Recap — Energy transport ### Differences along the main sequence Dominant fusion process **CNO cycle** pp chain ## Recap # Differences along the main sequence #### (More) massive stars (M>M_☉) Outer radiative zone Inner convection zone Solar-like stars (M~M_⊙...0.4M_⊙) Inner radiative zone Outer convection zone **Low-mass stars** (M< 0.3-0.4M_☉) Fully convective ## Recap — Energy transport ### **Convection** — Stability criterion • Compare gradient $\nabla_{\rm rad}$ for convectively stable stratification with adiabatic temperature gradient $\nabla_{\rm ad} \equiv \left(\frac{\partial \ln T}{\partial \ln P}\right)$ Ledoux criterion of stability against convection $$\nabla_{\rm rad} < \nabla_{\rm ad} - \frac{\chi_{\mu}}{\chi_T} \nabla_{\mu}$$ ∇_{rad} : spatial gradient of temperature ∇_{μ} : spatial gradient of mean molecular weight ∇_{ad} : adiabatic temperature variation in a gas element undergoing a change in pressure. $$\chi_T = \left(\frac{\partial \log P}{\partial \log T}\right)_{\rho, X_i} \qquad \chi_\rho = \left(\frac{\partial \log P}{\partial \log \rho}\right)_{T, X_i} : \text{ Indices: quantities held constant}$$ - For chemically homogeneous gas: $\nabla_{\mu} = 0$: - **⇒** Schwarzschild criterion of stability against convection $$\nabla_{\rm rad} < \nabla_{\rm ad}$$ - Note: In presence of fusion reactions: $\nabla_{\mu} \ge 0$ - Stabilising effect! (An upwards displaced element is heavier due to higher μ) Equations of stellar structure ### **Hydrostatic Equilibrium** The outward pressure force balances the inward gravitational force everywhere inside the Sun. - Outward pressure of hot gas in the center balances the inward force due to gravity. - → At any given radius balancing the weight of all layers above - → Imbalance at some radius will result in corresponding adjustment of the stratification - → Determines the interior structure (stratification) - Main Sequence in the Hertzsprung-Russell diagram is a narrow strip as it requires stability over long enough time ### **Equations of stellar structure** - The interior structure of a star in equilibrium can be described with the following "ingredients" - Variables and their stratification (function of radius) P, ϱ, T, M_r, L_r - The following equations : | Hydrostatic equilibrium | $\frac{dP}{dr} = -\frac{GM_r \rho}{r^2}$ | |------------------------------|---| | Mass conservation/continuity | $\frac{dM_r}{dr} = 4\pi r^2 \rho$ | | Equation of state | $P = \frac{\rho kT}{\mu m_H}$ | | Energy "generation" | $\frac{dL_r}{dr} = 4\pi r^2 \rho \varepsilon$ | | Energy transport | $\frac{dT}{dr} = -\frac{3\kappa\rho}{16\pi ac} \frac{L_r}{r^2 T^2}$ | A "small" problem: We cannot observe the interior of stars directly but rely mostly on few measurable properties (M, L,...), assumptions, (tested) physical laws and material properties (often with substantial uncertainties) - And these boundary conditions: - In the centre $(r=0): M_r(0) = 0, L_r(0) = 0$ - At the surface (r=R): $M_r(R) = M$, $L_r(R) = L = 4 \pi R^2 \sigma T_{\rm eff}^4$ - Note that the chemical composition affects the density and thus the stratification via the mean molecular weight μ as function of radius (see equation of state) ### **Equations of stellar structure** - The interior structure of a star in equilibrium can be described with the following "ingredients" - Variables and their stratification (function of radius) P, ϱ, T, M_r, L_r - The following equations : | Hydrostatic equilibrium | $\frac{dP}{dr} = -\frac{GM_r \rho}{r^2}$ | Solution | |------------------------------|---|--------------------| | Mass conservation/continuity | $\frac{dM_r}{dr} = 4\pi r^2 \rho$ | Standard | | Equation of state | $P = \frac{\rho kT}{\mu m_H}$ | Model | | Energy "generation" | $\frac{dL_r}{dr} = 4\pi r^2 \rho \varepsilon$ | assumes
[X:Y:Z] | | Energy transport | $\frac{dT}{dr} = -\frac{3\kappa\rho}{16\pi ac} \frac{L_r}{r^2 T^2}$ | [0.73:0.25:0.015 | P L/L_☉ S_{crit} X(¹H) X(³He) X(⁴He) X(⁷Be) X(¹²C) X(¹⁴N) X(¹⁶O 0.00000 0.0000 1.56E+07 1.48E+02 2.29E+17 0.000 -0.127 0.34111 7.74E-06 0.63867 1.65E-11 2.61E-05 6.34E-03 8.48E-03 0.00001 0.0039 1.56E+07 1.48E+02 2.29E+17 0.000 -0.124 0.34103 7.73E-06 0.63875 1.65E-11 2.61E-05 6.34E-03 8.48E-03 0.0005 0.0083 1.56E+07 1.47E+02 2.28E+17 0.000 -0.127 0.34317 7.88E-06 0.63861 1.64E-11 2.60E-05 6.33E-03 8.50E-03 0.00017 0.0120 1.56E+07 1.46E+02 2.27E+17 0.001 -0.130 0.34546 8.04E-06 0.63462 1.62E-11 2.59E-05 6.31E-03 8.52E-03 0.00040 0.0158 1.56E+07 1.44E+02 2.27E+17 0.003 -0.132 0.34858 8.29E-06 0.63092 1.59E-11 2.56E-05 6.29E-03 8.54E-03 0.00178 0.0197 1.55E-07 1.44E+02 2.27E+17 0.007 -0.134 0.3528 8.63E-06 0.62409 1.59E-11 2.54E-05 6.26E-03 8.85E-03 0.00135 0.0237 1.55E-07 1.42E+02 2.21E+17 0.012 -0.137 0.35868 9.06E-06 0.62409 1.52E-11 2.50E-05 6.22E-03 8.62E-03 0.00135 0.0237 1.55E-07 1.42E+02 2.21E+17 0.012 -0.137 0.35868 9.06E-06 0.62409 1.52E-11 2.50E-05 6.22E-03 8.62E-03 0.00040 0.0158 1.56E+07 1.45E+02 2.26E+17 0.003 -0.132 0.34858 8.29E-06 0.63094 1.56E-11 2.54E-05 6.26E-03 8.55E-03 0.00037 0.00371 0.0271 1.54E+07 1.44E+02 2.21E+17 0.012 -0.137 0.35868 9.06E-06 0.62108 1.52E-11 2.54E-05 6.26E-03 8.62E-03 0.00214 0.0271 1.54E+07 1.40E+02 2.21E+17 0.012 -0.137 0.35868 9.06E-06 0.61476 1.47E-11 2.47E-05 6.18E-03 8.62E-03 0.00324 0.0371 1.53E+07 1.37E+02 2.15E+17 0.027 -0.144 0.37217 1.02E-05 0.60758 1.41E-11 2.43E-05 6.14E-03 8.71E-03 0.00456 0.0358 1.52E-07 1.37E+02 2.12E+17 0.027 -0.144 0.37217 1.02E-05 0.60758 1.41E-11 2.38E-05 6.14E-03 8.71E-03 0.00456 0.00558 1.52E-07 1.32E+02 2.03E+17 0.057 -0.150 0.38890 1.18E-05 0.59084 1.27E-11 2.34E-05 6.06E-03 8.81E-03 0.00852 0.0400 1.51E+07 1.32E+02 2.03E+17 0.057 -0.150 0.38893 1.32E-05 0.59084 1.27E-11 2.34E-05 6.06E-03 8.81E-03 0.00853 0.0442 1.50E+07 1.26E+02 1.39E+17 0.057 -0.155 0.39833 1.28E-05 0.59183 1.11E-11 2.24E-05 8.98E-03 8.00E-03 0.0180 0.0484 1.49E+07 1.26E+02 1.39E+17 0.106 -0.163 0.41903 1.52E-05 0.55069 1.02E-11 2.19E-05 5.94E-03 8.94E-03 0.01375 0.0572 1.46E-07 1.19E+02 1.89E+17 0.106 -0.163 0.41903 1.52E-05 0.55069 1.02E-11 2.19E-05 5.94E-03 8.94E-03 0.02560 0.0572 1.46E-07 1.12E+02 1.83E+17 0.157 -0.171 0.44176 1.85E-05 0.55245 7.55E-12 2.03E-05 5.88E-03 9.01E-03 0.02560 0.0662 1.43E-07 1.12E+02 1.83E+17 0.157 -0.171 0.44176 1.85E-05 0.52545 7.55E-12 2.03E-05 5.88E-03 9.01E-03 0.03645 0.05653 8.05067 1.05E+02 1.72E+17 0.217 -0.179 0.46672 2.28E-05 0.52547 5.5E-12 2.03E-05 5.88E-03 9.01E-03 0.03645 0.05756 1.05E-07 1.05E+02 1.72E-17 0.257 0.129 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.22900 0.1615 1.07E+07 5.01E+01 7.11E+16 0.826 -0.321 0.65438 2.11E-04 0.32529 1.06E-13 1.09E-03 4.52E-03 9.15E-03 0.22800 0.1635 1.06E+07 5.00E+01 6.49E+16 0.842 -0.337 0.65581 2.22E-04 0.32289 1.78E-13 1.30E-03 4.02E-03 9.15E-03 0.23400 0.1657 1.05E+07 4.91E+01 6.77E+16 0.842 -0.337 0.655913 2.34E-04 0.32058 1.01E-13 1.33E-03 4.00E-03 9.15E-03 0.44000 0.1678 1.04E+07 4.73E+01 6.45E+16 0.855 -0.346 0.66136 2.47E-04 0.31838 1.47E-13 1.75E-03 3.74E-03 9.15E-03 0.24500 0.179 1.03E+07 4.95E+01 6.45E+16 0.855 -0.346 0.66136 2.47E-04 0.31258 1.33E-13 1.98E-03 3.44E-03 9.15E-03 0.25800 0.1719 1.03E+07 4.65E+16 0.45E+16 0.855 -0.364 0.66550 2.73E-04 0.3129 1.22E-13 2.18E-03 3.24E-03 9.15E-03 0.25800 0.1740 1.02E+07 4.45E+01 6.14E+16 0.872 -0.373 0.66543 2.60E-04 0.31235 1.11E-13 2.99E-03 0.00E-03 9.15E-03 0.26000 0.1760 1.02E+07 4.47E-01 5.98E+16 0.872 -0.373 0.66934 3.03E-04 0.31049 1.01E-13 2.59E-03 2.78E-03 9.15E-03 0.27600 0.1801 1.00E+07 4.38E+01 5.84E+16 0.858 -0.390 0.6713 3.18E-04 0.3087 0.22E-14 2.75E-03 2.58E-03 9.15E-03 0.28200 0.1821 9.95E+06 4.22E+01 5.56E+16 0.899 -0.406 0.67450 3.52E-04 0.30353 6.76E-14 2.91E-03 2.99E-03 9.15E-03 0.28200 0.1841 9.88E+06 4.14E+01 5.42E+16 0.990 -0.406 0.67673 3.71E-04 0.30353 6.97E-14 3.06E-03 2.91E-03 0.29400 0.1861 9.81E+06 4.06E+01 5.29E+16 0.99E+01 4.07675 3.91E-04 0.30353 6.97E-14 3.19E-03 2.06E-03 9.15E-03 0.29400 0.1861 9.81E+06 4.06E+01 5.29E+16 0.99E+01 4.07675 3.91E-04 0.30368 6.90E-14 3.21E-03 1.92E-03 9.15E-03 0.30000 0.1881 9.74E+06 3.99E+01 5.16E+16 0.912 0.440 0.67902 4.10E-04 0.30368 6.80E-14 3.21E-03 1.92E-03 9.15E-03 0.30000 0.1881 9.74E+06 3.99E+01 5.16E+16 0.912 0.440 0.67902 4.10E-04 0.30368 6.80E-14 3.21E-03 1.80E-03 9.15E-03 0.30000 0.1881 9.74E+06 3.99E+01 5.16E+16 0.912 0.440 0.68129 4.45E-04 0.30368 6.80E-14 3.21E-03 1.80E-03 9.15E-03 0.30000 0.1881 9.74E+06 3.99E+01 5.16E+16 0.912 0.440 0.68129 4.45E-04 0.30368 6.80E-14 3.21E-03 1.80E-03 9.15E-03 0.30000 0.1881 9.74E+06 3.99E+01 5.16E+16 0.912 0.440 0.68129 4.45E-04 0.30368 6.80E-14 3.21E-03 1 0.31000 0.1881 9.74E+06 3.99E+01 5.16E+16 0.912 -0.430 0.67902 +1.01E-04 0.30084 5.80E-14 3.27E-03 1.80E-03 9.15E-03 0.31000 0.1914 9.63E+06 3.86E+01 4.59E+16 0.99E+0 4.68129 4.45E-04 0.29964 4.27E-14 3.69E-03 1.48E-03 9.15E-03 0.32000 0.1948 9.52E+06 3.74E+01 4.75E+16 0.926 -0.459 0.68339 4.84E-04 0.29944 4.27E-14 3.69E-03 1.48E-03 9.15E-03 0.33000 0.2014 9.31E+06 3.63E+01 4.55E+16 0.933 -0.473 0.68535 5.26E+04 0.29445 4.7E-14 3.79E-03 1.37E-03 9.15E-03 0.34000 0.2014 9.31E+06 3.40E+01 4.36E+16 0.939 -0.488 0.68716 5.71E-04 0.29261 3.15E-14 3.82E-03 1.28E-03 9.15E-03 0.35000 0.2047 9.20E+06 3.40E+01 4.18E+16 0.945 -0.520 0.68885 6.20E+04 0.29988 2.144 3.92E-03 1.21E-03 9.15E-03 0.35000 0.2080 9.10E+06 3.29E+01 4.01E+16 0.950 -0.517 0.69042 6.74E-04 0.29982 7.33E-14 3.92E-03 1.16E-03 9.15E-03 Rev. Mod. Phys., Vol. 60, No. 2, April 1988 - And these boundary conditions: - In the centre (r=0): $M_r(0) = 0$, $L_r(0) = 0$ - At the surface (r=R): $M_r(R) = M$, $L_r(R) = L = 4 \pi R^2 \sigma T_{\rm eff}^4$ - Note that the **chemical composition** affects the density and thus the stratification via the mean molecular weight μ as function of radius (see equation of state) ### **Equations of stellar structure** - The interior structure of a star in equilibrium can be described with the following "ingredients" - Variables and their stratification (function of radius) P, ϱ, T, M_r, L_r ### **Equations of stellar structure** - The interior structure of a star in equilibrium can be described with the following "ingredients" - Variables and their stratification (function of radius) P, ϱ, T, M_r, L_r - The following equations : | Hydro dynamic equilibrium | $\frac{dP}{dr} = -\frac{GM_r\rho}{r^2} - \rho \frac{d^2r}{dt^2}$ | |----------------------------------|--------------------------------------------------------------------------------| | Mass conservation/continuity | $\frac{dM_r}{dr} = 4\pi r^2 \rho$ | | Equation of state | $P = \frac{\rho kT}{\mu m_H}$ | | Energy "generation" | $\frac{dL_r}{dr} = 4\pi r^2 \rho \left[\varepsilon - T \frac{dS}{dt} \right]$ | | Energy transport | $\frac{dT}{dr} = -\frac{3\kappa\rho}{16\pi ac} \frac{L_r}{r^2 T^2}$ | #### More general, time-dependent form Stellar structure is time-dependent and will adjust - → S: entropy - → T (dS/dt) is the energy of collapse expressed in terms of the entropy change - And these boundary conditions: - In the centre $(r=0): M_r(0) = 0, L_r(0) = 0$ - At the surface (r=R): $M_r(R) = M$, $L_r(R) = L = 4 \pi R^2 \sigma T_{\rm eff}^4$ - Note that the mean molecular weight μ and the opacity \varkappa are now functions of radius and time (due to fusion in the core) ### Mixing length theory - In the context of stellar (interior) structure and evolution, we want to know about convection zones: - How much energy can be transported by convection? - What is the **temperature gradient**? - But: Detailed theory of convection and its practical application still challenging today - Addressed with numerical simulations but very challenging and computationally expensive - → Prohibitive to use as part of stellar evolution calculations. - → Simpler approach needed - **→** Mixing Length Theory (MLT) ### Mixing length theory - Simplified picture of convective energy transport: - 1. Gas element rises (or sinks) over a radial distance - 2. Gas element dissolves (becomes part of the new environment) and releases excess heat - Mixing length l_m - If gas element sinks, it absorbs deficit energy from environment - Mixing length l_m is an unknown free parameter! - Assumption: l_m on the order of local pressure scale height H_P cooler hot ### Mixing length theory - Simplified picture of convective energy transport: - 1. Gas element rises (or sinks) over a radial distance - 2. Gas element dissolves (becomes part of the new environment) and releases excess heat - Mixing length l_m - If gas element sinks, it absorbs deficit energy from environment - Mixing length l_m is an unknown free parameter! - Assumption: l_m on the order of local pressure scale height H_P • **Pressure scale height:** (in a stratified medium) the radial distance over which the pressure changes by a factor 1/e $$H_P = \left| \frac{\mathrm{d}r}{\mathrm{d}\ln P} \right| = \frac{P}{\rho g}$$ ### Mixing length theory - Assumption: $l_m = \alpha H_P$ - Valid in hydrostatic equilibrium. - Reasonable as gas element expands while rising - Assume spherical surface inside the convection zone - 1/2 covered by rising blobs - 1/2 covered by sinking blobs - ⇒ Expanding rising blobs would cover most of the area after rising 1-2 pressure scale heights. - → Net energy transport upwards (down the gradient) • Pressure scale height: (in a stratified medium) the radial distance over which the pressure changes by a factor 1/e $P(\mathbf{r}) = 1$ $$P(\mathbf{r}) = P_0 e^{-(\mathbf{r}/H_p)} \implies H_P = \left| \frac{\mathrm{d}r}{\mathrm{d}\ln P} \right| = \frac{P}{\rho g}$$ Mixing length theory Detailed numerical model calculations (in comparison to observation) to derive/calibrate corresponding mixing length - Mixing length (via parameter depends on - Effective temperature $T_{ m eff}$ - Grav. Acceleration log g - Metallicity [Fe/M] - Values for α typically ~2 ### The convective energy flux - Gas element after rising a distance $\delta r = l_m$: - \rightarrow Mean excess temperature ΔT between element and surrounding: $$\Delta T = T_{\rm e} - T_{\rm s} = \left[\left(\frac{\mathrm{d}T}{\mathrm{d}r} \right)_{\rm e} - \frac{\mathrm{d}T}{\mathrm{d}r} \right] \ell_{\rm m} = \Delta \left(\frac{\mathrm{d}T}{\mathrm{d}r} \right) \ell_{\rm m}$$ - dT/dr: temperature gradient in surrounding - $(dT/dr)_e$: variation of temperature with radius r for the gas element while rising and expanding adiabatically - $\Delta(dT/dr)$: difference between the two gradients. - Rewrite the equation above with gradients $\nabla \equiv \left(\frac{\partial \ln T}{\partial \ln P}\right)$ and $H_P = \left|\frac{\mathrm{d}r}{\mathrm{d} \ln P}\right| = \frac{P}{\rho g}$ deriving and using the following equation $$\frac{\mathrm{d}T}{\mathrm{d}r} = T \frac{\mathrm{d}\ln T}{\mathrm{d}r} = T \frac{\mathrm{d}\ln T}{\mathrm{d}\ln P} \frac{\mathrm{d}\ln P}{\mathrm{d}r} = -\frac{T}{H_P} \nabla \quad \text{and} \quad \left(\frac{\mathrm{d}T}{\mathrm{d}r}\right)_e = -\frac{T}{H_P} \nabla_{\mathrm{ad}} \nabla_{$$ $$\Delta T = T \frac{\ell_{\rm m}}{H_P} (\nabla - \nabla_{\rm ad})$$ ### The convective energy flux - Mean temperature excess ΔT is related to an excess in internal energy between the gas element and the surrounding $\Delta u = c_P \Delta T \varrho$ - Energy flux carried by gas elements at (average) velocity v_c (the convective velocity) $$F_{\text{conv}} = v_c \varrho \Delta u = v_c \varrho c_P \Delta T$$ - → What is the **convective velocity**? - ightharpoonup Gas element moves over distance l_m in the time t starting from resting position at constant acceleration: $l_m = 1/2$ a t^2 - ightharpoonup Average velocity ${\rm v_c} \approx l_m / t = \sqrt{\frac{1}{2} \ell_{\rm m} a}$ - \implies Buoyancy force provides the acceleration $a=-g\,\frac{\Delta\rho}{\rho}\approx g\,\frac{\Delta T}{T}$ $$\Delta T = T \frac{\ell_{\rm m}}{H_P} (\nabla - \nabla_{\rm ad})$$ ### The convective energy flux - ightharpoonup Convective velocity $v_{\rm c} pprox \sqrt{\frac{1}{2}\ell_{\rm m}g\frac{\Delta T}{T}} pprox \sqrt{\frac{\ell_{\rm m}^2 g}{2H_P}} \left(\nabla \nabla_{\rm ad}\right)$ - Increases with radius - For the Sun up to \sim 2 km/s (average velocity)- ⇒ Convective energy flux $$F_{\text{conv}} = \rho c_P T \left(\frac{\ell_{\text{m}}}{H_P}\right)^2 \sqrt{\frac{1}{2}gH_P} (\nabla - \nabla_{\text{ad}})^{3/2}$$ - **Superadiabaticity** $\nabla \nabla_{ad}$: degree to which the actual temperature gradient ∇ exceeds the adiabatic value ∇ _{ad}. - What $\nabla \nabla_{ad}$ is needed to carry the whole energy flux by convection? - With typical values for the whole star (using the virial theorem): $$\Rightarrow F_{\text{conv}} \sim \frac{M}{R^3} \left(\frac{GM}{R}\right)^{3/2} (\nabla - \nabla_{\text{ad}})^{3/2}$$ **Surface** v_c decreases $v_c \sim 2km/s$ $v_c \sim \text{few m/s}$ Lower boundary of convection zone ### The convective energy flux and temperature gradient • Combine $$F_{\text{conv}} = \rho c_P T \left(\frac{\ell_{\text{m}}}{H_P}\right)^2 \sqrt{\frac{1}{2}gH_P} (\nabla - \nabla_{\text{ad}})^{3/2}$$ and $F_{\text{conv}} \sim \frac{M}{R^3} \left(\frac{GM}{R}\right)^{3/2} (\nabla - \nabla_{\text{ad}})^{3/2}$ **⇒** Superadiabaticity $$abla - abla_{\rm ad} \sim \left(\frac{LR}{M}\right)^{2/3} \frac{R}{GM}$$ - Typical values in the interior of the Sun $\nabla \nabla_{ad} \sim 10^{-5} 10^{-7}$ - → Only very small superadiabaticity needed! - ightharpoonup Convective energy transport is very efficient with $F_{\rm conv} \gg F_{\rm rad}$ - Temperature gradient in a convective region can be derived by simply using $\nabla \approx \nabla_{\rm ad}$ $$\implies \frac{\mathrm{d}T}{\mathrm{d}m} = -\frac{Gm}{4\pi r^4} \frac{T}{P} \nabla$$ #### **Convection near the surface** - Density and temperature much smaller - Superadiabaticity much larger - Temperature gradient depends on detailed properties of the convective motions ### Mixing length - conclusion - Radiative energy transport = default (in a stable layer) - Convective energy transport very efficient, occurs if a layer is unstable against convection $$\nabla_{\rm rad} < \nabla_{\rm ad} - \frac{\chi_{\mu}}{\chi_T} \, \nabla_{\mu}$$ - For stellar interior structure/evolution simplified mixing length theory valid in good approximation ($l_m = \alpha H_P$) - Calibration of α from comparison of detailed 3D numerical models ### **Entropy** - Entropy quite constant in the upper solar convection zone (in contrast to stratification in temperature, pressure etc.) (logarithmic color scale with arbitrary units) as a function of depth ### **Entropy** - At the surface: Plasma becomes (more) transparent (longer mean free path of photons) - → Radiative energy transport becomes efficient - → Plasma at surface looses thermal energy via radiative cooling - → Hydrogen ions **recombine** with free electrons to form neutral hydrogen atoms - → Large amount of ionisation energy set free, also radiated away - ⇒ Escaping photons remove energy and also entropy - → Resulting overdense fluid sinks back into convection zone (due to gravity) - Rising plasma in the granules: hot, underdense, high entropy - Sinking plasma in the intergranular lanes: cool, overdense, low entropy - Strong impact on entropy at the surface (entropy jump + fluctuations) but not so much deeper in the convection zone as diverging upflowing plasma all has almost the same entropy ### **Entropy** • Convection needs to transport the flux $F=L_{\odot}/4~\pi~r^{2}$ - *difference between actual and adiabatic temperature gradient - Smaller **superadiabaticity*** $\nabla \nabla_{ad} \Leftrightarrow$ More efficient transport of energy flux by convection - Related to the excess of specific entropy over the entropy of the marginal state ($abla= abla_{ m ad}$) $\Delta S = \int c_{ m P} (ablaabla_{ m a}) \, d\ln P$ - Δ S: entropy "jump" across the outermost layers of the convection zone (only there $\nabla = \nabla_{ad}$, significantly larger than zero) - Note: Efficiency of convection connected to mixing length parameter α - Detailed properties of convection (including impact of downdraft on entropy) affect the mixing length parameter - Simulated vertical velocity in a vertical cross-section trough the Sun's upper convection zone, played fast forward - red: upward - blue: downward - streamlines (C. Henze, NASA Advanced Supercomputing Division, Ames Research Center). 124 Mm - Convection zone: Mass density changes by orders of magnitudes - Density scale height for a stratified medium: $\varrho(r) = \varrho_0 e^{-(z/H)}$ - Gas element rising up (or down) by a density scale height - \Rightarrow Expands (or contracts) by a factor e. - → Set dominant spatial scale of convective motions - → Convection cell size ≈ few local scale height #### Rising gas elements cannot carry mass higher but diverge. - Most elements turning over within a density scale height (statistically!) - Upward flows diverge, smoothed out - →Upflows occupy ~2/3 of the area.* #### **Sinking gas elements** get compressed and fluctuations increased, becoming turbulent. - Elements can shoot down as turbulent plumes - →Downflows occupy ~1/3 of the area. * - * Inside the convection zone! The uppermost layer (~100km in the Sun) is special as it is at surface where the plasma becomes transparent. #### surface - Asymmetry up/downflows but conservation of mass must be obeyed! - Temperature and density increase with depth - Scale height $H_P = P/(\varrho g)$ increases with depth - → Typical size of convective cells set by mass conservation and local conditions, increase with depth $$c_{\mathrm{s}} = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{s}} = \sqrt{\frac{\gamma P_{0}}{\rho_{0}}} = \sqrt{\frac{\gamma k_{\mathrm{B}} T_{0}}{\mu m_{\mathrm{H}}}} = \sqrt{\gamma g H_{p}}$$ $k_{ m B}$: Boltzmann constant μ : mean molecular weight $m_{ m H}$: mass of hydrogen - Asymmetry up/downflows but conservation of mass must be obeyed! - Temperature and density increase with depth - → Scale height $H_P = P/(\varrho g)$ increases with depth - → Typical size of convective cells set by mass conservation and local conditions, increase with depth ### **Spatial scales** — Convection cell sizes - Conservation of mass must be obeyed! - Rough estimate for typical radius of a convection cell: - Assume a volume in the form of a cylinder with height H and radius r - Inflow of matter through bottom with area $A_{in} = \pi r^2$ - Flow turns over within one scale height H - \rightarrow Outflow through the sides of the cylinder with area $A_{out} = 2 \pi r H$ - Conservation: Outflow = inflow $$\rightarrow$$ $A_{\text{in}} \varrho v_z = A_{\text{out}} \varrho v_h$ $$\Rightarrow \pi r^2 \varrho v_z = 2 \pi r H \varrho v_h$$ $$\rightarrow$$ r = 2 H v_h/v_z $c_{s,0} \sim 500 \text{ km s}^{-1}$ Christensen-Dalsgaarc c_s/c_{s0} T/T_0 ρ/ρ_0 p/p_0 ## Convection ### **Spatial scales** — Convection cell sizes - Typical radius of a convection cell $r = 2 H v_h/v_z$ - Vertical velocity $v_z = \text{convective velocity}$ - Horizontal velocity? Upper limit set by local sound speed $$v_h < c_s$$ Convective velocity v_z and sound speed c_s (> v_h) depend on the local thermodynamic conditions and are thus functions of radius - $v_z \sim 2km/s$, $H \sim 1000 \text{ km}$, $c_s = (\gamma H_P g)^{1/2} \approx 20 \text{ km/s}$ - $r = 2 H v_h/v_z < 2000 km \times 20/2 = 20 000 km$ - → Horizontal cell diameters are <u>smaller</u> than that - → Will change strongly as function of radius / depth! 1.0 0.8 0.6 0.4 0.2 0.0 ### **Spatial scales** — Convection cell sizes - Typical radius of a convection cell $r = 2 H v_h/v_z$ - **Example 2:** 3D simulation, 1000 km below surface) - All in cgs units! - log g = 4.4 - $v_z \sim 2 \text{km/s}$ - $log P \sim 6$ - log Q ~ -6 - $ightharpoonup H_P = P/(\varrho g) = 400 \text{ km}$ - $ightharpoonup c_s = (\gamma H_P g)^{1/2} \approx 13 \text{ km/s}$ - \Rightarrow r < 2 $H_P c_s/v_z \approx 5000 \text{ km}$ - → Convection cell diameter smaller than 10 Mm 1000 500 ### **Spatial scales** — Convection cell sizes - Typical radius of a convection cell $r = 2 H v_h/v_z$ - Example 2: 3D simulation, 1000 km below surface) - All in cgs units! - log g = 4.4 - $v_z \sim 2 \text{km/s}$ - $log P \sim 6$ - · log Q ~ -6 - \Rightarrow $H_P = P/(\varrho g) = 400 \text{ km}$ - $ightharpoonup c_s = (\gamma H_P g)^{1/2} \approx 13 \text{ km/s}$ - \rightarrow r < 2 $H_P c_s/v_z \approx 5000 \text{ km}$ - Very rough upper limit only! - → From simulation diameter of convection cells at z=-1000km on the order of ~2000km ### **Spatial scales** • Pressure scale height $H_P = P/(\varrho g)$ ### **Convective turnover time scale** - Turnover time scale $t_{\rm to} \propto H_P / v_{\rm c}$ - Solar convection zone highly stratified! - → Convective turnover time scale varies by 4 orders of magnitude from surface bottom of the convection zone - Surface: $t_{to} \approx 200 \text{ s}$ - Bottom of convection zone: $t_{to} \approx 25 \text{ d}$ ### **Spatial scales** — Convection cell sizes - Pressure scale height $H_P = P/(\varrho g)$ - Upshot Convection cell size - Scales with pressure scale height - Increases with depth due to increasing pressure, density, temperature - About 2Mm at surface but many Mm deeper in the interior - Rough estimates, more precise numbers require detailed numerical simulations (and/or a more detailed description of convection) - Note the dependence on g^{-1} - → What does it mean when we consider a giant star with logg~ 0 instead of the Sun with logg=4.4? ### **Spatial scales** — Convection cell sizes - Pressure scale height $H_P = P/(\varrho g)$ - Upshot Convection cell size - Scales with pressure scale height - Increases with depth due to increasing pressure, density, temperature - About 2Mm at surface but many Mm deeper in the interior - Rough estimates, more precise numbers require detailed numerical simulations (and/or a more detailed description of convection) - Note the dependence on g^{-1} - → What does it mean when we consider a giant star with logg~ 0 instead of the Sun with logg=4.4? - Expect convection cells several orders of magnitude larger!