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NOTE: There might be errors in the solution. If you find something which
doens’t look right, please let me know

Partial solutions to problems: part 2B

We have not inserted numbers here, but leave this for the reader.

Exercise 2B.1

You have to do this one yourself and ask your group teacher if it is correct.

Exercise 2B.2

A Lorentz transformation is denoted cµν , where µ and ν runs through 0− 3.
Thus cµν is a 4 × 4 matrix, where the µ and ν specifies which element
of the matrix one is working with. For instance, c12 would correspond to
the element located at the 2st row, 3rd column. A Lorentz transformation
(matrix) operates on a vector (in 4-dimensional flat Minkowski space-time)
as such:

cµνxν = x′µ (0.1)

Here, Einstein’s summation convention was used:
∑µ=3

µ=0 xµxµ ≡ xµxµ. In
matrix form, equation 0.1 is nothing but

c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33



x0
x1
x2
x3

 =


x′0
x′1
x′2
x′3


We now define Dµ = Aµ +Bµ, where A and B are 4-vectors. To show Dµ is
a four-vector, we must show that it transforms as equation 0.1.

cµνDν = cµν(Aν +Bν) = cµνAν + cµνBν = A′µ +B′µ = D′µ (0.2)

Thus the sum of two 4-vectors is a 4-vector.

Exercise 2B.3

1. In the rest frame of the neutron, v = 0 such that Pµ(n) = (mn, 0).
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2. In the rest frame of the neutron, p′p = γ′pmpv
′
p and E′p = γ′pmp. The

4-vector is then

Pµ(p) = (γ′pmp, γ
′
pmpv

′
p) = γ′pmp(1, v

′
p).

Here v′p is the velocity of the proton from the neutron frame and γ′p =

1/
√

1− (v′p)
2.

3. In the rest frame of the neutron, p′e = γ′emev
′
e and E′e = γ′eme, such

that Pµ(e−) = γ′eme(1, v
′
e). Here v′e is the velocity of the electron from

the neutron frame and γ′e = 1/
√

1− (v′e)
2.

4. We use conservation of momentum:

P ′µ(n) = P ′µ(p) + P ′µ(e−)

Inserting, we find [
mn

0

]
=

[
γ′pmp

γ′pmpv
′
p

]
+

[
γ′eme

γ′emev
′
e

]
Conservation of energy (P0, first line) then gives

mn = γ′pmp + γ′eme,

while the second line gives

γ′pmpv
′
p = −γ′emev

′
e.

Squaring the second line and writing it in terms of γ-factors:

(γ′p)
2m2

p −m2
p = (γ′e)

2m2
e −m2

e

Solve for γ′e from the first equation:

γ′eme = mn − γ′pmp

Insert in the second equation to obtain

γ′p =
m2
n +m2

p −m2
e

2mpmn

From which we easily find that v′p = 0.001262. Going back to the first
equation we then find that v′e = −0.9183016 (where did we get the
minus sign from?). This is one of two possible solutions, the other
solution has the signs on the two velocities switched. It is completely
random which of the particles will go to the right and which will go to
the left, the randomness in quantum physics will decide. We choose to
continue with the solution where the proton goes to the right.
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5. We now transform between the lab frame (where nothing is at rest)
and the neutron rest frame. We use that Pµ(e−) = cµνP

′
ν(e−) (note

that the prime is now on the right hand side, meaning that we need to
use −vn instead of vn, why?). In matrix form for the electron,

Pµ = cµνP
′
ν(e−) =

(
γn vnγn
vnγn γn

)[
1
v′e

]
γ′eme =

[
γn + v′evnγn
vnγn + v′eγn

]
γ′eme

where vn is the neutron velocity in the lab frame and γn = 1/
√

1− v2n.
Inserting numbers we have Ee = 1.481 × 10−30kg and pe = 1.168 ×
10−30kg. In exactly the same way we find Ep = 1.187 × 10−26kg and
pp = 1.175× 10−26kg.

6. We use the expression for relativistic energy (using the previous result)

Ee =
me√
1− v2e

Solving for ve we obtain ve = 0.788922 Similarly we obtain vp =
0.990025

7. Using the formula for relativistic addition of velocities we have

ve =
v′e + vn
1 + v′evn

using again the vrel = −vn as the relative velocity between the systems
(check again that you understand why!). Similarly for the proton.

8. I don’t like long and ugly calculations.

Exercise 2B.4

1. We let the electron move in the positive x-direction ve = v and the
positron in the negative x-direction vp = −v such that

v′p =
vp − ve
1− vpve

=
−2v

1 + v2

2. Pµ(e) = γm(1, v) and Pµ(p) = γm(1,−v), wherem is the electron/positron
mass and γ = 1/

√
1− v2.

3.

P ′µ(e±) = cµνPν(e±) =

(
γ −vγ
−vγ γ

)[
1
∓v

]
mγ =

[
1± v2
−v ∓ v

]
mγ2
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4. In general, E2 = p2+m2. Photons have zero mass, so E = ±p. A four-
vector is generally expressed Pµ = (E, p, 0, 0), such that the four-vector
of a photon is always Pµ(γ) = (E,±E, 0, 0).

5. Conservation of four-vectors gives (omitting the y-z-directions)

Pµ(e) + Pµ(p) = Pµ(γ1) + Pµ(γ2),

Giving
(2mγ, 0) = (E1 + E2, E1 − E2)

Momentum conservation gives E1 − E2 = 0, so E1 = E2.

6. The wavelength is given as E = hc/λ, so λ = hc/E. From the previous
question we have E = mγ such that λ = hc/(mγ)

7. A Lorentz boost (omitting y and z directions) is given by

cµνPν =

(
γ −vγ
−vγ γ

)[
P0

P1

]
=

[
P ′0
P ′1

]
= P ′µ

Inserting, one of the equations give

E′ = γE − γvE = Eγ(1− v)

8. This is found by insertion of the electron velocity v:

E′ = Eγ(1± v)

where E is the energy of the photons in the laboratory frame.

9. We start with

∆λ

λ
=
λ′ − λ
λ

=
λ′

λ
− 1 =

E

E′
− 1,

where we used E = hc/λ. Inserting the expression for energy,

∆λ

λ
=
E

E′
−1 =

1

γ(1− v)
−1 =

√
1− v2
1− v

−1 =

√
(1− v)(1 + v)

(1− v)2
−1 =

√
1 + v

1− v
−1

which is the relativistic Doppler formula.

10. We Taylor expand the expression f(v) =
√

(1 + v)/(1− v) to first
order, as v is very small (and hence v2 even smaller).

f(v) ≈ f(0) + f ′(0) · v
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where f(0) = 1 is trivial. We differentiate f:

f ′(v) =
d

dv

√
1 + v

1− v
=

1

2
√

1+v
1−v

( 1

(1− v)2
+

1

1− v
+

v

(1− v)2
)

letting v = 0,we find f ′(0) = 1, such that we end up with

∆λ

λ
=

√
1 + v

1− v
− 1 = f(v)− 1 ≈ 1 + v − 1 = v

which is the non-relativistic Doppler effect.
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