
AST1100 Lecture Notes

Part 1B
Celestial Mechanics: calculating the orbits

Questions to ponder before the lecture

1. Can you write down Newton’s second law and Newton’s law of gravitation on their vectorial
form?

2. If you want to find an analytical expression for the orbit of a planet around the Sun, how would
you start? Which equation(s) would you set up?

3. How would you start to solve these equations?

4. Assume you observe two stars in the vicinity of each other. You find their positions and their
velocities. How can you find out if these stars are orbiting each other or not?

5. A planet’s orbit around the Sun is elliptical. Due to the pull of the planet, also the Sun moves
in an orbit around their common center of mass. How does the orbit of the Sun look like?

6. About half of the known stars are binary stars, two stars orbiting each other. How would the
orbit of a planet in such a system look like?
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AST1100 Lecture Notes

Part 1B
Celestial Mechanics: calculating the orbits

Having launched our satellite into space, we now
need to learn to calculate orbits: orbits of the
planets where we want to land and the orbit of
the spaceprobe in order to land it safely on the
planet. We will first discuss how to do this an-
alytically which is only possible in the simplest
possible situations. Then we will do it numeri-
cally which allows for calculating orbits also in
a more complicated settings. Before embarking
on the details of orbital calculations, we will first
remind you about/introduce you to some math

1 An important differential equa-
tion

We will now look at a differential equation which
we will meet in this part as well as on other oc-
cations during this course. We will first look at a
numerical solution and then at an analytical so-
lution. The equation is

d2f(x)

dx2
= s(x) (1)

where s(x) is a known function and you need to
find a solution for f(x). Depending on the func-
tion s(x), this equation may have an analytical
solution or may have to be solved numerically.

1.1 General numerical solution

We will first look at the more general numerical
solution. In order to find the numerical solution,

we will first look at a slightly easier equation,

df(x)

dx
= g(x)

where g(x) is a known function. Starting with
an initial value of x and f(x), we can solve this
equation iteratively by increasing x and thereby
f(x) step by step,

df(x) = g(x)dx

where the change df(x) to f(x) is calculated for
a tiny increase dx in x. This can be continued
until f(x) is known for the desired range of x
values. This is known as Euler’s method. In a
computer code one starts with initial values x0
and f0 and then step by step obtain the following
values f1 = f(x1), f2 = f(x2) etc., using small
increments ∆x. One thus obtains

fn+1 = f(xn+1) = fn + g(xn)∆x

Based on this, we can now solve equation 1 in two
steps, rewriting the equation,

df ′(x)

dx
= s(x)

we see that we can first solve for f ′(x)

f ′n+1 = f ′n + s(xn)∆x

and then use this solution to find f(x). Knowing
that

f ′(x) =
df(x)

dx
we can therefore write the solution for f(x) know-
ing f ′(x) as

fn+1 = fn + f ′(xn+1)∆x

Note in the last step that we use xn+1 instead of
xn, this is known as the Euler-Cromer method.
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1.2 Analytic solution for a special case

We will also encounter equation 1 in the form
where s(x) = −f(x) + C,

d2f(x)

dx2
= −f(x) + C (2)

where C is a known constant. This is a form
of the harmonic oscillator equation. The equa-
tion of motion for a pendulum or for masses con-
nected to springs can often be written on a similar
form, giving an oscillating motion. Looking at the
equation, can you see an easy analytic solution?
Clearly we are looking for a function f(x) which
is such that the second derivative is propotional
to the original function. cos(x) and sin(x) both
fullfill this criterion, which makes sense given that
they would represent an oscillating motion. We
can write the solution as

f(x) = C + A cos(x− ω) (3)

where A and ω are constants depending on the
initial conditions. Now insert this solution into
equation 2 to check that this is really a valid so-
lution.

Now we have the math ready to start calculating
orbits...

2 Kepler’s Laws

Kepler used Tycho Brahe’s detailed observations
of the planets to deduce three laws concerning
their motion:

1. The orbit of a planet is an ellipse with the
Sun in one of the foci.

2. A line connecting the Sun and the planet
sweeps out equal areas in equal time inter-
vals.

3. The orbital period around the Sun and the
semimajor axis (see figure 4 on page 9 for the
definition) of the ellipse are related through:

P 2 = a3, (4)

where P is the period in years and a is the
semimajor axis in AU (astronomical units, 1
AU = the distance between the Earth and
the Sun).

Whereas the first law describes the shape of the
orbit, the second law is basically a statement
about the orbital velocity: When the planet is
closer to the Sun it needs to have a higher veloc-
ity than when far away in order to sweep out the
same area in equal intervals. The third law is a
mathematical relation between the size of the or-
bit and the orbital period. As an example we see
that when the semimajor axis doubles, the orbital
period increases by a factor 2

√
2 (do you agree?).

The first information that we can extract from
Kepler’s laws is a relation between the velocity
of a planet and the orbit’s distance from the Sun.
When the orbit’s distance from the Sun increases,
does the orbital velocity increase or decrease? If
we consider a nearly circular orbit, the distance
traveled by the planet in one orbit is 2πa, propor-
tional to the semimajor axis. The mean velocity
can thus be expressed as vm = 2πa/P which using
Kepler’s third law simply gives vm ∝ a/(a3/2) ∝
1/
√
a (check that you understood this!). Thus,

the mean orbital velocity of a planet decreases
the further away it is from the Sun.

When Newton discovered his law of gravitation,

~F =
Gm1m2

r2
~er,

he was able to deduce Kepler’s laws from basic
principles. Here ~F is the gravitational force be-
tween two bodies of mass m1 and m2 at a distance
r and G is the gravitational constant. The unit
vector in the direction of the force is denoted by
~er.

3 General solution to the two-
body problem

Kepler’s laws is a solution to the two-body prob-
lem: Given two bodies with mass m1 and m2 at
positions ~r1 and ~r2 moving with speeds ~v1 and
~v2 (see figure 1). The only force acting on these
two masses is their mutual gravitational attrac-
tion. How can we describe their future motion as
a function of time? The rest of this lecture will
be devoted to this problem.
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Fact sheet: Our solar system consists of 8 planets: The four planets closest to the Sun, Mercury, Venus, Earth and Mars,
are called terrestrial planets due to their similarity to the Earth: they have a solid surface and a thin atmosphere. The four
outer planets, Jupiter, Saturn, Uranus and Neptun are called gas planets, or Jovian planets. The consist mainly of gas but
may have an inner solid core. The asteroid belt be-
tween the Terrestrial and Jovian planets contains a
large number of ’stones’, bodies of various shapes
and sizes consisting mainly of rock and metal with
mean radii ranging from a few meters to hundreds
of kilometers. The largest asteroid is Ceres. Beyond
the orbit of Neptun is the Kuiper belt, a belt simi-
lar to the asteroid belt containing trans-Neptunian
objects consisting mainly of frozen volatiles. The
largest Kuiper belt object is Pluto.

Object a (AU) e orb.vel.(km/s) diam. (103km) mass (1024kg)

Mercury 0.39 0.2 47 4.9 0.3
Venus 0.72 0.007 35 12 5
Earth 1.0 0.02 30 13 6
Mars 1.5 0.09 24 6.8 0.6
Ceres 2.8 0.08 18 1.0 0.001
Jupiter 5.2 0.05 13 140 2000
Saturn 9.5 0.05 10 120 600
Uranus 19 0.05 6.8 51 90
Neptun 30 0.009 5.4 50 100
Pluto 40 0.25 4.7 2.4 0.01

Figure 1: The two-body problem.

In order to solve the problem we will now de-
scribe the motion from the rest frame of mass 1:
We will sit on m1 and describe the observed mo-
tion of m2, i.e. the motion of m2 with respect to
m1. (As an example this could be the Sun-Earth
system, from the Earth you view the motion of
the Sun). The only force acting on m2 (denoted
~F2) is the gravitational pull from m1. Using New-

ton’s second law for m2, ~F2 = m2~a2 = m2~̈r2 with
~F2 taken from the law of gravitation, we get

~F2 = −Gm1m2

|~r |3
~r = m2~̈r2, (5)

where ~r = ~r2 − ~r1 the vector pointing from m1 to
m2 (or from the Earth to the Sun in our exam-
ple). Overdots describe derivatives with respect
to time,

~̇r =
d~r

dt

~̈r =
d2~r

dt2

Sitting on m1, we need to find the vector ~r(t) as
a function of time (in our example this would be

the position vector of the Sun as seen from the
Earth). This function would completely describe
the motion of m2 and be a solution to the two-
body problem (do you see this?).

Using Newton’s third law, ~F1 = −~F2, combined
again with Newton’s second law, we have a simi-
lar equation for the force acting on m1

~F1 = −~F2 = G
m1m2

|~r |3
~r = m1~̈r1. (6)

Subtracting equation (6) from (5), we can elimi-
nate ~r1 and ~r2 and obtain an equation only in ~r
which is the variable we want to solve for,

~̈r = ~̈r2 − ~̈r1 = −Gm1 +m2

|~r |3
~r ≡ −m ~r

r3
, (7)

where r = |~r | and m = G(m1 + m2). This is the
equation of motion of the two-body problem,

~̈r +m
~r

r3
= 0. (8)

We are looking for a solution of this equation with
respect to ~r(t), this would be the solution to the
two-body problem predicting the movement of m2

with respect to m1.
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θ

Figure 2: Geometry of the two-body problem.

To get further, we need to look at the geometry of
the problem. We introduce a coordinate system
with m1 at the origin and with ~er and ~eθ as unit
vectors. The unit vector ~er points in the direction
of m2 such that ~r = r~er and ~eθ is perpendicular to
~er (see figure 2). At a given moment, the unit vec-
tor ~er (which is time dependent) makes an angle
θ with a given fixed (in time) coordinate system
defined by unit vectors ~ex and ~ey. From figure 2
we see that (do you really see this? Draw some
figures to convince yourself!)

~er = cos θ~ex + sin θ~ey (9)

~eθ = − sin θ~ex + cos θ~ey (10)

The next step is to substitute ~r = r~er into the
equation of motion (equation 8). In this process
we will need the time derivatives of the unit vec-
tors. We obtain these by simply taking the time
derivative of equations 9 and 10,

~̇er = −θ̇ sin θ~ex + θ̇ cos θ~ey

= θ̇~eθ

~̇eθ = −θ̇ cos θ~ex − θ̇ sin θ~ey

= −θ̇~er

(check that you can do this yourself!). Using this,
we can now take the derivative of the equation
~r = r~er twice,

~̇r = ṙ~er + r~̇er

= ṙ~er + rθ̇~eθ

~̈r = r̈~er + ṙ~̇er + (ṙθ̇ + rθ̈)~eθ + rθ̇~̇eθ

= (r̈ − rθ̇2)~er +
1

r

d

dt
(r2θ̇)~eθ.

(check again that you can do this!). Substituting
~r = r~er into the equation of motion (equation 8),
we thus obtain

(r̈ − rθ̇2)~er +
1

r

d

dt
(r2θ̇)~eθ = −m

r2
~er.

Equating left and right hand sides, we have

r̈ − rθ̇2 = −m
r2

(11)

d

dt
(r2θ̇) = 0 (12)

The vector equation (equation 8) has thus been
reduced to these two scalar equations. Go back
and check that you understood the transition.

The last of these equations indicates a constant
of motion, something which does not change with
time (why?). What constant of motion enters in
this situation? Certainly the angular momentum
of the system should be a constant of motion so
let’s check the expression for the angular momen-

tum vector ~h (note that h is defined as angular
momentum per mass, (~r×~p)/m2 (remember that
m1 is at rest in our current coordinate frame)):

|~h| = |~r × ~̇r| = |(r~er)× (ṙ~er + rθ̇~eθ)| = r2θ̇.

So equation (12) just tells us that the magnitude

of the angular momentum h = r2θ̇ is conserved,
just as expected.

To solve the equation of motion, we are left with
solving equation (11). In order to find a solution
we will

1. solve for r as a function of angle θ instead of
time t. This will give us the distance of the
planet as a function of angle and thus the
orbit.

2. Make the substitution u(θ) = 1/r(θ) and
solve for u(θ) instead of r(θ). This will trans-
form the equation into a form which can be
easily solved.

In order to substitute u in equation (11), we need
its derivatives. We start by finding the derivatives
of u with respect to θ,

du(θ)

dθ
= u̇

dt

dθ
= − ṙ

r2
1

θ̇
= − ṙ

h

d2u(θ)

dθ2
= −1

h

d

dθ
ṙ = −1

h
r̈

1

θ̇
.
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In the last equation, we substitute r̈ from the
equation of motion (11),

d2u(θ)

dθ2
=

1

hθ̇
(
m

r2
− rθ̇2) =

m

h2
− 1

r
=
m

h2
− u,

where the relation h = r2θ̇ was used twice. We
thus need to solve the following equation

d2u(θ)

dθ2
+ u =

m

h2

Now, pause for a moment and check that you un-
derstood the last transitions.

The equation we have obtained for u(θ) is just the
equation for a harmonic oscillator (equation 2) for
which we already found a solution (equation 3),

u(θ) =
m

h2
+ A cos (θ − ω),

where A and ω are constants depending on the
initial conditions of the problem. Substituting
back we now find the following expression for r:

The general solution to the two-body
problem

r =
p

1 + e cos f
(13)

where p = h2/m, e = (Ah2/m) and f = θ−ω.

We recognize this expression as the general ex-
pression for a conic section.

4 Conic sections

Figure 3: Conic sections: Circle: e=0,p=a, Ellipse:
0 ≤ e < 1, p = a(1 − e2), Parabola: e = 1, p = 2a,
Hyperbola: e > 1 and p = a(e2 − 1)

Conic sections are curves defined by the intersec-
tion of a cone with a plane as shown in figure 3.
Depending on the inclination of the plane, conic
sections can be divided into three categories with
different values of p and e in the general solution
to the two-body problem (equation 13),

1. the ellipse, 0 ≤ e < 1 and p = a(1 − e2) (of
which the circle, e = 0, is a subgroup),

2. the parabola, e = 1 and p = 2a,

3. the hyperbola, e > 1 and p = a(e2 − 1).

In all these cases, a is defined as a positive con-
stant a ≥ 0. Of these curves, only the ellipse
represents a bound orbit, in all other cases the
planet just passes the star and leaves. We will dis-
cuss the details of an elliptical orbit later. First,
we will check which conditions decides which tra-
jectory an object will follow, an ellipse, parabola
or hyperbola. Our question is thus: If we ob-
serve a planet or other object close to a star, is
it in orbit around the star or just passing by?
For two masses to be gravitationally bound, we
expect that their total energy, kinetic plus poten-
tial, would be less than zero, E < 0. Clearly the
total energy of the system is an important initial
condition deciding the shape of the trajectory.

We will now investigate how the trajectory r(θ)
depends on the total energy. In the exercises you
will show that the total energy of the system can
be written:

Total energy of a two-body system

E =
1

2
µ̂v2 − µ̂m

r
, (18)

where v = |~̇r|, the velocity of m2 observed
from m1 (or vice versa) and µ̂ = m1m2/(m1+
m2).

We will now try to rewrite the expression for the
energy E in a way which will help us to decide the
relation between the energy of the system and the
shape of the orbit. We will start by rewriting the
velocity in terms of its radial and tangential com-
ponents using the fact that ~v = ~̇r = ṙ~er + r~̇er
(where did we derive this result?)

v2 = v2r + v2θ = ṙ2 + (rθ̇)2, (19)
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Help sheet:

In previous courses you learned the expression for conic sections in cartesian coordinates. For the special case of an ellipse we
will now look at the relation between the expression in polar coordinates used in this course and the cartesian coordinates.
The starting point for both expressions is the definition of the ellipse: Given two points (foci) f1 and f2 and a point P, where
the distances to P from f1 and f2 are d and r respectively, an ellipse is the collection of all points P such that

r + d = 2a, (14)

where a is a constant. In cartesian coordinates with origin in the middle point between the two foci, the relation between r
and d and the (x,y) coordinates of the point P are given by (check that you can derive these two expressions combining the
information in figure 4 with the figure above):

r2 = (x− ae)2 + y2 (15)

d2 = (x+ ae)2 + y2 (16)

Inserting equations 15 and 16 in equation 14 eliminating r and d, you obtain

x2

a2
+

y2

b2
= 1 (17)

which is the cartesian expression for an ellipse known from other courses. If instead we switch to polar coordinates, using r
and the angle f, we see from figure 4 (check!) that x = ae+ r cos f and y = r sin f . Inserting these two relations in equation
16, then inserting this equation in 14 eliminating d, you obtain

r =
a(1− e2)

1 + e cos f

which is the expression we use in this course.
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decomposed into velocity along ~er and ~eθ (check
that you got this!). We need the time derivative
of r. Taking the derivative of equation (13),

ṙ =
pe sin f

(1 + e cos f)2
θ̇,

we get from equation (19) for the velocity

v2 = θ̇2
p2e2 sin2 f

(1 + e cos f)4
+ r2θ̇2.

Next step is in both terms to substitute θ̇ = h/r2

(where did this come from?) and then using equa-
tion (13) for r giving

v2 =
h2e2 sin2 f

p2
+
h2(1 + e cos f)2

p2
.

Collecting terms and remembering that cos2 f +
sin2 f = 1 we obtain

v2 =
h2

p2
(1 + e2 + 2e cos f).

We will now get back to the expression for E.
Substituting this expression for v as well as r from
equation (13) into the energy expression (equa-
tion 18), we obtain

E =
1

2
µ̂
h2

p2
(1+e2+2e cos f)−µ̂m1 + e cos f

p
(20)

Total energy is conserved and should therefore be
equal at any point in the orbit, i.e. for any angle
f . We may therefore choose an angle f which is
such that this expression for the energy will be
easy to evaluate. We will consider the energy at
the point for which cos f = 0,

E =
1

2
µ̂
h2

p2
(1 + e2)− µ̂m

p

We learned above (below equation 13) that p =
h2/m and thus that h =

√
mp. Using this to elim-

inate h from the expression for the total energy
we get

E =
µ̂m

2p
(e2 − 1).

If the total energy E = 0 then we immediately get
e = 1. Looking back at the properties of conic
sections we see that this gives a parabolic tra-
jectory. Thus, masses which have just too much

kinetic energy to be bound will follow a parabolic
trajectory. If the total energy is different from
zero, we may rewrite this as

p =
µ̂m

2E
(e2 − 1).

We now see that a negative energy E (i.e. a bound
system) gives an expression for p following the ex-
pression for an ellipse in the above list of proper-
ties for conic sections (by defining a = µ̂m/(2|E|).
Similarly a positive energy gives the expression
for a hyperbola. We have shown that the total
energy of a system determines whether the tra-
jectory will be an ellipse (bound systems E < 0),
hyperbola (unbound system E > 0) or parabola
(E = 0). We have just shown Kepler’s first law
of motion, stating that a bound planet follows an
elliptical orbit. In the exercises you will also show
Kepler’s second and third law using Newton’s law
of gravitation.

5 The elliptical orbit

We have seen that the elliptical orbit may be writ-
ten in terms of the distance r as

r =
a(1− e2)

1 + e cos f
.

In figure (4) we show the meaning of the different
variables involved in this equation:

• a is the semimajor axis

• b is the semiminor axis

• e is the eccentricity defined as e =√
1− (b/a)2

• m1 is located in the principal focus

• the point on the ellipse closest to the princi-
pal focus is called perihelion

• the point on the ellipse farthest from the
principal focus is called aphelion

• the angle f is called the true anomaly

The eccentricity is defined using the ratio b/a.
When the semimajor and semiminor axis are
equal, e = 0 and the orbit is a circle. When the
semimajor axis is much larger than the semiminor
axis, e→ 1.
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Figure 4: The ellipse.

Fact sheet: A diagram of the trajectory that enabled NASA’s Voyager 2 space-
craft to tour all the four gas giants and achieve a large enough velocity to es-
cape our solar system. Celestial mechanics obviously played an integral part
in the extremely careful planning that was needed in order to carry out the
probe’s ambitious tour of the outer solar system. The planetary flybys not only
allowed for close-up observations of the planets and their moons, but also ac-
celerated the probe so that it could reach the next object. In 2012 Voyager 2
was at a distance of roughly 100 AU from the Sun, traveling outward at around
3.3 AU per year. It is expected to keep transmitting weak radio messages until
at least 2025.

6 Center of mass system

In the previous section we showed that seen from
the rest frame of one of the masses in a two-
body system, the other mass follows an elliptical /
parabolic / hyperbolic trajectory. How does this
look from a frame of reference which is not at rest
with respect to one of the masses? We know that
both masses m1 and m2 are moving due to the
gravitational attraction from the other. If we ob-
serve a distant star-planet system, how does the
planet and the star move with respect to each
other? We have only shown that sitting on either
the planet or the star, the other body will follow
an elliptical orbit.

Figure 5: The center of mass system: The center of mass
(CM) is indicated by a small point. The two masses m1

and m2 orbit the center of mass in elliptical orbits with
the center of mass in one focus of both ellipses. The center
of mass vectors ~rCM

1 and ~rCM
2 start at the center of mass

and point to the masses.

An elegant way to describe the full motion of the
two-body system (or in fact an N-body system)
is to introduce center of mass coordinates. The
center of mass position ~R is located at a point on
the line between the two masses m1 and m2. If
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the two masses are equal, the center of mass po-
sition is located exactly halfway between the two
masses. If one mass is larger than the other, the
center of mass is located closer to the more mas-
sive body. The center of mass is a weighted mean
of the position of the two masses:

~R =
m1

M
~r1 +

m2

M
~r2, (21)

where M = m1 +m2. We can similarly define the
center of mass for an N-body system as

~R =
N∑
i=1

mi

M
~ri, (22)

where M =
∑

imi and the sum is over all N
masses in the system. Newton’s second law for
one object in the system is

~fi = mi~̈ri

where ~fi is the total force on object i. Summing
over all bodies in the system, we obtain Newton’s
second law for the full N-body system

~F =
N∑
i=1

mi~̈ri, (23)

where ~F is the total force on all masses in the sys-
tem. We may divide the total force on all masses
into one contribution from internal forces between
masses and one contribution from external forces,

~F =
∑
i

∑
j 6=i

~fij + ~Fext,

where ~fij is the gravitational force on mass i from
mass j. Newton’s third law implies that the sum

over all internal forces vanish (~fij = −~fji). The
right side of equation (23) can be written in terms
of the center of mass coordinate using equation
(22) as

N∑
i=1

mi~̈ri = M ~̈R,

giving

M ~̈R = ~Fext.

(Check that you followed this deduction!). If
there are no external forces on the system of
masses (~Fext = 0), this equation tells us that the

center of mass position does not accelerate, i.e. if
the center of mass position is at rest it will remain
at rest, if the center of mass position moves with a
given velocity it will keep moving with this veloc-
ity. We may thus divide the motion of a system of
masses into the motion of the center of mass and
the motion of the individual masses with respect
to the center of mass.

We now return to the two-body system assuming
that no external forces act on the system. The
center of mass moves with constant velocity and
we decide to deduce the motion of the masses with
respect to the center of mass system, i.e. the rest
frame of the center of mass. We will thus be sit-
ting at the center of mass which we define as the
origin of our coordinate system, looking at the
motion of the two masses. When we know the
motion of the two masses with respect to the cen-
ter of mass, we know the full motion of the system
since we already know the motion of the center of
mass position.

Since we take the origin at the center of mass lo-
cation, we have ~R = 0. Using equation (21) we
get

0 =
m1

M
~rCM
1 +

m2

M
~rCM
2 ,

where CM denotes position in the center of mass
frame (see figure 5). Combining this equation
with the fact that ~r = ~r2 − ~r1 = ~rCM

2 − ~rCM
1 we

obtain

~rCM
1 = − µ̂

m1

~r, (24)

~rCM
2 =

µ̂

m2

~r, (25)

The reduced mass µ̂ is defined as

µ̂ =
m1m2

m1 +m2

.

The relative motion of the masses with respect to
the center of mass can be expressed in terms of
~rCM
1 and ~rCM

2 as a function of time, or as we have
seen before, as a function of angle f . We already
know the motion of one mass with respect to the
other,

|~r | = p

1 + e cos f
.
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Inserting this into equations (24) and (25) we ob-
tain

|~rCM
1 | = µ̂

m1

|~r | = µ̂p

m1(1 + e cos f)

|~rCM
2 | = µ̂

m2

|~r | = µ̂p

m2(1 + e cos f)

For a bound system we thus have

|~rCM
1 | =

µ̂
m1
a(1− e2)

1 + e cos f
≡ a1(1− e2)

1 + e cos f

|~rCM
2 | =

µ̂
m2
a(1− e2)

1 + e cos f
≡ a2(1− e2)

1 + e cos f

We see from these equations that for a gravita-
tionally bound system, both masses move in ellip-
tical orbits with the center of mass in one of the
foci (how do you see this?). The semimajor axis
of these two masses are given by

a1 =
µ̂a

m1

,

a2 =
µ̂a

m2

,

a = a1 + a2

(check that you understand how these equations
come about) where a1 and a2 are the semima-
jor axis of m1 and m2 respectively and a is the
semimajor axis of the elliptical orbit of one of the
masses seen from the rest frame of the other. Note
that the larger the mass of a given body with re-
spect to the other, the smaller the ellipse. This is
consistent with our intuition: The more massive
body is less affected by the same force than is the
less massive body. The Sun moves in an ellipse
around the center of mass which is much smaller
than the elliptical orbit of the Earth. Figure (5)
shows the situation: the planet and the star or-
bit the common center of mass situated in one
common focus of both ellipses.
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7 Exercises

Exercise 1B.1 You need to read all sections from
1 to 5 to be able to solve this exercise. The scope
of this problem is to deduce Kepler’s second law.
Kepler’s second law can be written mathemati-
cally as

dA

dt
= constant,

i.e. that the area A swept out by the vector ~r per
time interval is constant. We will now show this
step by step:

1. Show that the infinitesimal area dA swept
out by the radius vector ~r for an infinites-
imal movement dr and dθ is dA = 1

2
r2dθ.

(hint: draw a figure: can you approximate
the area in the figure as a triangle?)

2. Divide this expression by dt and you obtain
an expression for dA/dt in terms of the ra-
dius r and the tangential velocity vθ.

3. By looking back at the above derivations,
you will see that the tangential velocity can
be expressed as vθ = h/r.

4. Show Kepler’s second law.

Exercise 1B.2 The scope of this problem is to
deduce Kepler’s third law. Again we will solve
this problem step by step:

1. In the previous problem we found an expres-
sion for dA/dt in terms of a constant. Inte-
grate this equation over a full period P and
show that

P =
2πab

h
(Hint: the area of an ellipse is given by πab).

2. Use expressions for h and b found in the text
to show that

P 2 =
4π2

G(m1 +m2)
a3 (26)

3. This expression obtained from Newtonian
dynamics differs in an important way from
the original expression obtain empirically by
Kepler (equation 4). How? Why didn’t Ke-
pler discover it?

Exercise 1B.3

1. How can you measure the mass of a planet in
the solar system by observing the motion of
one of its satellites? Assume that we know
only the semimajor axis and orbital period
for the elliptical orbit of the satellite around
the planet. Hint 1: Kepler’s third law (the
exact version that you deduce in exercise
1B.2). Hint 2: You are allowed to make
reasonable approximations.

2. Look up (using Internet or other sources)
the semimajor axis and orbital period of
Jupiter’s moon Ganymede.

(a) Use these numbers to estimate the mass
of Jupiter.

(b) Then look up the mass of Jupiter. How
well did your estimate fit? Is this an ac-
curate method for computing planetary
masses?

(c) Which effects could cause discrepancies
from the real value and your estimated
value?

Exercise 1B.4 You need to have read also sec-
tion 6 in order to solve this problem.

1. Show that the total energy of the two-body
system in the center of mass frame can be
written as

E =
1

2
µ̂v2 − GMµ̂

r
,

where v = |d~r/dt| is the relative velocity be-
tween the two objects, r = |~r | is their rel-
ative distance, µ̂ is the reduced mass and
M ≡ m1+m2 is the total mass. Hint: make
the calculation in the center of mass frame
and use equation (24) and (25).

2. Show that the total angular momentum of
the system in the center of mass frame can
be written

~P = µ̂~r × ~v,

3. Looking at the two expressions you have
found for energy and angular momentum
of the system seen from the center of mass
frame: Can you find an equivalent two-body
problem with two masses m′1 and m′2 where

12



the equations for energy and momentum will
be of the same form as the two equations
which you have just derived? What are m′1
and m′2? If you didn’t understand the ques-
tion, here is a rephrasing: If you were given
these two equations without knowing any-
thing else, which physical system would you
say that they describe?

Exercise 1B.5

1. At which points in the elliptical orbit (for
which angels f) is the velocity of a planet at
maximum or minimum?

2. Using only the mass of the Sun, the semi-
major axis and eccentricity of Earth’s orbit
(which you look up in Internet or elsewhere),
can you find an estimate of Earth’s velocity
at aphelion and perihelion?

3. Look up the real maximum and minimum ve-
locities of the Earth’s velocity. How well do
they compare to your estimate? What could
cause discrepancies between your estimated
values and the real values?

4. Use Python (or Matlab or any other pro-
gramming language) to plot the variation in
Earth’s velocity during one year.

Hint 1: Use one or some of the expressions for
velocity found in section (4) as well as expressions
for p and h found in later sections (including the
above problems). Hint 2: You are allowed to
make reasonable approximations.

Exercise 1B.6

1. Find our maximum and minimum distance
to the center of mass of the Earth-Sun sys-
tem.

2. Find Sun’s maximum and minimum distance
to the center of mass of the Earth-Sun sys-
tem.

3. How large are the latter distances compared
to the radius of the Sun?

Exercise 1B.7

In this problem you can use the commands
dumpToXml and DualStarXmlfrom the SolarSys-
temViewer class combined with the SolarSys-
temviewer application to visualize and check your
results as explained below.

1. In this exercise you will solve the equation
of motion numerically to obtain the orbits of
the planets in your solar system. Use New-
ton’s second law,

m
d2~r

dt2
= m

d~v

dt
= ~F ,

to solve the 2-body problem numerically.
Use the Euler-Cromer method for differen-
tial equations as explained in section 1. It
is more obvious how you can do this if you
decompose Newtons’s second law in x and y
components: Write Newton’s second law in
terms of the velocity vector.

m

(
dvx
dt
~ex +

dvy
dt
~ey

)
= Fx~ex + Fy~ey

Then we have the following relation between
the change in the components of the veloc-
ity vector and the components of the force
vector;

dvx
dt

=
Fx
m

dvy
dt

=
Fy
m

These equations can be solved directly by
the Euler-Cromer method (see again section
1) and the given initial conditions: the ini-
tial positions and velocities for the planets at
t = 0 in your solar system can be obtained
from the SolarSystemViewer class. For each
timestep (use a for- or while-loop), calculate
the velocity vx/y(t+dt) (Euler’s method) and
the position x(t + dt), y(t + dt) (standard
kinematics) for each planet (or even easier:
use vectors). You may use the following ap-
proach:

(a) Assume that the gravitational force be-
tween the planets is negligible. Assume
further that the star is fixed at the ori-
gin and is not influenced by the gravita-
tional pull of the planets. This assump-
tion will be relaxed in a coming exercise
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Fact sheet: 433 Eros was the target of the first long-term, close-up study of
an asteroid. After a four year journey the NEAR-Shoemaker space probe was
inserted into orbit around the 33 km long, potato-shaped asteroid in Febru-
ary 2000 and encircled it 230 times from various distances before touching
down on its surface. The primary scientific objective was to return data on the
composition, shape, internal mass distribution, and magnetic field of Eros. As-
teroids are a class of rocky small solar system bodies that orbit the Sun, mostly
in the asteroid belt between Mars and Jupiter. They are of great interest to
astronomers as they are leftover material from when the solar system formed
some 4.6 billion years ago.

in part 1C, but for now you must make
this assumption in order for the viewer
to work properly.

(b) Initiate planet positions and velocities
with your given initial values.

(c) Define a time interval dt and a number
of time steps suitable for your solar sys-
tem. You will have to experiment a bit
to find these numbers. Start with just a
few time steps until the code works.

(d) For each time step, calculate the force of
the star on each planet.

(e) Update velocity and then position us-
ing Euler-Cromer for all the planets and
store these in an array.

(f) Continue until at least one of the outer
planets has made one full orbit.

(g) Send the array to the AST1100
SolarSystemView class using the
dumpToXml method (as explained in
the documentation to the SolarSys-
temViewer class) to create an xml to
view with SolarSystemViewer. Do the
orbits look correct?

2. This part of the exercise is optional, but it
will count favourably on the grading of the
exercise if you include it. We will use our
code to study the 3-body problem. There is
no analytical solution to the 3-body problem,
so in this case we are forced to use numer-
ical calculations. The fact that most prob-
lems in astrophysics consider systems with a
huge number of objects strongly underlines
the fact that numerical solutions are of great
importance. In this problem you can use

the DualStarXml method of the SolarSys-
temView class to visualize the orbit of the
planet around the two stars.

About half of all the stars are binary stars,
two stars orbiting a common center of mass.
Binary star systems may also have planets
orbiting the two stars. Here we will look at
one of many possible shapes of orbits of such
planets. We will consider a planet with the
mass identical to the mass of Mars. One of
the stars has a mass identical to the mass of
the Sun (2 × 1030 kg), the other has a mass
4 times that of the Sun.

Figure 6: The binary star system with the planet at
time t = 0.

The initial positions are [x1 = −1.5 AU, y1 =
0, z1 = 0] (for the planet), [x2 = 0, y2 = 0,
z2 = 0] (for the small star) and [x3 = 3 AU,
y3 = 0, z3 = 0] (for the large star) (Figure 3).

The initial velocity vectors are ~v1 = −1 km
s
~j

(for the planet), ~v2 = 30 km
s
~j (for the small

star) and ~v3 = −7.5 km
s
~j (for the large star).

Plot the orbit of the planet and the two
stars in the same figure. Use timestep
dt = 400 seconds and make 106 calcula-
tions. It should now be clear why it is
impossible to find an analytical solution to
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the 3-body problem. Note that the solution
is an approximation. If you try to change
the size and number of time steps you will
get slighly different orbits, small time steps
cause numerical problems and large time
steps is too inaccurate. The given time step
is a good trade-off between the two prob-
lems but does not give a very accurate solu-
tion. Accurate methods to solve this prob-
lem is outside the scope of this course. Play
around and try some other starting positions
and/or velocities. Insert your positions to
the DualStarXml method of the SolarSys-
temView class as explained in the documen-
tation for the SolarSystemView class in or-
der to see how your planet moves between
the two stars. Looking at the movement of
the planet using the viewer gives you a very
good understanding of the physics at work
here. NOTE: The best way to see it
is to click on the planet such that the
planet is in focus and zoom in and out
depending on whether the stars are far
away or not.

Hints: There is really not much more code
you need to add to the previous code to solve
this problem. Declare arrays and constants
for the three objects. In your for-/while-
loop, calculate the total force components for
each object. Since we have a 3-body prob-
lem we get two contributions to the total
force for each object. In other words, you
will have to call the function of gravitation
three times for each time-evaluation. For
each time step, first calculate the force com-
ponents between the planet and the small
star, then the force components between the
planet and the large star, and finally the
force components between the small and the
large star. Then you sum up the contribu-
tions that belong to each object.

Look at the trajectory and try to imagine
how the sky will look like at different epochs.
If we assume that the planet has chemical
conditions for life equal to those on earth, do
you think it is probable that life will evolve
on this planet? Use your tracetory to give
arguments.

Exercise 1B.8 In this exercise you should
choose the planet where you want to land your
spaceprobe. You can use the landingSat method
from the SolarSystemViewer class to visualize
your landing and check if it is correct as explained
below. Assume that you have already reached or-
bit around your chosen planet. The satellite is
orbiting 40000km above the surface when the lan-
der unit is sent towards the planet. Here is the
plan,

• You can choose yourself the exact position
around your planet from where the lander is
launched, but the distance to the surface has
to be 40000km (note that this is the distance
to the surface of the planet, not to center
of the planet).

• Assume the weight of the lander to be 100kg.

• Assume the position of the planet to be fixed
at the origin.

• You know the surface density ρ0 of your at-
mosphere which you can obtain from the So-
larSystemViewer class. Assume the density
profile of your atmosphere is given by

ρ(h) = ρ0e
−h/hscale

where h is the height above the surface and
hscale is the scale height of the atmosphere
given by hscale = 75200/g m, where g is the
gravitational acceleration at the surface of
your planet (in SI units). The drag force on
your lander (including its parachute) is given
as

FD =
1

2
ρAv2

where ρ is the density of the atmosphere, A
is the area of the parachute and v is the cur-
rent velocity of the lander. Note that this
force works in the direction opposite of the
velocity vector. One of your tasks here will
be to find the size of the parachute.

• The heat shield of the lander unit can with-
stand frictional forces (drag forces) from the
atmosphere up to 25000N. If at any point
during the landing, the drag force exceeds
this value, the lander will be ripped apart.

• In order to have a soft landing, the compo-
nent of your velocity vector pointing radially
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inwards towards the planet needs to be less
than 3m/s.

• You need to choose the initial angle and
speed with which the lander is launched from
the orbiting satellite (you might need some
trial and error here) as well as the size of
the parachute such that you manage to get
a soft landing without destroying the lander
from the frictional forces of the atmosphere.
Explain your strategy to lower the frictional
forces on the lander unit.

• You need use Euler-Cromer again with the
extra force included. Try to find a suitable
time step dt such that the code is quick but
still sufficiently accurate.

• In order to check the accuracy of the time
step: when you have found a solution, you
should reduce dt to 1/10 of its original value
and check if you still get a similar answer
with this more exact calculation. If you do,
you have found a time step which is suffi-
ciently small. You may need a time step as
small as dt = 0.1 seconds (or maybe even
smaller for some planets) to get reliable re-
sults.

To solve this exercise you therefore need to:

1. Find the initial launch position and veloc-
ity vector of the lander and the necessary
surface area of the parachute (as small as
you can manage, but for some planets it
may need to be unrealistically big) in order
to get a soft landing on the planet and at
the same time avoiding too large frictional
forces in the atmosphere. Describe how you
went about to find these numbers (probably
some trial and error, describe what you tried
which did not work before you found your
solution).

2. Note that on some planets it may be al-
most impossible to find a trajectory where
the drag forces are less than 25000N. If this
is the case for your planet, describe and show
the attempts you made and present the tra-
jectory with the lowest drag force.

3. Simulate the trajectory of the lander down
to the surface of the planet.

4. Pass your positions coordinates to the
landingSat method from the SolarSys-
temViewer class as explained in the So-
larSystemViewer documentation to visualize
your landing and check if the trajectory looks
reasonable.

Hints - You can use most of the code from the
previous exercise. First, we write Newton’s sec-
ond law in terms of the cartesian components;

dvx
dt

=
Fx + fx
m

dvy
dt

=
Fy + fy
m

(or use the vector form directly if you prefer, this
makes the code much shorter). The best ap-
proach is to make one more function that cal-
culates the force of friction with the lander’s ve-
locity components as arguments. In this problem
you should use a while-loop. For each evaluation,
first call the gravitational function (as before) and
then the friction function. Remember to send the
space craft’s velocity components from the previ-
ous timestep. In the friction function, first cal-
culate the total force F , and then (if you do not
use vectors) the components Fx and Fy (use sim-
ple trigonometry) with correct positive/negative-
sign by checking the sign of the velocity com-
ponents. Then return the force components to
the loop. For each evaluation (in the while-loop)
check whether the spaceship has landed or not.
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