
AST1100 Lecture Notes

Part 1E
Hydrostatic equilibrium: modelling the planetary atmosphere

Questions to ponder before the lecture

1. Why doesn’t the Sun collapse to a black hole due to its own gravitation?

2. Why doesn’t our atmosphere completely fall to the ground? Or why doesn’t it evaporate away
from the planet?

3. Why is the atmosphere getting gradually thinner, the higher we get?

4. If you were to model how density and temperature of our atmosphere vary with height which
equations would you put up?
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AST1100 Lecture Notes

Part 1E
Hydrostatic Equilibrium: modelling the planetary atmosphere

In figure 1 we show a mass element with mass
dm in the atmosphere of a planet (or inside a
star) at a distance r from the center. We know
that gravity pulls this element towards the cen-
ter. But the size of the atmosphere (or the ra-
dius of a stable star) does not change with time,
so there must be a force working in the opposite
direction keeping this mass element stable at dis-
tance r. This force is the pressure. On a planet
with a stable atmoshere (or in a main sequence
star) the pressure forces must exactly equal the
force of gravity, otherwise the atmosphere would
retract or expand (or the star would change its
radius). This fact, called hydrostatic equilibrium,
gives us an invaluable source of information about
several astrophysical objects, from planetary at-
mospheres to stellar interiors. We can’t observe
the interior of a star directly, but the equation of
hydrostatic equilibrium together with other ther-
modynamic relations combined with observations
of the star’s surface allow detailed computer mod-
elling of the interior of stars. Here we will deduce
this important equation.

Figure 1: The mass element dm inside the atmosphere is
not moving radially.

Figure 2: The mass element dm inside the atmosphere is
not moving: The forces add to zero.

In figure 2 we have zoomed in on the mass element
dm. Because of the symmetry of the problem
(the fact that gravitation only works radially), we
can assume spherical symmetry, i.e. that density,
pressure and temperature are all a function only
of the distance r from the center. We show the
forces of pressure pushing the mass element from
above and below, as well as the force of grav-
ity. Assuming that the element is infinitesimally
small, there are no gravitational forces pushing
on the sides and the pressure forces on the sides
will be equal since the distance r from the cen-
ter is the same on both sides. The forces on the
sides must therefore sum up to zero. We will now
look at a possible radial movement of the mass el-
ement. Newton’s second law on the mass element
gives

dm
d2r

dt2
= −F grav −F pressure(r+ dr) +F pressure(r),

where all forces are defined to be positive. The
minus sign on the two first forces show that they
push towards the center in negative r direction.
The area of the upper and lower sides of the ele-
ment is dA. Pressure is defined as force per area,
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so

P =
F pressure

dA
,

giving

dm
d2r

dt2
= −GM(r)dm

r2
− P (r + dr)dA+ P (r)dA,

(check that you understand where each term
comes from here) where M(r) is the total mass
inside radius r:

M(r) =

∫ r

0

dr′4π(r′)2ρ(r′) (1)

The infinitesimal difference in pressure between r
and r + dr is dP = P (r + dr) − P (r). We have

dm

dA

d2r

dt2
= −dm

dA

GM(r)

r2
− dP

We write the mass of the element as the density
ρ(r) at radius r times the volume dAdr of the
mass element dm = ρdAdr. Dividing by dr on
both sides gives

ρ
d2r

dt2
= −GρM(r)

r2
− dP

dr
.

(Did you understand all parts of the deduction?)
For a stable atmoshpere (or a main sequence star)
the radial size is not changing so the mass element
cannot have any acceleration in r direction giving
d2r/dt2 = 0. This gives the equation of hydro-
static equilibrium

dP

dr
= −ρ(r)g(r),

where g(r) is the local gravitational acceleration

g(r) = G
M(r)

r2
.

The equation of hydrostatic equilibrium tells us
how the pressure P (r) must change as a function
of height in an atmosphere or as a function of ra-
dius in order for a star to be stable. In the follow-
ing we will study what kind of pressure we might
experience in an atmosphere or inside a star and
which effect it has.

You showed in part 1A the the equation of state
for an ideal gas can be written as P = nkT where

n is number density, the number of gas particles
per volume. We can express this in terms of mass
density ρ, the mass per volume, as

Ideal gas law

P =
ρkT

µmH

.

Here µ is the mean molecular weight and mH is
the mass of a hydrogen atom. The mean molec-
ular weight is the mean mass of a particle in the
gas, measured in hydrogen atom masses. In other
words,

Mean molecular weight

µ =
1

N

N∑
i=1

fi
mi

mH

,

where N is the number of different molecules
present and the sum is taken over all types of
molecules. The mass of molecule type i is mi and
the fraction of this kind of molecules in the at-
mosphere is fi. In this way, the mean molecular
weight of pure hydrogen is 1, whereas a gas of
pure H2 has µ = 2 and a gas of pure CH4 has
µ = 16.

In the stellar interior, there is a high density of
photons traveling in all possible directions. The
photons behave like the atoms or molecules in a
gas. So we may consider the collection of pho-
tons as a photon gas. This photon gas also has
a pressure in the same way as a normal gas has.
Thermodynamics tells us that the pressure of a
photon gas is given by

Pr =
1

3
aT 4,

where a = 7.56 × 10−16 J/m3K4 is the radiation
constant.
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1 Exercises

Exercise 1E.1

You need to read all of the text in order to be
able to solve this exercise. In this exercise we
will model the pressure, density and temperature
variations in the atmosphere of your destination
planet. Before doing this exercise you should do
exercise 1D.4 in part 1D in order to get an es-
timate of the mean surface temperature of your
destination planet.

You will need two equations to solve this prob-
lem: (1) the equation of hydrostatic equilibrium:
assuming the the atmosphere is stable (not con-
tracting or expanding), this is a safe assumption,
(2) the equation of state for an ideal gas.

In addition you will need the density of your at-
mosphere at the surface which you can extract
from the SolarSystem class. You can also use the
(reasonable) approximation that the gravitational
acceleration is the same throughout the whole at-
mosphere (use the one at the surface).

1. In order to combine the two equations, we
need the mean molecular weight µ of the
atmosphere. If you did exercise 1D.7 in
part 1D, you already know which gases are
present in your atmosphere (include all those
which you suspected are present). In this
case, assume that there are equal amounts
of all of the gases that you found and use
this to find the mean molecular weight
in the atmosphere of your destination
planet. If you did not do that exercise, you
could (1) go back and do it now, or (2) as-
sume a composition of the atmosphere equal
to the one on earth: 78% nitrogen (each
atom, 7 protons, 7 neutrons) N2, 21% oxy-
gen (each atom, 8 protons, 8 neutrons) O2

and about 1% argon Ar (18 protons, 22 neu-
trons). In this case, find the mean molecular
weight of the Earth’s atmosphere.

2. We will first make a very rough approxima-
tion: we assume that your atmosphere is
isothermal (the temperature is the same ev-
erywhere). Use the temperature that you
obtained in exercise 1D.4. Combine the
two equations and solve these analytically to
show that the pressure as a function of heigh

h above the surface in your atmosphere can
be written as

P (h) = P (0)e
− h

h0

where h0 is the the scale height, the height
difference for which the corresponding pres-
sure difference is a factor e. What is the
scale height for the atmosphere at your des-
tination planet?

3. Find a similar expression for the density ρ(h)
as a function of height h above the surface?

4. Now assume that the temperature varies
with height h above the surface as

T (h) = T (0)e
− h

4h0

where the scale height h0 is the one you ob-
tained for pressure above and T0 is the tem-
perature at the surface which you obtained
in exercise 1D.4. Use this expression to find
again the pressure P (h) and density ρ(h),
but this time you need to solve the equa-
tions numerically. What method should you
use? Plot the results P (h) and ρ(h) up to
heights where the pressure has fallen to 1%
of the pressure at the surface. Hint: You
have been given the atmospheric density at
the surface. You can use that to find the
atmospheric pressure at the surface.

5. We now assume that the atmosphere is adi-
abatic (that the gas can change tempera-
ture without loosing or gaining heat from
the environment, this is a good approxima-
tion away from the surface), meaning that
we can use the adiabatic law (you will show
this in the course on thermodynamics):

p1−γT γ = constant

Assume the adiabatic index γ to have a value
of 1.4 in your final result, but use the gen-
eral value γ in your calculations. Combine
the adiabatic law with the equation for hy-
drostatic equilibrium and ideal gas law to ob-
tain more realistic height profiles for temper-
ature, pressure and density analytically.

6. Plot the three different profiles you found for
pressure in one plot. Do the the same for
temperature and density. How well do they
match?
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