}), Betelgeuse (900 R_{\odot}), and Mu Cephei (972 1,260 R_{\odot}).
- Largest stars: radii currently estimated to up $\sim 2000~R_{\odot}$.

White dwarfs

• $R < 0.02 R_{\odot}$

Careful: Scale might not be accurate (anymore)

Lines of constant radius

Luminosity $\rightarrow L = 4\pi R^2 \sigma T_{eff}^4$

- The bolometric luminosity of stars spans r many orders of magnitude: $10^{-4} L_{\odot} 10^{6} L_{\odot}$
- Depends to 4th power on T_{eff}
- → Small difference in T_{eff} results in a large change in L! (Same true for uncertainties)
- Example 1: blue-white supergiant Deneb (α Cyg) one of the brightest stars in the sky:

 L ~ 60 000 200 000L₀.
 - → Large uncertainty is due to the poorly known distance!
- Example 2: Red supergiant
 Betelgeuse L≈ 100 000L₀

