

### Recap

#### **Energy transport**

- Energy flux (outward)  $F=F_{
  m R}+F_{
  m C}=L/4\pi r^2$ 
  - Conduction is negligible in the Sun
  - The contributions of convection and radiation change as function of radius
  - Luminosity: energy flux arriving and being emitted from the surface at radius r
  - Flux driven by a temperature gradient



#### Energy transport mechanisms

- Diffusion microscopic
  - Radiative energy transport (photons carry energy)
  - Conduction (particle collisions, not important in the solar interior)
- Convection macroscopic bulk motion of gas

→ (net) energy flux:

$$\boldsymbol{F} = -D \, \boldsymbol{\nabla} U$$
,

U: Energy density

D: Diffusion coefficient

### Recap

#### Along the main sequence

**10**<sup>6</sup>

10-4

Early-type main sequence (> 1M<sub>☉</sub>)
Inner convective zone,
outer radiative zone



Late-type main sequence(~1M<sub>☉</sub> — 0.4 M<sub>☉</sub>):

Inner radiative zone, outer convective zone

(Very) low-mass stars (M<0.3-0.4 M<sub>☉</sub>: Fully convective interior



#### Recap

#### Radiative energy transport

mean free path of a photon = distance over which the intensity decreases by a factor of e

$$\ell_{\rm ph} = \frac{1}{\kappa \rho}$$
  $\kappa$ : opacity,  $\rho$ : mass density

- → See radiative transfer equation
- If mean free path of photons short, radiative energy transport as diffusion process
- → Radiative transfer handled with **diffusion approximation**
- → Radiative energy flux

$$\boldsymbol{F}_{\text{rad}} = -K_{\text{rad}} \, \boldsymbol{\nabla} T = -\frac{4}{3} \frac{acT^3}{\kappa \rho} \boldsymbol{\nabla} T.$$

• With  $F_{rad} = l / 4\pi r^2$  in spherical geometry (radius r):

$$\frac{\partial T}{\partial r} = -\frac{3\kappa\rho}{16\pi acT^3} \frac{l}{r^2}$$

With the equation for mass conservation 
$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$
  $\Rightarrow$   $\frac{\partial T}{\partial m} = -\frac{3}{64\pi^2 ac} \frac{\kappa l}{r^4 T^3}$ 

- $\rightarrow$  Temperature gradient required to carry the entire luminosity l by radiation.
  - A region with this gradient = in radiative equilibrium ( $\Rightarrow$  radiative zone).

#### Radiative energy transport

• Temperature gradient for radiative energy transport

$$\frac{\partial T}{\partial m} = -\frac{3}{64\pi^2 ac} \frac{\kappa l}{r^4 T^3}$$

#### Note:

- Valid only if conditions for **LTE** are fulfilled (requires short mean free paths, much shorter than the radius,  $l_{ph} \ll R$ )
- Not valid if  $l_{ph}$  becomes much longer (at the surface, near photosphere where photons escape into space)
  - → Diffusion approximation is no longer valid
  - → Solution of full equations of radiative transfer necessary!

#### • In practice (in simulations):

- Stellar interiors can be handled with the diffusion approximation up to some depth below the surface.
  - → Computationally much cheaper!
- Surface-near layers + atmosphere to be treated with full radiative transfer equations!
  - → Computationally much more demanding!

#### Radiative energy transport

• In hydrostatic equilibrium:

$$\frac{dP}{dm} = -\frac{Gm}{4\pi r^4}$$

$$\frac{dT}{dm} = \frac{dP}{dm} \cdot \frac{dT}{dP} = -\frac{Gm}{4\pi r^4} \frac{T}{P} \cdot \frac{d \log T}{d \log P}$$

$$\frac{d}{dm} = \frac{dP}{dm} \cdot \frac{dT}{dP} = -\frac{Gm}{4\pi r^4} \frac{T}{P} \cdot \frac{d \log T}{d \log P}$$

• Radiative temperature gradient

$$\nabla_{\text{rad}} = \left(\frac{\text{d} \log T}{\text{d} \log P}\right)_{\text{rad}} = \frac{3}{16\pi acG} \frac{\kappa l P}{mT^4}$$

• Describes logarithmic variation of T with depth for a star in hydrostatic equilibrium and pure radiative energy transport (with pressure as depth coordinate)

#### Radiative energy transport

- Frequency-dependence: Radiative flux in frequency interval [v, v + dv]:  $F_v dv$
- $\Rightarrow F_{\nu} = -D_{\nu} \nabla U_{\nu} = -D_{\nu} \frac{\partial U_{\nu}}{\partial T} \nabla T \quad \text{with} \quad D_{\nu} = \frac{1}{3} c \ell_{\nu} = \frac{c}{3\kappa_{\nu}\rho}$
- $\Rightarrow \text{ Integral over all frequencies: } \mathbf{F} = -\left[\frac{c}{3\rho} \int_0^\infty \frac{1}{\kappa_\nu} \frac{\partial U_\nu}{\partial T} \, \mathrm{d}\nu\right] \mathbf{\nabla} T.$
- The Can be written (as before) as  $F = -K_{rad} \nabla T$ but radiative conductivity needs to look like this now:  $K_{rad} = \frac{c}{3\rho} \int_0^\infty \frac{1}{\kappa_{\nu}} \frac{\partial U_{\nu}}{\partial T} \, d\nu$ .
- Proper average of opacity  $\kappa_{\nu}$  needed!  $\frac{1}{\kappa} = \frac{1}{4aT^3} \int_0^{\infty} \frac{1}{\kappa_{\nu}} \frac{\partial U_{\nu}}{\partial T} d\nu$ .
- ightharpoonup Energy density  $U_v$  in same frequency interval proportional to **Planck function**!  $U_v \propto B_v$

#### Radiative energy transport

• Rosseland mean absorption coefficient



$$\frac{1}{\kappa_{R}} = \frac{\int\limits_{0}^{\infty} \frac{1}{\kappa_{\nu}} \frac{dB_{\nu}}{dT} d\nu}{\int\limits_{0}^{\infty} \frac{dB_{\nu}}{dT} d\nu}$$



Used for the radiative temperature gradient

$$\frac{\partial T}{\partial m} = -\frac{3}{64\pi^2 ac} \frac{\kappa l}{r^4 T^3}$$

#### Radiative energy transport

• Rosseland mean absorption coefficient

$$rac{1}{\kappa_{\!\scriptscriptstyle R}}\!=rac{\int\limits_0^\inftyrac{1}{\kappa_
u}rac{dB_
u}{dT}\,d
u}{\int\limits_0^\inftyrac{dB_
u}{dT}\,d
u}$$

- Weighted with  $1/\kappa_{\lor} \Rightarrow$  More energy transported at frequencies where the matter is more transparent.
- Weighted with  $dB_v/dT \Longrightarrow More$  energy transported at frequencies where the radiation field is more temperature-dependent (stronger gradients).
- $\kappa$  essentially as an inverse conduction coefficient!

#### **Conductive energy transport**

- Collisions between the gas particles (ions and electrons) can also transport heat.
- Energy flux due to heat conduction (equivalently to radiative energy flux)

$$\boldsymbol{F}_{cd} = -K_{cd} \nabla T$$

Conductive and radiative energy flux can be combined:

$$\boldsymbol{F} = \boldsymbol{F}_{\mathrm{rad}} + \boldsymbol{F}_{\mathrm{cd}} = -(K_{\mathrm{rad}} + K_{\mathrm{cd}}) \ \nabla T$$

- Define an equivalent conductive opacity  $K_{\rm cd} = \frac{4acT^3}{3\kappa_{\rm cd}\rho}$
- Combined energy flux  $F = -\frac{4acT^3}{3\kappa\rho} \nabla T$  with  $\frac{1}{\kappa} = \frac{1}{\kappa_{\rm rad}} + \frac{1}{\kappa_{\rm cd}}$
- Transport mechanism with largest flux dominates
   (= mechanism for which the plasma is more transparent)

#### Radiative energy transport



 Time for a photon to travel from centre to surface without interaction:
 ~2s

#### But: mean free path of photons very small!

- In the dense solar interior: Mean free path of a photon only 10 <sup>-2</sup> m
  - Random walk,
     photon absorbed and re-emitted
     ~10<sup>22</sup> times before reaching surface
  - → Time ~ thermal timescale of the Sun
     ~ 2 10<sup>7</sup> yr
  - → Observed radiation due to fusion reactions (on average) tens of millions of years ago.
  - Net direction towards surface due to gradients (opacity)

#### Radiative energy transport

- Radiation pressure  $P_{\rm rad} = 1/3 \text{ a T}^4$
- Outward force that must be smaller than gravitational force in order to maintain hydrostatic equilibrium (HE)!

$$\left| \frac{\mathrm{d}P_{\mathrm{rad}}}{\mathrm{d}r} \right| < \left| \left( \frac{\mathrm{d}P}{\mathrm{d}r} \right)_{\mathrm{HE}} \right| \quad \Rightarrow \quad \frac{\kappa \rho}{4\pi c} \, \frac{l}{r^2} < \frac{Gm\rho}{r^2}$$

- Upper limit to the local luminosity:

  (local) **Eddington luminosity:**Maximum energy flux that can be carried by radiation  $l < \frac{4\pi cGm}{r} = l_{\rm Edd}$
- → Can get violated by intense nuclear burning
- → In these situations, radiative energy transport insufficient for maintaining hydrostatic equilibrium
- At the surface (m=M):  $L < L_{\rm Edd} = \frac{4\pi cGM}{\frac{\kappa}{1}}$  In photosphere

#### **Condition violated?**

- → No hydrostatic equilibrium!
- Gas accelerated outwards due to radiative pressure.
- → Can potentially lead to mass loss!

Radiative energy transport



- Note: At high temperature all atom are completely ionised
  - → Photons move through a plasma consisting of free electrons and atomic nuclei (incl. protons)
- Towards surface (in solar-like stars):
   Not all atoms are completely ionised anymore
  - → Changes in mean molecular weight and gradients
  - → Convection becomes the dominant mode of energy transport subject to <u>stability criterion</u>
- Note: Radiative energy transport the "default" in convectively stable regions



#### Surface convection — granulation

- Density, temperature decreases with radius
- Eventually plasma transparent enough (longer mean free path)
- → Radiation effectively removes heat from rising convective cells at surface
- → Plasma cools
- → Advected sideways (pushed away from more upwelling gas below)
- → Cooled and dense plasma sinks down again -

Hot (and bright) granules

Cooler and darker intergranular lanes



**Top of convection zone** — energy transport via convection (bulk motion)

#### Surface convection — granulation

- Density, temperature decreases with radius
- Eventually plasma transparent enough (longer mean free path)
- → Radiation effectively removes heat from rising convective cells at surface
- → Plasma cools
- → Advected sideways (pushed away from more upwelling gas below)
- → Cooled and dense **plasma sinks down again** -

**Literature:** Nordlund, Stein, Asplund Living Rev. Solar Phys., 6, (2009), 2 http://www.livingreviews.org/lrsp- 2009- 2

Hot (and bright) granules

Cooler and darker intergranular lanes



**Top of convection zone** — energy transport via convection (bulk motion)

#### **Convection** — Solar surface convection





Highest-resolution observations of the Sun's granulation ever taken. DKIST (4m) (NSO/AURA/NSF)



10 Dec. 2019 19:24:31 UT

#### Surface convection — solar granulation

Highest-resolution observations of the Sun's granulation ever taken (DKIST, NSO/AURA/NSF)

#### **Granules**

- Diameters ~1000-2000km
- Lifetime ~8min

# Bright features in intergranular lanes

• (Mostly) due to magnetic field concentrations



#### Convection

Time-dependent 3D hydrodynamic simulation of **Betelgeuse**, here **intensity** 

- Large convection cells
- Slower temporal evolution (Note time at top right)

Simulation produced with the same code as the models for the project assignment (Freytag et al. 2012)



#### Surface convection on other stars

- Observations of the cool red giant  $\pi^1$  Gruis (with PIONIER/VLT)
- Spectral type M1I
- 1.5 solar masses
- 350 times the diameter of the Sun
- Few giant convection cells

#### Surface convection on other stars

- Observations of the cool red supergiant Antares (with AMBER/VLTI)
- Spectral type M1.5I
- ~11-14 solar masses
- ~700 times the diameter of the Sun

### Stellar interior

#### Standard model of the solar interior

- Variation of (average) quantities as function of radius in the solar interior (r/R⊙)
- Scaled to value at solar centre
- Temperature  $T_0=1.57 \cdot 10^7 \text{ K}$
- Mass density  $\rho_0 = 1.54 \ 10^5 \text{ kg m}^{-3}$
- Pressure  $p_0=2.35 \ 10^{16} \ Nm^{-2}$
- Sound speed  $c_{s,0}=5.05 \ 10^5 \ ms^{-1}$



- Plasma/gas inside a star not a perfectly stratified but small perturbations occur
- → Is a layer stable against small perturbations?
- → Or can initially small perturbations grow and result in significant deviations?
- In the stratified stellar interior:
   Pressure and density decreases with radius r towards surface



- Gas element at distance r from the centre of the star
- Initially: Element in equilibrium with its surroundings at r:
- ightharpoonup Pressure P and density  $\,\rho$  are the same as in its surroundings.



- Now perturbation: **element** displaced (**rises**) a vertical distance  $\delta r$  adiabatically (no heat exchanged with environment) but slow enough that pressure is adjusted to new balance with outside pressure
  - Occurs when <u>time scale</u> of heat exchange is long compared to time scale of expansion
    of the element (the latter = local dynamical time scale, set by local sound speed);
    happens in the optically thick solar interior
- → Element expands to restore pressure equilibrium with surrounding
- → Pressure in the element reduce as it rises
- $\rightarrow$  Now at r+ $\delta$ r: Compare density of the element  $\rho^*$  with density of (new) surrounding  $\rho_0^*$

- Gas element at distance r from the centre of the star rises ...
- Initially in equilibrium with its surroundings at r



- $\varrho^* > \varrho_{\theta}^*$ : Element will fall back to initial height stratification is **convectively stable**
- $\varrho^* < \varrho_{\varrho}^*$ : Element will keep rising up (net buoyancy!)

- stratification is **convectively unstable**
- At  $r+\delta r$ : Density difference  $\varrho^*$   $\varrho_{\theta}^*$  gradients!
- For adiabatic expansion:  $\frac{\delta P^*}{P^*} = \gamma_{\rm ad} \ \frac{\delta \varrho^*}{\varrho^*}$
- → For the situation above, we derive the following criterion for the gas remaining convectively stable:

$$\frac{\mathrm{d}\log\rho}{\mathrm{d}\log P} > \frac{1}{\gamma_{\mathrm{ad}}}$$

Towards surface

# **Energy transport**

**Convection** — Stability criterion





 $\mathrm{d}\log\rho$  $\gamma_{ad}$ 

#### **Convection** — Stability criterion

• Compare gradient  $\nabla_{\rm rad}$  for convectively stable stratification with adiabatic temperature gradient  $\nabla_{\rm ad} \equiv \left(\frac{\partial \ln T}{\partial \ln P}\right)$ 

Ledoux criterion
 of stability against
 convection

$$\nabla_{\rm rad} < \nabla_{\rm ad} - \frac{\chi_{\mu}}{\chi_T} \nabla_{\mu}$$

 $\nabla_{rad}$ : spatial gradient of temperature

 $\nabla_{\mu}$ : spatial gradient of mean molecular weight

 $\nabla_{ad}$ : adiabatic temperature variation in a gas element undergoing a change in pressure.

$$\chi_T = \left(\frac{\partial \log P}{\partial \log T}\right)_{\rho, X_i} \qquad \chi_\rho = \left(\frac{\partial \log P}{\partial \log \rho}\right)_{T, X_i} : \text{ Indices: quantities held constant}$$

- For chemically homogeneous gas:  $\nabla_{\mu} = 0$ :
- → Schwarzschild criterion of stability against convection

$$\nabla_{\rm rad} < \nabla_{\rm ad}$$

- Note: In presence of fusion reactions:  $\nabla_{\mu} \ge 0$
- Stabilising effect! (An upwards displaced element is heavier due to higher μ)

#### **Convection** — Stability criterion

• Compare gradient  $\nabla_{\rm rad}$  for convectively stable stratification with adiabatic temperature gradient  $\nabla_{\rm ad} \equiv \left(\frac{\partial \ln T}{\partial \ln P}\right)$ 

Ledoux criterion
 of stability against
 convection

$$\nabla_{\rm rad} < \nabla_{\rm ad} - \frac{\chi_{\mu}}{\chi_T} \nabla_{\mu}$$

- Stratification convectively stable: Energy transport by radiation
- Stratification convectively unstable: Energy transport by convection

#### **Convection** — Stability criterion in the solar interior



