AST5770

Solar and stellar physics

Sven Wedemeyer, University of Oslo, 2023

Measuring magnetic fields in stellar atmospheres

Zeeman splitting

Measuring magnetic fields

Methods of magnetic field measurement

- Direct methods:
 - Zeeman effect polarized radiation
 - Hanle effect polarized radiation (scattering)
 - Gyroresonance radio spectra
- Indirect methods (proxies)
 - Bright or dark features in photosphere (sunspots, G-band bright points)
 - Call H and K plage
 - Fibrils seen in chromospheric lines, e.g. Ha
 - Coronal loops seen in EUV or X-radiation

Zeeman diagnostics

- Splitting of atomic energy in presence of magnetic field
 - Total angular moment j splits into 2J+1 sub-levels with different M_J .
 - Transitions allowed between levels with $\Delta J = 0, \pm 1 \& \Delta M_J = 0 (\pi), \pm 1 (\sigma_{\text{\tiny b}}, \sigma_{\text{\tiny r}})$
- Splitting depends on strength and orientation of magnetic field (wrt line of sight)
- Observation perpendicular to mag. field \vec{B} : three components:
 - π component linearly polarized parallel to \vec{B}
 - σ components are linearly polarized perpendicular to \vec{B}
 - No information about the direction of magnetic field vector ${\ensuremath{\vec{B}}}$

L is the total orbital moment of the electrons *S* is the spin quantum number *J* is the total angular momentum M_J is the magnetic quantum number: -J,...,J

МВ

мя

Zeeman diagnostics

- Zeeman effect allows direct detection and measurement of magnetic field
- Note: Zeeman effect can be subtle and difficult to measure
- BUT: Unique **polarisation** signature in addition to change of spectral line shape/split
- Measurement of polarization is central to measuring solar magnetic fields

Zeeman splitting and circular polarization of the infrared Fe I line at 1564.8 nm White light with slit pos. **Circular polarisation** 20 20 15 15 Mm 10 10 5 5 0 0 25 1565.0 0 10 15 20 1564.8 λ Mm [nm] Spectrum at slit pos. Circular polarisation profile 25 20 V/I_C [%] 15 0 10 5 -250 1565.0 1564.8 1564.8 1565.0 λ [nm] λ [nm]

German Vacuum Tower Telescope, Tenerife (1999)

Zeeman diagnostics

Longitudinal Zeeman Effect

Absorption of right- and left circularly polarized light at shifted frequencies corresponding to Zeeman σ components; no absorption of π component

Transverse Zeeman Effect

- Absorption for all components (σ^+, π, σ^-) with intensity ratios 1/4 : 1/2 : 1/4
- Stokes U = 0

Zeeman polarimetry

- Most used remote sensing of astrophysical (and certainly solar) magnetic fields
- Effective measurement of field strength if Zeeman splitting is comparable to Doppler width or more: B > 200 G ... 1000 G (depending on spectral line)
- Works best in photosphere
- Splitting scales with wavelength works best in IR
- Sensitive to cancellation of opposite magnetic polarities needs high spatial resolution

Magnetograms

- Magnetograph = Instrument that makes maps of (net circular) polarisation in wing of Zeeman sensitive line.
- Conversion of polarisation into magnetic field requires a careful calibration.
- Usually only Stokes V is used (simplest to measure),
- Provides longitudinal component of **B**.

SOHO/MDI

Zeeman Doppler Imaging (ZDI)

- Derives magnetic field information from Zeeman splitting of spectral lines from spatial unresolved observations
- As function of time over stellar rotation period(s)
- Requires observations over a sufficient number of nights
- Data then used to reconstruct the stellar surface as it rotated
- Mapping the star's surface

V/I_c (%)

Zeeman Doppler Imaging (ZDI)

- ZDI: observational constraints for dynamos in Sun-like stars
- Commonly used: Problem: Latitude degeneracy -
 - ZDI cannot always distinguish the hemisphere in which the starspots are located
 - Uncertain north-south distribution of starspot active latitudes
 - Limits constraints of dynamo theory !
- Alternative measurements via direct interferometric imaging

Example: II Pegasi A (HD 224085)

- 1075 [5] - 1075 [5] - 0 - -1075 [6] - -1075 - -- -1075 - -

2150

Strassmeier/AIP

Valua

Measuring magnetic fields

Direct interferometric imaging

- Works only for stars with significant angular extent in the sky (physical size vs. Distance)
 - Few examples so far (limited by achievable angular resolution)
 - Observation with CHARA of ζ Andromedae (Roettenbacher et al 2016)

Maacurad naramatar

- K-type cool giant star (15 times larger than Sun)
- Observations in 2011 and 2013 over several consecutive days to cover the star's rotation period

	weasured parameter	value
60-Inch telescope	Angular polar diameter, θ_{LD} (mas)	2.502 ± 0.008
Half-million-gallon water lank in case of fire	Polar radius (R_{\odot})	15.0 ± 0.8
100-inch telescope	Oblateness (major to polar axis)	1.060 ± 0.011
Control/Office Exhibit Building Beam Combining Lab MI. Wilson Observatory Miseum	Inclination, <i>i</i> (°)	70.0±2.8
Site Managers Residence	Pole position angle (°, E of N)	126.0 ± 1.9
	Values from the literature	
CHARA Beam Synthesis Facility	Distance, d (pc)	17.98 ± 0.83 (ref. 29)
Engineering Shop	Effective temperature, T _{eff} (K)	4600 ± 100 (ref. 9)
	Luminosity, log L/L_{\odot}	1.98 ± 0.04 (ref. 9)
Six CHARA Array 1-meter telescopes CHARA Array of Georgia State University	Primary mass (M_{\odot})	2.6±0.4 (ref. 9)
CHARA facilities are indicated with a bold outline	Secondary mass (M_{\odot})	${\sim}0.75$ (ref. 9)
CHARA, USA: array of 6 telescopes	Iron metallicity [Fe/H]/[Fe/H] ₀	-0.30 ± 0.05 (ref. 9)

Table 1 | Parameters of ζ And

Direct interferometric imaging — ζ Andromedae

Time sequence of interferometric images

➡Time-dependent model of the star's surface

 Dark polar spot seen in both observation epochs but lower-latitude spot structures in both hemispheres do not persist between observations

Roettenbacher et al 2016

Direct interferometric imaging — ζ Andromedae

Time sequence of interferometric images

(Potential) problem:

a

- Conclusion: Inferred magnetic field configuration difficult to produce with a global dynamo
- Is there enough data for this conclusion?
- Interferometry is challenging but promising
- Can provide important constraints on stellar dynamos and the resulting magnetic fields!

➡Time-dependent model of the star's surface

Dark polar spot seen in both observation epochs but lower-latitude spot structures in both hemispheres do not persist between observations

Magnetic field in the solar atmosphere

Magnetism

Magnetic pressure

- Ionised gas (plasma) in motion electric and magnetic fields need to be considered
- Additional contributions from magnetic pressure inside magnetic flux concentration
- Magnetic pressure $P_m = B^2 / 8\pi$
- Pressure balance \Rightarrow lower gas pressure inside the flux concentration than outside
- Gas pressure of surrounding drops with height → Magnetic structure funnels out (wine-glass shape)

Magnetism

Plasma-Beta

• Plasma- β describes the ratio of thermal to magnetic pressure

$$\beta = \frac{P_g}{P_m} = \frac{8\pi P_g}{B^2}$$

- β < 1: Magnetic field dominates and dictates the dynamics of the gas
- β>1: Thermal gas dynamics dominate and forces the field to follow — The magnetic field is frozen-in.
- β is a local quantity but the typical range of values changes with radius:
 - Convection zone: $\beta > 1$
 - Lower atmosphere (outside strong magnetic field concentrations): $\beta > 1$
 - Chromosphere: transition to $\beta < 1$
 - Corona: β <<1

Sunspot umbra

penumbra

quiet Sun

Ouiet Sur

Magnetic field in the solar atmosphere

G-band observation — magnetic field concentrations visible with high contrast in this band

Mag. field

Flux emergence

Magnetic field in the solar atmosphere

Flux emergence

Top View

Side View

One Million Kelvin Ten Million Kelvin

Magnetic field in the solar atmosphere

Flux emergence

- Emergence of bipolar regions with a large range of contained magnetic flux
 - Many regions with little flux, fewer with a lot of flux
- Varies over solar cycle

Ephemeral regions = short-lived, small bipolar regions (do not develop sunspots)

Magnetic field in the solar atmosphere

Flux emergence

• Emergence of bipolar regions with a large range of contained magnetic flux

- Many regions with little flux, fewer with a lot of flux
- Varies over solar cycle

Ephemeral regions = short-lived, small bipolar regions (do not develop sunspots)

Martin (2018)

Magnetic field in the solar atmosphere

Advection — supergranulation scales

- Magnetic field emerges to the surface
- Away from strong fields (sunspots):
 High plasma-β in the photosphere
- Frozen-in magnetic field
- Field is advected with the photospheric velocity field towards the edges of supergranules
- Concentrated there, resulting in stronger magnetic flux concentrations
- Observable as magnetic network
- Encloses inter-network regions
- Magnetogram (grayscale)
- Horizontal flow field (arrows)
- Supergranule boundaries: yellow

Magnetic field in the solar atmosphere

Advection — granulation scales

- Advection into intergranular lanes (downflow lanes between granules)
- Concentration into stronger flux concentrations but fewer than in the network

Granulation image, Fe I 630.25 nm line

Overlaid magnetogram contours 30, 50, 70 and 90 G

(Dominguez Cerdena et al., 2003)

