AST5770

Solar and stellar physics

Sven Wedemeyer, University of Oslo, 2023

Sunspots

Recap

- 1. How big are sunspots typically?
- 2. How long do sunspots "live" typically?
- 3. What is uncombed penumbra?
- 4. What is the equipartition field strength and how it help to explain the magnetic field strengths observed in magnetic flux concentrations (e.g. sunspots)?
- 5. What is dominant oscillation period in the photosphere in Quiet Sun region (i.e. regions with relatively little magnetic flux)?
- 6. Why do we observe different oscillation periods in the chromosphere and inside sunspots?
- 7. How can we explain the appearance of umbral dots and lightbridges? What are those?

Think 1-2 min about the answers. You may discuss with your neighbours.

Energetic phenomena Active Regions

Energetic phenomena in Active Regions

Magnetic reconnection

- Plasma motions in penumbra drag down magnetic field
- Serpentine field lines, magnetic dips, and "bald patches"
- If pushed too close, magnetic reconnection can occur
 - ➡ Reconfiguration of magnetic field into an energetically preferable configuration and (explosive) release of energy (previously stored in magnetic field)

Energetic phenomena in Active Regions

Magnetic reconnection

- Antiparallel magnetic field lines disconnect at an X point and reconnect with other field lines
- Converts magnetic energy into kinetic energy plasma is heated and accelerated
- Plays a critical role for a large number of phenomena on a large range of scales (e.g., solar flares, CME, geomagnetic storms at Earth...)

Energetic phenomena in Active Regions

Ellerman bombs (Discovered by Ellerman 1917)

- Bidirectional outflow from reconnection region causes a doublehump in spectral line profiles of Si IV, C II, and Mg II
- Cool material in atmosphere above causes absorption line
- Observed as <u>small-scale brightenings</u> in low chromosphere in areas with strong magnetic fields and near emerging flux regions

Energetic phenomena in Active Regions Light bridges

- Observed: Plasma ejections along a light bridge of a stable and mature sunspot (e.g., in H $\!\alpha$ surges, EUV jets at 171 Å)
 - Likely a by-product of magnetic reconnection

Energetic phenomena in Active Regions

Peacock jets / Fan-shaped jets

- Many dynamic phenomena in chromosphere above light bridges
- Observed above some light bridges: Fast jets in the shape of a fan / peacock tail SST/CRISP H α 2013.07.05

Energetic phenomena in Active Regions

Peacock jets / Fan-shaped jets

- Many dynamic phenomena in chromosphere above light bridges
- Observed above some light bridges: Fast jets in the shape of a fan / peacock tail

- Cool material (<15 000 K)
- Maximum speeds of up to 175 km/s !
- Extend up to 50 Mm.
- Accelerate upwards for an extended amount of time until reaching max. velocity at height between ~7 to ~50 Mm.
- Influence of the magnetic field clearly seen in the acceleration/deceleration (in contrast to gravity alone)
- Please note the length of jets (or any feature) may appear different for various diagnostics as they are sensitive to different formation height ranges / plasma properties
- Likely explanation: Horizontal field aligned along the light bridge shear with the pre-existing vertical field in umbra

➡ Magnetic reconnection

➡ Acceleration of plasma upwards along magnetic field

 $\Delta \lambda = -860 \text{ mÅ}$

Energetic phenomena in Active Regions

Peacock jets / Fan-shaped jets

- Many dynamic phenomena in chromosphere above light bridges
- Observed above some light bridges: Fast jets in the shape of a fan / peacock tail

- Magnetic reconnection can occur in different situations
 - Sets free large amounts of energy
 - Source for a range of dynamic phenomena (Ellerman bombs, surges, flares, ...)
 - Acceleration of plasma to high velocities (> 100 km/s)

Sunspots / Active Regions — Jets

Small-scale surface motions and the twist in the solar jet

- Energy released by magnetic reconnection
 - Local Joule heating at reconnection site
 - Raises internal energy of plasma
 - Bulk acceleration of plasma away from reconnection site by magnetic tension force of newly formed field lines
 - ➡ Large kinetic energies
 - Strong electric fields at reconnection site **accelerate particles** to high velocities.
 - Magnetic reconnection in **3D** different from 2D, complex!
 - More later

Joshi et al. (2020)

Sunspots / Active Regions — Jets

Small-scale surface motions and the twist in the solar jet

- Panel a: Magnetic configuration before the reconnection.
- Panel b: Formation of the bald patch current sheet.
- Panel c: X-point current sheet.
- Panel d: Untwisting jet after the reconnection and the remnant twist in the bipole.

Sunspots / Active Regions — Jets

Small-scale surface motions and the twist in the solar jet

Joshi et al. (2020)

X-ray jets

Energetic phenomena in Active Regions

Jet Surge

AIA 304 - 2012/07/20 - 16:56:08Z

Solar flares

Flares

 Flares = Intense eruptions on the Sun with emission of radiation across the whole spectrum (γ- and X-rays, UV, visible / white light ... radio) and energetic particles

NASA/GSFC/SDO

Recent example

- Flare on March 30, 2022, 17:40UT AR12975
- X1 class flare
- Check it out in jhelioviewer!

Typical evolution stages

18-Mar-2003 10:48:11UT 18-Mar-2003 11:48:12UT 18-Mar-2003 12:00:10UT

Temporal evolution

- Sudden brightening that involves all layers of the solar atmosphere
- Emission across the whole electromagnetic spectrum but different temporal variation (incl. rapid increase) depends on wavelength region
- Total energy released in flares varies from event to event
 - Range: 10²⁷ 10³² ergs, most of it emitted within a few 10min
 - For comparison: One H-bomb = 10 million TNT = $5 \ 10^{23}$ ergs

Three major phases

- **Pre-flare phase:** flare trigger phase leading to the major energy release
 - Slow increase of soft X-ray flux
- **Impulsive phase** (incl. peak): main rapid energy release phase
 - Most evident in increased hard X-ray, γ-ray, and millimetre/radio emission
 - Soft X-ray flux rises rapidly!
 - Short time-scales (1s and below), whole phase lasting for min ~10min
- Gradual phase (post-flare)
 - Slow (or now) energy release / "afterglow" on longer time scales
 - No further emission in hard X-ray
 - Soft X-ray flux starts to decrease gradually.
 - Loop arcades (or arches) start to appear
 - Can last several hours

Classification

- GOES (Geostationary Operational Environmental Satellite): Several satellites
 - Measure (among many things) irradiance in several X-ray bands
 - Classification of a flare according to the measured peak irradiance

- Additional numbers after class letter:
 - X2 = 2 times as intense as an X1
 - X3 = 3 times as intense as an X1
 - . . .
- X10 (or stronger) are rare and unusually intense

Classification

- Alternative classifications schemes based on other measurable indicators, e.g.:
 - Radio flux at 5G Hz
 - Area with enhanced emission in ${\sf H}\alpha$

Peak flux

in 1-8 Å w/m²

10⁻⁸ to 10⁻⁷

10-7 to 10-6

10-6 to 10-5

10⁻⁵ to 10⁻⁴

>10-4

Hα sub-classification by brightness: F – faint, N – normal, B – bright	Hα classification			Radio flux at	Soft X-ray class	
	Importance Class	Area (Sq. Deg.)	Area 10⁻ ⁶ solar disk	5000 MHz in s.f.u.	Importance class	Pe in
	S	2.0	200	5	A	10
	1	2.0–5.1	200–500	30	В	10
	2	5.2–12.4	500-1200	300	С	10
	3	12.5-24.7	1200-2400	3000	Μ	10
	4	>24.7	>2400	3000	Х	>1

NASA/University of Colorado/Tom Woods

GOES observations

- GOES detects the X-ray irradiance of the whole Sun
- A single flare significantly varies the detected X-ray irradiance despite affecting only small region on the Sun!

Different colors = different bands

GOES class according to **0.1-0.8nm band (red)**

Sequence of several flares including 4 X-class flares within 3 days

GOES observations

- GOES detects the X-ray irradiance of the whole Sun
- A single flare significantly varies the detected X-ray irradiance despite affecting only small region on the Sun!
- Flares also produce energetic particles, some ejected into interplanetary space
- GOES measures energetic proton flux

Updated 2002 Apr 22 23:56:05 UTC

Summary so far

- Sudden brightening with emission across the whole electromagnetic spectrum (e.g. in Ha)
- Huge amount of energy released (10²⁷ - 10³² ergs), most of it emitted within a few min/10min
- Three major phases:
 - Pre-flare phase
 - Impulsive phase (incl. peak, main)
 - Gradual phase (post-flare)
- Classification according to peak flux in soft X-ray band (GOES)
 - X (strongest)
- Event size: height of a flaring loop from < 10Mm to 100 Mm
- Size correlates with flare duration (10³-10⁴s) and amount of released energy

