AST5770

Solar and stellar physics

Sven Wedemeyer, University of Oslo, 2023

Magnetic field in the solar atmosphere

Magnetism

Recap

- Magnetic pressure $P_m = B^2 / 8\pi$
 - Affects structure and dynamics of the plasma by "competing" with thermal pressure.
 - Magnetic flux structures funnel out in the atmosphere.
 - Magnetic flux bundles in the convection zone become buoyant.
- **Plasma-\beta parameter** = ratio of thermal to magnetic pressure
 - $\beta < 1$: Magnetic field dominates and dictates the dynamics of the gas
 - $\beta > 1$: Thermal gas dynamics dominate and forces the field to follow
 - The magnetic field is **frozen-in.**

Flux emergence

- Magnetic flux "ropes" become buoyant and rise
- Emergence of bipolar regions with a large range of contained magnetic flux
- Occurrence scales with contained magnetic flux

Ouiet Sur

Magnetic field in the solar atmosphere

G-band observation — magnetic field concentrations visible with high contrast in this band

Magnetic field in the solar atmosphere

Advection — supergranulation scales

- Magnetic field emerges to the surface
- Away from strong fields (sunspots):
 High plasma-β in the photosphere
- Frozen-in magnetic field
- Field is advected with the photospheric velocity field towards the edges of supergranules
- Concentrated there, resulting in stronger magnetic flux concentrations
- Observable as magnetic network
- Encloses inter-network regions
- Magnetogram (grayscale)
- Horizontal flow field (arrows)
- Supergranule boundaries: yellow

Magnetic field in the solar atmosphere

Advection — granulation scales

- Advection into intergranular lanes (downflow lanes between granules)
- Concentration into stronger flux concentrations but fewer than in the network

Granulation image, Fe I 630.25 nm line

Overlaid magnetogram contours 30, 50, 70 and 90 G

(Dominguez Cerdena et al., 2003)

Magnetic field in the solar atmosphere

- Different parts of the line formed at different heights
- Looking a bit higher in the atmosphere
- Spatial scales corresponding to granulation visible
- Prominent scale with super granulation, here with cell sizes of ~30Mm

y [arcsec

 Extension of magnetic field from photospheric footprints into the chromosphere

Ca ll 854 nm, $\Delta\lambda = -193.9$ pm

Magnetic field in the solar atmosphere

Magnetic field in the solar atmosphere

photosphere

chromosphere

formation height

continuum

line wing

line core

Magnetic field in the solar atmosphere

Structure of Quiet Sun regions

Magnetic field in the solar atmosphere

Structure of Quiet Sun regions

- Magnetic field in the photosphere: Footpoints with vertical field
- Chromosphere: Magnetic field connects polarities, forms loop with horizontal field, forms "canopies"
- Different diagnostics (spectral lines/continua) show different layers and aspects
 - Horizontal chromospheric field clearer at some wavelengths (e.g. : Hα core) than at others

Magnetic field in the solar atmosphere

Structure of Quiet Sun regions

Magnetic field extrapolation from photospheric magnetograms

Observed: Fibrils in Ca II K

Jafarzadeh et al 2021

10 000 km

photosphere — G-band (430nm)

14

- Magnetic field strength: Max. values in the (central) umbra 2000-3500 G
- Field strength decreases radially outwards, ~1000 G at the boundary
- **Brightness** with respect to Quiet Sun: umbra: 20%, penumbra: 75%

Sunspots Evolution

Backyard Video Astronomy by Paolo Porcellana

NOAA 1785 Sunspot Evolution

Classification

- Several classification schemes (going back to e.g. Hale et al. 1919)
- Modified Mount Wilson sunspot classification scheme (Bray & Loughhead, 1964; Künzel (1960)

α — Unipolar sunspot group.	β — Bipolar sunspot group with both positive and negative	γ — Multipolar. Complex sunspot group, pos. and neg.	δ — Sunspot group with umbrae of pos. and neg. polarities
	magnetic polarities (bipolar), simple and distinct division between polarities.	polarities irregularly distributed.	within 2 degrees, sharing same penumbra

MDI Magnetogram 26-Oct-2003 12:47:03.280

Murray (2013)

Classification

- Several classification schemes (going back to e.g. Hale et al. 1919)
- Modified Mount Wilson sunspot classification scheme (Bray & Loughhead, 1964; Künzel (1960)

α — Unipolar sunspot group.	β — Bipolar sunspot group with both positive and negative magnetic polarities (bipolar), simple and distinct division between polarities.	γ — Multipolar. Complex sunspot group, pos. and neg. polarities irregularly distributed.	δ — Sunspot group with umbrae of pos. and neg. polarities within 2 degrees, sharing same penumbra
βγ — Bipolar sunspot group but complex so that no single, continuous line can be drawn between spots of opposite polarities.	βδ — Sunspot group of β class but containing one (or more) δ spots.	βγδ — Sunspot group of βγ class but containing one (or more) δ spots.	γδ — Sunspot group of γ class but containing one (or more) δ spots.

The Sun's magnetic field has a complicated topology.

Nikbakhsh et al. 2019

Table 2: Total and relative abundances of each complexity class according to the daily number of ARs from January 1996 to December 2018.

Complexity	Count	Relative abundance		
	[number]	[%]		
α	10296	30.73	00 20	
β	19284	57.57	88.30	
$\begin{bmatrix} -\beta \overline{\gamma} \end{bmatrix}$	2919	8.71		
βγδ	997	2.97	}11.08	
βδ	166	0.49)	
γ	4	0.01		
γδ	5	0.01		
Total count	33671			

Sunspots Classification

- New classification of sunspots based on their likelihood of flaring (McIntosh 1990 / Zürich class)
- Fkc class spots are much more likely to flare!
 - F = bipolar group with penumbra around spots at both ends of the group
 - k = Large, asymmetric penumbra
 - c= Compact sunspot distribution.
- Note: Sunspots change classification during their evolution, often beginning with simple structure and becoming more complex.

Sunspots Sizes and lifetimes

- Large range of diameters:
 - very large sunspots up to 60 000 km (rare) and down to 3000 km (also rare)
 - Smaller photospheric magnetic structures: pores and magnetic elements
- Contained magnetic flux scales with area .
- Smooth transition to smaller features (pores)
- Lifetimes: from hours for small sunspots to (rarely) months for the largest ones
 - Lifetime increases linearly with max. sunspot area
 - Sunspots decay steadily soon after reaching max. size due turbulent diffusion of the magnetic field at the surface

Magnetic field structure

- In the centre of the umbra (photosphere): Vertically aligned
- Increasing inclinations outwards, becoming almost horizontal in the penumbra
- Penumbra: bright radial filaments with field inclination ~40 deg* in outer penumbra, alternates with dark filaments with nearly horizontal field
- Regular spot (pairs): dipolar structure on large scales
- Complex field structure on small scales

Magnetic field structure

- In the centre of the umbra (photosphere): Vertically aligned
- Increasing inclinations outwards, becoming almost horizontal in the penumbra
- Penumbra: bright radial filaments with field inclination ~40 deg* in outer penumbra, alternates with dark filaments with nearly horizontal field
- Regular spot (pairs): dipolar structure on large scales
- Complex field structure on small scales

Magnetic field structure

- In the centre of the umbra (photosphere): Vertically aligned
- Increasing inclinations outwards, becoming almost horizontal in the penumbra
- Penumbra: bright radial filaments with field inclination ~40 deg* in outer penumbra, alternates with dark filaments with nearly horizontal field
- Regular spot (pairs): dipolar structure on large scales
- Complex field structure on small scales

Thomas 2002

"Uncombed penumbra"

Mix of horizontally aligned and inclined magnetic field

 Submerged parts penumbral flux tubes dragged/held down by convection on granule scales (in the moat), referred to as "turbulent pumping"

Magnetic field structure

Submerged parts penumbral flux tubes dragged/held down by **convection** on granule scales (in the moat), referred to as "turbulent pumping"

"Sea serpents"

Spines are more inclined (more vertical) magnetic filaments

Moving magnetic features (MMF):

- Extensions of penumbral field in the moat region
- Bipolar small-scale features (<1")
- Move away from sunspot
- Dynamic behaviour distinguishes moat from Quiet Sun

Why are sunspots dark?

- Umbra: Strong (~vertical) magnetic field below sunspot hampers convective motion
 - \Rightarrow Convective energy transport suppressed
 - \blacksquare Less energy reaches the surface
 - Surface appears dark in umbra
- Where does the energy go that is blocked by sunspots? Why is the area surrounding the sunspot not heated by the surplus energy?
 - Additional energy distributed in convection zone around and under sunspot
 - High heat capacity and conductivity in convection zone additional heat produces insignificant temperature increase (Spruit 1982)
- **Penumbra**: brightness due to convective energy flux from below

Structure below sunspot derived from helioseismological studies Kosovichev et al. 2000)

Flows around sunspots

- Blocked energy transports leads to reversal of the originally convergent supergranular flow
 Around sunspot: large-scale circulation with surface inflow, outflows at depths > 10 Mm
- Moat flow: Annular outflow observed at the surface around sunspot (Sheeley Jr, 1969)
 ➡ Return flow at depths <2 Mm moat circulation very shallow

Sunspots

Temperature stratifications

Temperature stratifications

- Temperatures in sunspot umbra much below Quiet Sun values
 - Sunspots appear dark in the photosphere relative to surrounding
- Sunspot temperatures rise quickly in low chromosphere, surpass Quiet Sun temperatures
 - Sunspots appear brighter than surrounding (e.g. in the continuum at $\lambda = 3$ mm)

Wilson depression

- Remember: Magnetic pressure counterbalances thermal (gas) pressure
- $B_i >> B_o$
- Lower thermal pressure inside region with strong magnetic field P_{g,i} << P_{g,o}
- Lower gas density (=fewer atoms) $\rho_i << \rho_o$
- Lower opacity inside the magnetic flux structure
- Remember: Optical depth according to opacity along line of sight
- ➡ Optical depth lower inside magnetic field structure than outside
- ➡ Looking deeper into the Sun inside the magnetic field structure
- Lower height of optical depth unity = **Wilson depression**

Wilson depression

- Remember: Magnetic pressure
 counterbalances thermal (gas) pressure
- $B_i >> B_o$
- Lower thermal pressure inside region with strong magnetic field P_{g,i} << P_{g,o}
- Lower gas density (=fewer atoms) $\rho_i << \rho_o$
- **Lower opacity** inside the magnetic flux structure
- Remember: Optical depth according to opacity along line of sight
- Optical depth lower inside magnetic field structure than outside
- ➡ Looking deeper into the Sun inside the magnetic field structure
- Lower height of optical depth unity = Wilson depression
 - A few 100 km!

Evershed effect / flow

Evershed effect / flow

- Evershed flow = outflows in the penumbra along filaments with nearly horizontal magnetic field
 - Field strengths 1 2kG (only slightly larger than average penumbral values)
- First discovered by Evershed (1909) from Dopper-shifted spectral lines in sunspots
- Division in mid-penumbra: most penumbral grains inside move inwards to umbra, those outside move towards moat
- **Supersonic** components with velocities ~8 km/s in photosphere, occasionally up to 15-16 km/s
 - Supersonic flows last 1-5min

Example 2

Evershed effect / flow

- Evershed flow = outflows in the penumbra along filaments with nearly horizontal magnetic field
 - Field strengths 1 2kG (only slightly larger than average penumbral values)
- First discovered by Evershed (1909) from Dopper-shifted spectral lines in sunspots
- Division in mid-penumbra: most penumbral grains inside move inwards to umbra, those outside move towards moat
- Supersonic components with velocities ~8 km/s in photosphere, occasionally up to 15-16 km/s
 - Supersonic flows last 1-5min

- Rapid decline of flow speed with height (in the photosphere)
- In chromosphere/transition:
 Inflow with higher velocities than the outflows below
 - Known as **inverse Evershed flow.**