
AST1100 Lecture Notes

Part 1D
Electromagnetic radiation

Questions to ponder before the lecture

1. Unlike physicists, astrophysicists cannot make direct experiments in the laboratory. We rely
completely on information transmitted by signals from the universe. What kind of signals? The
title of this part clearly gives a hint, but are there other kinds of signals?

2. In the picture below, what kind of telescopes do you see?

3. How do you think the pictures they take look like?

4. If you were to calculate the amount of energy per square meter which the Earth receives from
the Sun, how would you start? Or, equivalently, if your satellite needs solar panels to operate
at a large distance from the Sun, how large surface area does it need in order to have sufficient
power?

5. If you were to determine the temperature of a star, which kind of observation/measurement
would you do?
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AST1100 Lecture Notes

Part 1D
Electromagnetic radiation

In this part we will look at the sources of infor-
mation we have about the distant universe. In
particular we will study electromagnetic radiation
at all wavelengths, which is by far our most im-
portant source of information. For our satellite,
we need this to calculate the amount of energy
which its solar panels will recieve when far away
from the star. We also need how to know how
to analyse the spectrum of electromagnetic radi-
ation and in particular how to interpret spectral
lines to gain information about the atmosphere of
our planet.

1 The electromagnetic spectrum

To obtain information about the distant universe
we have the following
sources available:

1. electromagnetic waves at many different
wavelengths.

2. cosmic rays: high energy elementary parti-
cles arriving from supernovae or black holes
in our galaxy as well as from distant galaxies.
The galactic magnetic field changes the di-
rection of these particles making it impossi-
ble to determine the incoming direction and
therefore the exact sources of the rays.

3. neutrinos: these extremely light elemen-
tary particles interact very rarely with other
particles and can therefore arrive from huge
distances without being scattered on the
way. This property also makes neutrinos
very difficult to detect and therefore a source

of information with limited usefulness until
better detection methods are discovered.

4. gravitational waves: spacetime distor-
tions traveling through space as a wave.
These are predicted by Einstein’s general
theory of relativity. Gravitational waves
have still not been directly detected, but ex-
periments are on their way.

Of these sources, electromagnetic waves is by far
the most important. Practical problems limit
the amount of information we can obtain from
other sources with current technology. Since elec-
tromagnetic radiation is almost the only source
which we use to get information about the distant
universe, it is of high importance in astrophysics
to know the processes which produce this kind
of radiation. Here we will discuss some of the
most important processes along with some dis-
cussion on how the radiation from these different
processes is used to obtain information about the
universe. Some important types of radiation are

• thermal radiation: the thermal motion of
atoms produces electromagnetic radiation at
all wavelengths. For a black body (see later),
the radiation emitted at a given frequency
is distributed according to Planck’s law of
radiation.

• synchrotron radiation: radiation pro-
duced by energetic charged particles acceler-
ated in a magnetic field. This process emits
electromagnetic radiation at different wave-
lengths depending on the energies involved
in the process. Our own galaxy emits syn-
chrotron radiation as radio waves due to the
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Fact sheet: A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and
wavelengths. The spectrum is a continuum, but is often divided into the following main regions of decreasing wavelength
and increasing energy: radio, microwave, infrared, visible, ultraviolet, X-ray, and gamma-ray. Note that the Earth’s atmo-
sphere is transparent only to visible light, a part of the radio spectrum and a few narrow wavelength intervals in the infrared,
thus limiting the types of celestial objects and astrophysical processes that can be studied using ground-based telescopes.
(Figure:Wikipedia)

acceleration of cosmic ray electrons in the
magnetic field of the galaxy.

• Bremsstrahlung: radiation produced by
the ’braking’ of a charged particle, usually
an electron, by another charged particle,
typically a proton or atomic nucleus. Due
to electromagnetic forces from ions, elec-
trons are deflected, and hence accelerated,
producing electromagnetic radiation at all
wavelengths. The space between galaxies in
the clusters of galaxies is called the inter-
galactic medium (IGM). It contains a very
hot plasma of electrons and ions emitting
brehmsstralung mainly as X-rays. These X-
rays constitute an important source of infor-
mation about distant clusters of galaxies.

• 21 cm radiation: Neutral hydrogen emits
radiation with wavelength 21 cm due to a
so-called spin-flip: The quantum spin of the
electron and proton may change direction
such that the spin vectors go from having
their orientation in the same direction to
having their orientation in opposite direc-
tions. In this process, the total energy of the
atom decreases and the energy difference be-
tween the two states is emitted as 21 cm ra-
diation. This is a so-called forbidden transi-
tion, meaning that it occurs very rarely. For
a single atom one would on average need to

wait about 10 millions years for the process
to occur. However, in huge clouds of gas the
number of hydrogen atoms is so large that
the intensity of 21 cm radiation can be quiet
large even for such a rare process.

2 Solid angles

Figure 1: The angle measured in radians is defined as the
length taken along the rim of the unit circle.

Figure 2: The solid angle measured in steradians is defined
as the area taken on the surface of the unit sphere.
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Before embarking on the properties of radiation,
we will first introduce a new concept which will
be widely used: the solid angle. The solid angle
is a generalization of the concept of an angle from
one to two dimensions. Looking at figure 1, we
see that an angle measured in radians is simply
a distance ∆s taken along the rim of the unity
circle

θ = ∆s.

To convince you about this, remember that the
circumference of the unity circle, the full distance
taken around the circle, is 2π. Now, the solid an-
gle is measured in units of steradians, for short
sr, and is a part of the area of the surface of the
unit sphere as seen in figure 2. Thus,

Ω = ∆A.

The solid angle corresponding to the full unit
sphere is then 4π sr which is the full area of the
surface of the unit sphere. If we imagine a source
of radiation in the center of the unit sphere, the
solid angle can be used to describe the amount
of radiation going in a certain direction as the
energy transported per steradian. This is widely
used in the study of radiative processes in stars.

3 Black body radiation

Figure 3: Intensity is the energy of radiation passing
through area dA into a solid angle dΩ per time, per wave-
length.

Thermal radiation is emitted from an object of
temperature T because of the thermal motion of
atoms at this temperature. Black body radiation
is thermal radiation from a black body. A black
body is defined as a body which absorbs all radi-
ation it receives, no radiation is reflected or can
pass through. Many objects in astrophysics are
close to being a black body, a star is a typical
example. For a black body, an expression for the

intensity of the thermal radiation as a function
of wavelength/frequency can be obtained analyti-
cally. A black body emits thermal radiation at all
frequencies, but which frequency has the largest
intensity depends on the temperature of the black
body. To calculate the distribution of radiation
per frequency quantum physics is needed. We
will therefore not make the calculation here (you
will come to this in physics courses later), but
rather state the result:

Planck’s law of radiation

B(ν) =
2hν3

c2
1

ehν/(kT ) − 1
.

where ν is the frequency, T is the tempera-
ture of the black body, h is Planck’s constant
and k is the Boltzmann constant.

The quantity B(ν) is intensity defined such that

∆E = B(ν) cos θ∆ν∆A∆Ω∆t (1)

is the small energy passing through a small area
∆A into a small solid angle ∆Ω (see figure 3)
per small time interval ∆t in the small frequency
range [ν, ν+∆ν]. Intensity is measured in units of
W/m2/sr/Hz. Here the factor cos θ comes from
the fact that energy per solid angle per area is
lower by a factor cos θ for an observer making
an angle θ with the normal to the area emitting
radiation. Example: Imagine you have a light
bulb which emits black body radiation at a cer-
tain temperature. You set up a wall between you
and the light bulb and let light pass only through
a small hole in the wall of area ∆A = 0.1 mm2.
Just around the hole you construct a unit sphere
and put a detector at an angle θ = 30◦ with a
line orthogonal to the wall. The detector occu-
pies about 1/1000 of the unit sphere and thus
absorbes light from ∆Ω = 4π/1000 sr. Finally,
the detector contains a material which only ab-
sorbes and measures radiation in the wavelenght
range 600–600.1 nm , such that ∆ν = 0.1 nm.
The energy that the detector measures from the
light during a period of 10−3s is then:

∆E = B(600 nm)× cos(30◦)× 0.1 mm2

× (4π/1000) sr× 0.1 nm× 10−3 s

In reality, the definition is made when we let all ∆
be infinitesimally small, such that the definition
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reads
dE = B(ν) cos θ dν dAdΩ dt (2)

When we use differentials instead of finite differ-
ences ∆, we can use integrals to obtain the energy
over large intervals in area, frequency, solid angle
or time.

Note that in order to write Planck’s law in terms
of wavelength λ instead of frequency ν one can
not simply replace ν = c/λ. B(ν) is defined in
terms of differentials, so we need to take these into
account. When changing from frequency to wave-
length, the energy must be the same, we are only
changing variables, not the physics. Using that
the energy ∆E is the same, we get from equation
2 that B(ν)dν = −B(λ)dλ (the minus sign comes
from the fact that λ and ν increase in opposite
directions, λ+ |δλ| → ν − |δν|). We can write

B(ν)dν = −B(ν)
dν

dλ
dλ ≡ B(λ)dλ,

We therefore obtain

B(λ) = −B(ν)
dν

dλ
= −B(ν)

(
− c

λ2

)
=

2hc2

λ5
1

ehc/(kTλ) − 1
.

Figure 4: Planck’s law for different black body tempera-
tures.

Figure (4) shows the intensity as a function of
wavelength for black bodies with different tem-
perature T . We see that the wavelength of max-
imum intensity is different for different temper-
atures. We can use the position of this peak to
determine the temperature of a black body. We

can find an analytical expression for the position
of the peak by setting the derivative of Planck’s
law equal to zero,

dB(λ)

dλ
= 0

In the exercises you will show that the result
gives:

Wien’s displacement law

Tλmax = 2.9× 10−3 Km.

Another way to obtain the temperature of a black
body is by taking the area under the Planck curve,
i.e. by integrating Planck’s law over all wave-
lengths. This area is also different for different
temperatures T . Integrating this over all solid
angles dΩ and frequencies dν, we obtain an ex-
pression for the flux, energy per time per area,

F =
dE

dAdt
.

The integral can be written as (here we are just
integrating equation (2) over dν and dΩ)

F =

∫ ∞
0

dν

∫
dΩB(ν) cos θ.

Using that dΩ = dφ sin θdθ = −dφ(d cos θ) and
substituting u = hν/kT , we get

F =

∫ 2π

0

dφ

∫ 1

0

d cos θ cos θ

∫
dν

2hν3

c2
1

ehν/(kT ) − 1

=
2k4T 4π

h3c2

∫
u3du

eu − 1

=
2πk4T 4

h3c2
ζ(4)︸︷︷︸
π4/90

Γ(4)︸︷︷︸
3!

=
2π5k4

15h3c2︸ ︷︷ ︸
≡σ

T 4.

Here the solution of the u-integral can be found
in tables of integrals expressed in terms of ζ,
the Riemann zeta-function and Γ, the gamma-
function, both of which can be found in tables of
mathematical functions. The final result is thus:
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Stefan-Boltzmann law
The flux emitted from a black body is propor-
tional to the temperature to the fourth power.

F = σT 4,

where σ is a constant.

We see that we have two ways of measuring the
temperature of a star, by looking for the wave-
length were the intensity is maximal, or by mea-
suring the energy per area integrated over all
wavelengths. If a star had been a black body,
these two temperatures would have agreed. How-
ever, a star is not a perfect black body. A star
has different temperatures at different depths in
the star’s atmosphere. At different wavelengths
we receive radiation from different depths and the
final radiation is a combination of Planck radia-
tion at several temperatures. Since the intensity
as a function of wavelength is not a perfect Planck
curve at a fixed temperature T , the two ways of
measuring the temperature will also disagree,

• From Wien’s displacement law, we get the
color temperature, T = constant/λmax.

• From Stefan-Boltzmann’s law we get the ef-
fective temperature, T = (F/σ)1/4.

The first temperature is called the color tempera-
ture since it shows for which wavelength the radi-
ation has it’s maximal intensity and hence which
color the star appears to have. The second tem-
perature is based on the total energy emitted.

We have so far introduced two measures for the
energy of electromagnetic radiation:

Intensity

I(ν) =
dE

cosθ dν dAdΩ dt

energy received per frequency, per area, per
solid angle and per time.

Flux (or total flux)

F =
dE

dAdt

total energy received per area and per time.

You will now soon meet the following expressions:

Flux per frequency

F (ν) =
dE

dAdt dν

total energy received per area, per time and
per frequency.

Luminosity

L =
dE

dt

total energy received per unit of time.

Luminosity per frequency

L(ν) =
dE

dt dν

total energy received per frequency per time.

You will soon see more uses of all these expres-
sions in practise, but it is already now a good
idea to memorize the meaning of intensity, flux
and luminosity.

4 Spectral lines

When looking at the spectra of stars you will dis-
cover that they have thin dark lines at some spe-
cific wavelengths. Something has obscured the
radiation at these wavelengths. When the radia-
tion leaves the stellar surface it passes through
the stellar atmosphere which contains several
atoms/ions absorbing the radiation at specific
wavelengths corresponding to energy gaps in the
atoms. According to Bohr’s model of the atom,
the electrons in the atom may only take certain
energy levels E0, E1, E2, .... The electron cannot
have an energy between these levels. This means
that when a photon with energy E = hν hits
an atom, the electron can only absorb the energy
of the photon if the energy hν corresponds ex-
actly to the difference between two energy levels
∆E = Ei − Ej. Only in this case is the photon
absorbed and the electron is excited to a higher
energy level in the atom. Photons which do not
have the correct energy will pass the atom with-
out being absorbed. For this reason, only radia-
tion at frequency ν with photon energy E = hν
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Fact sheet: The Milky Way band observed in several wavelength regions (ul-
traviolet light is missing, though). The development of new detectors and, in
particular, space telescopes has enabled us to study the universe at all wave-
lengths. We can now learn about celestial objects and physical processes that
were completely unknown to astronomers only a few decades ago.(Figure:
NASA)

corresponding to the difference in the energy level
of the atoms in the stellar atmosphere will be ab-
sorbed. We will thus have dark lines in the spec-
tra at the wavelengths corresponding to the en-
ergy gaps in the atoms in the stellar atmosphere
(see figure 5). By studying the position of these
dark lines, the absorption lines, in the spectra we
get information about which elements are present
in the stellar atmosphere.

The opposite effect also takes place. In the hot-
ter parts of the stellar atmospheres, electrons are
excited to higher energy levels due to collisions
with other atoms. An electron can only stay
in an excited energy level for a limited amount
of time after which it spontaneously returns to
the lowest energy level, emitting the energy dif-
ference as a photon. In these cases we will see
bright lines, emission lines, in the stellar spec-
tra at the wavelength corresponding to the energy
difference, hν = ∆E (see figure 6).

Figure 5: Formation of absorption lines.

Figure 6: Formation of emission lines.

The exact energy levels in the atoms and thus
the wavelengths of the absorption and emission
lines can be calculated using quantum physics, or
they can be measured in the laboratory. However,
the actual wavelength where the spectral line is
found in a stellar spectrum may differ from the
predicted value. One reason for this could be the
Doppler effect. If the star has a non-zero radial
velocity with respect to the Earth, all wavelengths
and hence also the position of the spectral lines
will move according to

∆λ

λ0
=
vr
c
,

where vr is the radial component of the velocity.
By taking the difference ∆λ between the observed
wavelength (λ) and predicted wavelength (λ0) of
the spectral line, one can measure the velocity
of a star or any other astrophysical object as we
discussed in the lecture on extrasolar planets.
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Fact sheet: By studying the spectra of objects in the universe,
you can do ”remote learning” that is, from millions and even bil-
lions of light-years away you can figure out the object’s chemical
composition and velocity. a) If you look directly at a blackbody
through a prism or a modern spectrograph, you will see a con-
tinuous spectrum. b) Clouds of gas absorb certain wavelengths
of light. A continuous spectrum that hits a cloud of cool gas will
be partially absorbed. The transmitted spectrum is called an ab-
sorption line spectrum, and is continuous except for the wave-
lengths that were absorbed by the gas. c) Anything that absorbs
also emits. A cloud of cool gas that absorbs certain wavelengths
from a blackbody will emit exactly those wavelengths as the gas
atoms de-excite. If we look at the cloud without the blackbody in
our line of sight, we will see an emission line spectrum. (Figure:
www.nthu.edu.tw)

Figure 7: Broadening of spectral lines due to thermal mo-
tion.

Note that even if the star has zero-velocity with
respect to Earth, we will still measure a Doppler
effect: The atoms in a gas are always mov-
ing in random directions with different velocities.
This thermal motion of the atoms will induce a
Doppler effect and hence a shift of the spectral
line. Since the atoms have a large number of dif-
ferent speeds and directions, they will also induce
a large number of different Doppler shifts ∆λ with
the result that a given spectral line is not seen as
a narrow line exactly at λ = λ0, but as a sum of
several spectral lines with different Doppler shifts
∆λ. The total effect of all these spectral lines is
one single broad line centered at λ = λ0 (see figure
7). The width of the spectral line will depend on
the temperature of the gas, the higher the tem-
perature, the higher the dispersion in velocities
and thus in shifts ∆λ of wavelengths.

If we knew the velocities of the gas particles, we
could calculate the width of the spectral line. Go-
ing back to part 1A, we already learned how to
calculate the velocity of particles in a gas: the
Maxwell-Boltzmann distribution. Looking at the

figure in part 1A showing the Maxwell-Boltzmann
distribution, we see that the peak of this distri-
bution, i.e. the velocity that the largest number
of atoms have, depends on the temperature of the
gas,

dn(v)

dv
= 0→ d

dv
(e−mv

2/(2kT )v2) = 0.

Taking the derivative and setting it to zero gives
the following relation

v2max =
2kT

m
,

i.e. the most probable velocity for an atom in the
gas is given by vmax (Note: ’max’ does not mean
highest velocity, but highest probability). Most of
the atoms will have a velocity close to this veloc-
ity).

This version of the Maxwell-Boltzmann distribu-
tion only tells you the absolute value v of the ve-
locity. When measuring the Doppler effect, only
the radial (along the line of sight) component vr
has any effect. The atoms in a gas have random
directions and therefore atoms with absolute ve-
locity v will have radial velocities scattered uni-
formly in the interval vr = [−v, v] (why this in-
terval? do you see it?). Since the most proba-
ble absolute velocity is vmax the most probable
radial velocity will be all velocities in the inter-
val vr = [−vmax, vmax] (you see that for instance
vr = 0 is in this interval, do you understand
why vr = 0 is at as common as vr = vmax?).
The atoms with absolute velocity vmax will thus
give Doppler shifts uniformly distributed between
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∆λ/λ0 = −vmax/c and ∆λ/λ0 = vmax/c. Few
atoms have a much higher velocity than vmax and
therefore the spectral line starts to weaken (less
absorption/emission) after |∆λ|/λ0 = vmax/c. We
will thus see a spectral line with the width given
roughly by

2∆λ =
2λ0
c
vmax =

2λ0
c

√
2kT

m
,

using the expression for vmax above. Do you
see how this comes about? Try to imagine how
the spectral line will look like, thinking how
atoms at different velocities (above and below the
most probable velocity) will contribute to vr and
thereby to the the spectral line. Try to make a
rough plot of how F (λ) for a spectral line should
look like. Do not proceed until you have made a
suggestion for a plot for F (λ).

Of course, there are atoms at speeds other than
vmax contributing to the spectral line as well. The
resulting spectral line is thus not seen as a sud-
den drop/rise in the flux at λ0 − ∆λ and a sud-
den rise/drop again at λ0 + ∆λ. Contributions
from atoms at all different speeds make the spec-
tral line appear like a Gaussian function with
strongest absorption/emission at λ = λ0. We say
that the line profile is Gaussian. More accurate
thermodynamic calculations show that we can ap-
proximate an absorption line with the Gaussian
function

F (λ) = Fcont(λ) + (Fmin−Fcont(λ))e−(λ−λ0)
2/(2σ2),

(3)
where Fcont(λ) is the continuum flux, the flux
F (λ) which we would have if the absorption line
had been absent. As the line is Gaussian, we can
define the width using either σ or FWHM (see
part 1A). The latter is given by

FWHM =
2λ0
c

√
2kT ln 2

m
, (4)

We see that this exact line width differs from our
approximate calculations above only by

√
ln 2.

With this expression we also have a tool for mea-
suring the temperature of the elements in the stel-
lar atmosphere.

5 Stellar magnitudes

The Greek astronomer Hipparchus (about 150
BC) made a catalogue of about 850 stars and di-
vided them into 6 magnitude classes, depending
on their brightness: the brightest stars were clas-
sified as magnitude 1 stars, and the stars which
could barely be seen were classified as magnitude
6. Little did Hipparchus know about the fact that
more than 2000 years later his system would still
be used, and not only that, it would be used by
all astronomers in the (now much bigger) world.
Whereas Hipparchus classified the stars by eye, a
more scientific method is used today. The eye re-
acts to differences in the logarithm of the bright-
ness. For this reason, the magnitude classification
is logarithmic in the flux that we receive (energy
received per area per time F = dE

dt dA
). For a dif-

ference in magnitude of 5 between two stars, the
ratio of the fluxes of these stars is defined to be
exactly 100.

The flux we receive from a star depends on the
distance to the star. We define the luminosity L
of a star to be the total energy emitted by the
whole star per unit time (dE/dt). This energy
is radiated equally in all directions. If we put a
spherical shell around the star at distance r, the
energy received per unit area on this shell would
equal the total energy L divided by the surface
area of the shell,

F =
L

4πr2
.

Thus, the larger the distance r, the larger the sur-
face area of the shell 4πr2 and the smaller the en-
ergy received per unit area (flux F). If we have two
stars with observed fluxes F1 and F2 and magni-
tudes m1 and m2, we have learned that if F1 = F2

then m1 = m2 (agree?). We have also learned
that if F1 = 100F2 then m2 −m1 = 5 (remember
that in Hipparchus’ system m = 1 stars were the
brightest and m = 6 stars were the faintest).

The magnitude scale is logarithmic, thus we ob-
tain the following general relation between mag-
nitude and flux

F1

F2

= 100(m2−m1)/5,
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or

m1 −m2 = −2.5 log10

(
F1

F2

)
.

(Check that you can go from the previous equa-
tion to this one!) Given the difference in flux
between two stars, we can now find the difference
in magnitude.

We have so far discussed the apparent magnitude
m of a star which depends on the distance r. If
you change the distance to the star, the flux and
hence the magnitude changes. We can also define
absolute magnitude M which only depends on the
total luminosity L of the star. The absolute mag-
nitude M does not depend on the distance. It
is defined as the star’s apparent magnitude if we
had moved the star to a distance of exactly 10
parsec (pc) (remember that 1pc=3.26ly). We can
find the relation between apparent and absolute
magnitude of a star,

Fr
Fr=10pc

=
L/(4πr2)

L/(4π(10 pc)2)
=

(
10 pc

r

)2

= 100(M−m)/5,

giving

m−M = 5 log10

(
r

10 pc

)
.

(here we used a distance of r = 10 pc to cal-
culate the flux for the absolute magnitude, this
comes directly from the definition of absoluter
magnitude: read it again if you did not under-
stand this point). With this new more precise
definition, stars can have magnitudes lower than
1. The brightest star in the sky, Sirius, has ap-
parent magnitude -1.47 (note that the logarith-
mic dependence actually gives the brightest stars
negative apparent magnitude). The planet Venus
at maximum brightness has apparent magnitude -
4.7 and the Sun has magnitude -26.7. The faintest
object in the sky visible with the Hubble Space
Telescope has apparent magnitude of about 30,
about 1005 times fainter than the faintest star vis-
ible with the naked eye. Originally the zero point
of the magnitude scale was defined to be the star
Vega. This has now been slightly changed with

a more technical definition (outside the scope of
this course).

Note: In order to define the magnitude we use the
flux which we receive on Earth, the received flux.
In some situations you will also need the emitted
flux, the flux measured on the surface of the star
emitting the radiation. It is important to keep
these apart as they are calculated in a different
manner (what is the difference?).
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6 Exercises

Exercise 1D.1 You need to read sections 1 to 3
in order to be able to solve this exercise. At very
large (hν � kT ) and very small (hν � kT ) fre-
quencies, Planck’s law can be written in a simpler
form. The first limit is called the Wien limit and
the second limit is called the Rayleigh-Jeans limit
or simply the Rayleigh-Jeans law.

1. Show that Planck’s law can be written as

B(ν) =
2hν3

c2
e−hν/(kT )

in the Wien limit.

2. Show that Planck’s law can be written as

B(ν) =
2kT

c2
ν2

in the Rayleigh-Jeans limit. What kind
of astronomer do you think uses Rayleigh-
Jeans’ law regularly?

Exercise 1D.2 You need to read sections 1 to 3
in order to be able to solve this exercise. Now we
will deduce Wien’s displacement law by finding
the peak in B(λ).

1. Use the expression in the text for B(λ) and
take the derivative with respect to λ. Af-
ter taking the derivative, eliminate λ every-
where using

x =
hc

kTλ
.

2. To find the peak in B(λ), we need to set the
derivative equal to zero. Show that this gives
us the following equation

xex

ex − 1
= 5.

3. We now want to solve this equation numer-
ically. We see that all we need to do is to
find a value for x such that the expression
on the left hand side equals 5. The easiest
way to do this is to try a lot of different val-
ues for x in the expression on the left hand
side. When the expression on the left hand
side has got a value very close to 5, we have
found x.

(a) The solution to x will be in the range
x = [1, 10]. Define an array x in Python
with 1000 elements going from 1.0 as the
lowest value to 10.0 as the highest value.
Make a plot of the expression on the left
hand side as a function of the array x.
Can you see by eye at which value for
x the curve crosses 5? Then you have
already solved the equation.

(b) To make it slightly more exact, we try to
find which x gives us the closest possible
value to 5. We define the difference ∆
between our expression and the value 5
which we want for this expression

∆ =

(
xex

ex − 1
− 5

)2

,

where we have taken the square to get
the absolute value. Define an array in
Python which contains the value of ∆
for all the values of x. Plot ∆ as a func-
tion of x. By eye, for which value of x
do you find the minimum?

(c) Use Python to find the exact value of
x (from the 1000 values defined above)
which gives the minimum ∆.

(d) Now use the definition of x to obtain the
constant in Wien’s displacement law.
Do you get a value close to the value
given in the text?

Exercise 1D.3 You need to read sections 1 to 3
in order to be able to solve this exercise. Here we
will assume that a star is a perfect black body.

1. At which wavelength λ does the star in your
solar system (the one you have been given for
the numerical exercises) radiate most of its
energy? (you will need to extract the tem-
perature of the star from the Python class
using system.temperature)

2. Plot B(λ) for your star. What kind of elec-
tromagnetic radiation dominates?

3. What is the total energy emitted per time
per surface area (flux) from the surface of
the star?
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4. Use this flux to find the luminosity L (total
energy emitted per time) of your star? (Here
you need the radius of the star which you can
extract from the Python class).

5. What is the flux (energy per time per surface
area) that your destination planet (the one
you have chosen to visit) receives from its
star? (Here you need the distance between
the star and the planet, you can choose your-
self at which point in the orbit you calculate
this distance). (See figure 8 which shows the
situation for the Sun-Earth system).

Figure 8: Radiation from the Sun. The flux is con-
stant on a spherical surface with center at the Sun’s
center of mass.

6. Assume that your lander unit needs 40W of
energy for its instruments and that it gets
this energy from its solar panels. Assume
that the efficiency of solar panels is 12%,
i.e. that the electric energy that solar panels
can produce is 12% of the energy that they
receive. How many square meters of solar
panel does your lander unit need in order to
get 40W of energy when at the surface of the
planet.

Exercise 1D.4 You need to read sections 1 to
3 in order to be able to solve this exercise. We
will now study a simple climate model. You will
need the results from question 1-6 in the previous
problem.

1. We assume that the atmosphere of your des-
tination planet is transparent for all wave-
lengths. How much energy per second ar-
rives at the surface of your planet? The flux
that you calculated in the previous exercises
is the flux received by an area located at the

planet’s surface with orientation perpendic-
ular to the distance-vector between the star
and the planet. Hint - Since the planet
is (close to) a sphere, the flux is not at all
constant over the surface. However, we do
not need to calculate the density for each
square meter (fortunately). We can just look
at the size of the effective absorption area
(shadow area) which is shown in figure 9
(which shows the situation for the Sun-Earth
system). Since the distance between the star
and the planet is so large, we can assume
that the rays arriving at the planet are trav-
eling in the same direction (parallell). The
radius r of the shadow area is then equal to
planet’s radius. The rest should be straight
forward.

Figure 9: Shadowarea (effective absorption area).

2. You are now going to estimate your planet’s
temperatur by using a simple climate model
that only takes into account the radiation
from the star and the planet itself. We still
assume that the atmosphere is transparent
for all wavelengths. The model says that the
planet is a blackbody with a constant tem-
perature. This means that it absorbs all in-
coming radiation and emits the same amount
(in energy/time) in all directions. Calculate
the planet’s temperature by using the sim-
ple climate model. You will need the result
from the previous question and Stefan Boltz-
mann’s law. Do you think this is a realistic
measure of the surface temperature? Which
important factors did we not take into ac-
count?

Exercise 1D.5 You need to read sections 1 to
3 in order to be able to solve this exercise. Here
you will deduce a general expression for the flux
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per wavelength, F (λ) = dE/(dAdt dλ), that we
receive from a star with radius R at a distance
r with surface temperature T . Assume that the
star is a perfect black body. You can solve this
problem in two steps,

1. Find the luminosity per wavelength
L(λ) = dE/(dλ dt), i.e. the energy per
time per wavelength, emitted from the
star. The intensity B(λ) is defined as
dE/(dAdΩ dλ dt cosθ). You need to inte-
grate over solid angle and area to obtain the
expression for the luminosity. Hint: Look
at the derivation of Stefan-Boltzmann’s law
in the text.

2. Find the flux F (λ) using L(λ).

3. Does the expression for the flux peak at
the same wavelength as for Planck’s law?
Can we simply use the maximum wavelength
from flux measurements to obtain λmax to be
used in Wien’s displacement law?

Exercise 1D.6 You need to read sections 1 to
4 as well as part 1C in order to be able to solve
this exercise. At the following link you will find
directories containing some files with 10 different
observations of the spectrum of a star taken at
different times:

http://folk.uio.no/frodekh/AST1100/part1D_1/

In order to find your directory, you should look
at the two last digits of your seed, i.e. if your
seed is 42325 then you should enter the directory
called seed25. Inside your directory you will find
10 files, each with the spectrum of the star taken
at the day specified in the filename.

The filename indicates the time of observation
given in days from the first observation taken at
t = 0. The first column of the file is the wave-
length of observation in nm, the second column
is the flux relative to the continuum flux around
the spectral absorption line Hα at λ0 = 656.3
nm. Due to the Doppler effect, the exact posi-
tion of the spectral line is different from λ0. You
will also see that this difference changes in time.
As we have seen before, real life observations are
noisy. It is not so easy to see exactly at which
wavelength the center of the spectral line is lo-

cated.

1. Plot each of the spectra as a function of
wavelength. Can you see the absorption
line?

2. Make a bye-eye estimate of the position of
the center of the spectral line for each obser-
vation. Use the Doppler formula to convert
this into relative velocity of the star with re-
spect to Earth for each of the 10 observa-
tions (neglect the fact that the velocity of
the Earth changes with time).

3. Now we will make a more exact estimate
of the spectral line position using a least
squares fit. As discussed in the text, we can
model the spectral line as a Gaussian func-
tion (see equation 3),

Fmodel(λ) = Fmax+(Fmin−Fmax)e
−(λ−λcenter)2/(2σ2).

When λ = λcenter, the model gives
Fmodel(λ) = Fmin. When λ is far from λcenter
the model becomes Fmodel(λ) = Fmax as ex-
pected (check!). Thus the flux in this wave-
length range if there hadn’t been any spec-
tral line would equal Fmax. The flux at the
wavelength for which the absorption is max-
imal is Fmin. The spectra are normalized
to the continuum radiation meaning that
Fmax = 1. We are left with three unknown
parameters, Fmin, σ and λcenter. The first
parameter gives the flux at the center of the
spectral line, the second parameter is a mea-
sure of the width of the line and the third pa-
rameter gives the central wavelength of the
spectral line. In order to estimate the speed
of the star with the Doppler effect, all we
need is λcenter. But in order to get the best
estimate of this parameter, we need to find
the best fitting model to the spectral line,
so we need to estimate all parameters in or-
der to find the one that interests us. Again
we will estimate the parameters using the
method of least squares. We wish to mini-
mize

∆(Fmin, σ, λcenter) = (5)∑
λ

(
F obs(λ)− Fmodel(λ, Fmin, σ, λcenter)

)2
,

(6)
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where F obs(λ) is the observed flux from the
file and the sum is performed over all wave-
lengths available.

(a) Choose one of the 10 spectra. Plot
the spectrum as a function of wave-
length and identify the range of possi-
ble values for each of the three parame-
ters we are estimating. Define three ar-
rays fmin, sigma and lambdacenter in
Python which contain the range of val-
ues for each of Fmin, σ and λcenter where
you think you will find the true values.
Do not include more values of the pa-
rameters than necessary, but make sure
that the true value of the parameter
must be within the range of values that
you select. Do not use more than 50 val-
ues for each parameter, preferably less
(often 20 will be sufficient).

(b) Define a 3-dimensional array delta

where you calculate ∆ for all the combi-
nations of parameters which you found
reasonable.

(c) Find for which combination of the pa-
rameters Fmin, σ and λcenter that ∆ is
minimal. These are your best estimates.

(d) optional: It is completely sufficient
to do this for just one of the spec-
tra. However if you do the optional
exercises it will count favourably
on the grade. Repeat this procedure
for all 10 spectra and obtain 10 values
for the Doppler velocity vr. Can you
manage to write the code in an auto-
mated way such that you do not need to
look at each of the spectra to find the
grid values to search over?

4. optional: Make an array of the 10 values
you have obtained for the velocities and plot
it as a function of time.

5. optional: Assume that the change of ve-
locity with time indicates the presence of a
planet around the star (is there something
in your observations which indicates this?).
The mass of the star was found to be 1 solar
mass. Find the minimum mass of this planet
(find vr and the period ’by eye’ looking at the

velocity curve). Hint: Remember that you
need to subtract the peculiar velocity (ve-
locity of the center of mass of the system),
found by taking the mean of the velocity.

Exercise 1D.7 You need to read sections 1 to 4
in order to be able to solve this exercise. At the
following link

http://folk.uio.no/frodekh/AST1100/part1D_2/

you find the spectrum of the atmosphere of the
planet your are going to visit. In order to find
which file to use, you should look at the two last
digits of your seed, i.e. if your seed is 42325
then you should use the file with seed25 in the
name.The file contains flux measurements in the
rang 600nm to 3000nm normalized such that the
background flux is 1. The noise is strongly vary-
ing between the measurements. A file called
sigma_noise.txt with the standard deviation σn
of the random noise fluctuations for each observed
wavelength is found in the same directory. Note
that all the files are compressed with gzip in or-
der to make quicker downloads.

Your task is to look for spectral lines in order to
determine which molecules you can expect to find
in the atmosphere of your planet. You should look
for the following gases:

• Oxygen O2 has absorption lines at 630nm,
690nm and 760nm. The oxygen atom has 8
protons and 8 neutrons.

• Water vapour H2O has absorption lines at
720nm, 820nm and 940nm. The hydrogen
atom consists of only one proton.

• Carbon dioxide CO2 has absorption lines at
1400nm and 1600nm. The carbon atom has
6 protons and 6 neutrons.

• Methane CH4 has absorption lines at
1660nm, 2200nm. If you find methane on
your planet, this could be a sign of life (or
geological activity).

• Carbon monoxide CO has an absorption line
at 2340nm.

• Nitrous oxide N2O, also known as laughing
gas, has an absorption line at 2870nm and
would also be a possible sign of biological
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activity. Nitrogen consists of 7 protons and
7 neutrons.

The observation is made from a satellite which
can have a motion up to 10km/s with respect to
the planet and would therefore induce a Doppler
effect of the spectral lines. Assume a Gaussian
line profile as in exercise 1D.6. Your task now is
to:

1. Identify which of the spectral lines above
may be present and therefore which gases
you find in your atmosphere.

2. Find the velocity of the satellite during the
measurement of the spectrum.

3. For the lines you find, estimate the width
of the line and find the temperature of the
given gas using equation 4.

4. Assuming a temperature profile T (h) =
450Ke−h/10000m for a given height h above the
surface for your atmosphere, sketch roughly
in which layers of your atmoshere you ex-
pect which gases based on the temperatures
obtained in the previous point.

As the standard deviation of the noise is vary-
ing, you cannot use least squares minimization,
you need to minimize χ2 as explained in part 1C.
This is exactly the same, but you need to divide
each square by the σn of the noise given in the file.
The procedure would therefore be the following:

1. For each possible line, try different models
for λcenter, Fmin and σ exactly as in exercise
1D.6 (except now you use χ2). But this time,
due to strongly varying σn you may not be
able to see the spectral line by eye. You need
to explore a set of possible values values for
λcenter, Fmin and σ without being able to see
the line visually. Note the difference be-
tween σ as the width of your spectral
line and σn as the standard deviation
of the noise fluctuations. You can find
the range for σ by considering that the tem-
perature of the gas is expected to be in the
range 150K to 450K. The depths cannot be
smaller than Fmin > 0.7. You have already
been given the possible velocities so this lim-
its the possible positions of λcenter.

2. Optimally you should try 300 positions for

λcenter and 30 for σ and Fmin. If you do not
program this in a very clever manner, this
may take too long on your laptop. In this
case, reduce the number of points until you
get an acceptable speed. Remember that the
more calculations (in this case sums) you can
do outside of the loop the better. Also mov-
ing a sum such that it is inside only one or
two for-loops instead of three, makes a huge
difference in speed.

3. Having obtained Doppler velocity (from the
λcenter values), line depth Fmin and tem-
perature (obtained from your σ values) for
all possible lines, you should now look at
your results to find which lines are actually
present and which are not.

Even if there is no line present, your statistical
procecure will still find some values for λcenter, σ
and Fmin. This is due to statistical fluctuations.
If you just look at a part of the data, you will
see lots of fluctuations which could easily be mis-
taken for spectral lines. Our algorithm is doing
this mistake. It is therefore not an easy task to de-
termine which lines are actual lines and which are
just statistical flukes. A professional astronomer
would use advanced statistics to, in each case, ob-
tain the probability that a line is really detected
or not. Now you will instead need to use some log-
ical reasoning to determine which lines you think
are really detected. You should consider:

• remember that the Doppler shift will be
equal for the real lines, but due to uncer-
tainties in your estimated numbers, the ve-
locities you obtain may differ a bit from line
to line even if the underlying velocity is the
same.

• a real line would often be deeper (have a
lower Fmin) than a fluke, but this is not al-
ways the case.

• A real detected gas would be expected
to have temperature in the range T =
[150K, 450K], but uncertainties in your esti-
mated numbers may give you higher or lower
values also for real lines.

• It can be that you find for instance only one
of the O2 lines. The fact that you detect one
O2 line does not automatically mean that
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the other O2 lines are present, this depends
a bit on temperature and other atmospheric
conditions.

• Plotting your best fit model line on top of
the observed spectrum may, by focusing on
the wavelengths within the detected line, in-
dicate if this seems to be a very good fit to a
real spectral line or just the algorithm trying
to fit a smooth spectral line to noise. This
is not very exact, but in a few cases when
the noise is low you may be able to identify
a very clear line by eye.

For some planets (seeds) the detection of spectral
lines by the above approach may be rather easy
with several lines showing clear signs of being real
lines, for other planets it may be very hard and
maybe even just one line may be possible to iden-
tify. When you think you have detected a line,
classify it as ’highly probable detection’ or ’pos-
sible detection’ and explain well the reasons for
your classification in each case.

Exercise 1D.8 You need to read all sections of
part 1D in order to be able to solve this exer-
cise. In the text you find the apparent magni-
tudes of Sirius, Vega and the Sun. Look up the
distances to these objects (again, wikipedia is a
useful source of information) and calculate the ab-
solute magnitude. Which of these three stars is

actually the brightest?

Exercise 1D.9 You need to read all sections of
part 1D in order to be able to solve this exercise.

1. Use the flux calculated in Problem 3.6 to
check that the apparent magnitude of the
Sun used in the text is correct. In order
to calibrate the magnitude you also need to
know that the star Vega has been defined
to have zero apparent magnitude (actually
with newer definitions it has magnitude 0.03)
and that the absolute magnitude of Vega is
0.58. You also need to know the luminosity
of Vega: Look it up in Wikipedia. All other
quantities that you may need (for instance
the distance to Vega) should be calculated
using these numbers.

2. The faintest objects observed by the Hubble
Space Telescope (HST) have magnitude 30.
Assume that this is the limit for HST. How
far away can a star with the same luminos-
ity as the Sun be for HST to see it? (here
you will need the luminosity of the Sun cal-
culated in problem 3.5)

3. Assume that the luminosity of a galaxy
equals the luminosity of 2× 1011 Suns. How
far away can we see a galaxy using HST?
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