
AST1100 Lecture Notes

Part 1G
Quantum gases

Questions to ponder before the lecture

1. If hydrostatic equilibrium in a star is lost and gravitational forces are stronger than pressure,
what will happen with the star?

2. Do you know what a degenerate gas is?
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AST1100 Lecture Notes

Part 1G
Quantum gases

We will finish part 1 where we started: statis-
tics and gas dynamics. We have so far looked at
and used statistics for ideal gases. In part 3 we
will learn the different stages in stellar evolution.
In the final stages of stellar evolution, the stel-
lar core (and sometimes shells around the core)
becomes extremely compact with densities of the
order 109kg/m3 and more. At these extreme den-
sities, the ideal gas approximation is not valid.
Strange phenomena caused by quantum mechan-
ical processes appear and the gas aquires proper-
ties which makes it behave very different from a
normal ideal gas. The first purpose of this chapter
is to give you a rough introduction to the exciting
world of quantum physics by extending the statis-
tics we learned in part1A. The second purpose is
to deduce the equations governing gases at these
extreme densities that we will need for part 3.

1 Distribution functions

In part 1A, we learned the distribution function
P (v) for ideal gas giving the probability for a gas
particle to have a velocity v. We expressed this
also as the number density of particles per ve-
locity, n(v) = P (v)n. Finally, we transformed
this, using v = p/m, to number density per mo-
mentum, n(p) giving the number of particles per
volume with a given momentum. In order to get
the number of particles per volume within a tiny
momentum interval [p, p + dp] you need to mul-
tiply n(p) by the momentum interval dp. Before
reading on, go back to part 1A and make sure you
remember how these are defined and used.

By making the substitution E = p2/(2m) we can
obtain the distribution function n(E) giving the
number density of particles having a certain en-
ergy E. Make sure here that the total number
density for a given interval is conserved, i.e.

n(p)dp = n(E)dE.

It is important to include the intervals dp and
dE here when making the transformation other-
wise total number density is not conserved: we
are looking at exactly the same particles in both
cases, we just change the description from p to E
and in order to work with actual particle num-
ber densities, we have learned that we need to
multiply n(p) and n(E) by dp and dE. This has
its origin in the probability distribution which
needs to be multiplied with these intervals in or-
der to represent actual probabilities (go back to
part 1A now if this is not clear). We therefore
need to express dp in terms of dE and then insert
p =
√

2mE everywhere. Taking the derivative

dE

dp
=

p

m
,

we get dp = m
p
dE. We therefore arrive at

n(E)dE =
2n√

π(kT )3/2
E1/2e−

E
kT dE,

Check that you manage to arrive at this equation
yourself.

In part 1A, we used the distribution functions
n(~v) and n(~p) for the velocity and momentum
vectors as well as the distribution functions n(v)
and n(p) for the absolute value of velocity and
momentum. We will start this part by deducing
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how you can from the vector distribution to the
distribution for the absolute value.

Figure 1: Momentum space: All particles with |p| within
[p, p+ ∆p] are located on the thin shell of thickness ∆p at
radius |p|.

The Maxwell-Boltzmann distribution function for
the momentum vector of particles in an ideal gas
is

n(~p) = n

(
1

2πmkT

)3/2

e−p
2/(2mkT ),

where n is the total number of particles per vol-
ume. This is the density n(~p) of particles with
momentum ~p. We will use this expression to find
the number density n(p) of particles with abso-
lute momenta p. This corresponds to all particles
with a momentum vector ~p such that the length
of the vector is p and with an arbitrary direction.
We therefore need to integrate over all particles
with all possible angles of the vector ~p keeping
the absolute value fixed.

We can imagine that we have a momentum space,
i.e. a three dimensional space with axes px, py and
pz (see figure 1). All possible momentum vectors
~p are vectors pointing to a coordinate (px, py, pz)
in this momentum space. All particles which have
an absolute value p of their momentum ~p are lo-
cated on a spherical shell at distance p from the
origin in this momentum space. Thus we may
imagine a particle to have a position in the six
dimensional position-momentum space (~x, ~p). All
particles have a position in real space (x, y, z) and
a position in momentum space (px, py, pz). In this
6-dimensional space, the distribution n(~p) is a 6-
dimensional number density: the number of parti-
cles per real space and momentum space volume.

All particles with momentum between p and p+dp
are located on a thin shell of thickness dp at a dis-
tance p from the origin in momentum space. The
total volume of this shell is 4πp2dp (where did
this expression come from?). Thus, to obtain the
total number of particles within this momentum
range, we need to multiply the distribution with
the momentum space volume 4πp2dp,

n(p)dp = n

(
1

2πmkT

)3/2

e−p
2/(2mkT )4πp2dp.

This is the distribution function for absolute mo-
menta p that we already know. Note that whereas
n(~p) has dimensions number density per real vol-
ume and momentum space volume (6-dimensional
density), n(p)dp has dimensions number density
per real volume and is therefore the normal 3-
dimensional number density. The latter follows
from the fact that we have simply multiplied n(~p)
with a volume in momentum space (4πp2dp) to
obtain n(p)dp.

We have, without knowing it, encountered an-
other distribution function in this course. The
Planck distribution. The Planck distribution is
the number density of photons within a given fre-
quency range

B(ν) =
2hν3

c2
1

ehν/(kT ) − 1
.

When you have taken courses in quantum me-
chanics and thermodynamics you will deduce two
more general distribution functions. When tak-
ing quantum mechanical effects into account it
can be shown that the distribution function for
fermions (from part1F we know that fermions are
particle with half integer quantum spin like the
electron, proton or neutron) and bosons (again,
from part 1F we know that bosons are particles
with integer quantum spin like the photon) can
be written generally as

n(E) =
g(E)

e(E−µC)/(kT ) ± 1
, (1)

where µC is the chemical potential and g(E) is the
density of states which we will come back to later.
Here the minus sign is for bosons and the plus sign
for fermions. In the limit of low densities it turns
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out (we will not show it here) that the exponen-
tial part dominates and the distribution function
becomes equal for fermions and bosons. In this
case the chemical potential has such a form that
we get back the Maxwell-Boltzmann distribution
function (compare with the above expression for
E). Note that the expression for bosons resem-
bles the Planck function (can you see this?): the
Planck function can be derived from the distribu-
tion function for bosons (you will do this in later
courses).

2 Degenerate gases

In the core of stars, the fermions, i.e. the elec-
trons, is the dominating species. Therefore
we will here study the distribution function for
fermions and use the + sign in the above equa-
tion. We will look at an approximation of the dis-
tribution function for an electron gas at low tem-
perature. Of course, the temperature in the core
of a star is not particularly low, but we will later
show that the same approximation and results are
valid even for high temperatures provided we are
in the high density limit.

In the low temperature limit it can be shown that
the chemical potential µC equals the so-called
Fermi energy EF . We will later find an expression
and physical interpretation for the Fermi energy,
but for now consider it a number which has units
Joule. We will first consider the distribution func-
tion for fermions (in our case, electrons) in this
low temperature limit for which expression 1 re-
duces to

n(E) =
g(E)

e(E−EF )/(kT ) + 1
(2)

where

g(E) = 4π

(
2me

h2

)3/2

E1/2, (3)

where me is the electron mass. The number of
electrons per volume with an energy between E
and E + dE in a gas with temperature T is now
given by n(E)dE. The energy E of an electron
may be larger or smaller than the Fermi energy
EF .

We will now measure the energy of an electron in
the gas in units of the Fermi energy. We define

x = E/EF such that x < 1 when the energy of an
electron is less than the Fermi energy and x > 1
when the energy is larger than the Fermi energy.
The distribution function as a function of x, the
energy in units of the Fermi energy, can thus be
written

n(x) =
g(x)

e(x−1)EF /(kT ) + 1
.

In the very low temperature limit, T → 0, the fac-
tor EF/(kT ) is a very large quantity. The energy
x defines whether the number in the exponential
is a large positive or a large negative quantity.

For electrons with x > 1, i.e. that the energy is
larger than the Fermi energy, then the number
in the exponential is a large positive number and
n(x)→ 0. There are therefore almost no electrons
with E > EF for very low temperatures. For elec-
trons with x < 1, i.e. the energy is less than the
Fermi energy, the number in the exponential is
a large negative number. Thus the exponential
goes to zero and n(x) → g(x). So for very low
temperatures, there is a sharp limit at x = 1. For
E < EF we find n(x) = g(x) whereas for E > EF
we find n(x) = 0. In figure 2 we show n(x)/g(x)
for lower and lower temperatures.

Figure 2: The number of electrons n(E) divided by g(E)
for different energies E. The solid line is for a gas at tem-
perature T = 10 K, the dotted line for a gas at tempera-
ture T = 2 K and the dashed line for T = 0.1 K. When
the temperature approaches zero, there are less and less
electrons with energy larger than the Fermi energy EF .

The physical meaning of this is that for very low
temperatures, all the electrons have energies up
to the Fermi energy whereas no electrons have
energies larger than the Fermi energy. The Fermi
energy is a low temperature energy limit for the
electrons. Even if we cool an electron gas down

4



to zero temperature, there will still be electrons
having energies all the way up to the Fermi en-
ergy.

But if the temperature is zero, why do not all elec-
trons have an energy close to zero? Why don’t
all electrons go and occupy the lowest possible
energy state allowed by quantum mechanics (in
quantum mechanics, a particle cannot have zero
energy)? The reason for this is hidden in quan-
tum physics: at low temperatures the gas of elec-
trons start to behave like a quantum gas, a gas
where quantum mechanical effects are important.
The quantum mechanical effect which we see on
play here is the Pauli exclusion principle: Two
fermions cannot occupy the same energy state.

To understand this principle we need to dig
even deeper into the quantum theory. Accord-
ing to quantum mechanics momentum is quan-
tized. This means that a particle cannot have
an arbitrary momentum. The momentum in any
direction can be written as

px = Nx · p0,

where Nx is an integer quantum number and p0
is the lowest possible momentum. Thus, an elec-
tron can only have x-momenta p0, 2p0, 3p0 etc.
No values in between are allowed. So the total
momentum of an electron (or any particle) can
be written

p2 = p2x + p2y + p2z = p20(N
2
x +N2

y +N2
z ) ≡ p20N

2,

where (Nx, Ny, Nz) are the three quantum num-
bers defining the state of the electron. According
to the Pauli exclusion principle only one electron
can occupy the quantum state (Nx, Ny, Nz). No
other electrons can have exactly the same com-
bination of quantum numbers (this is actually
a strong simplification, two electrons (but max-
imum two) may occupy the same state if they
have different quantum spin, but we will neglect
this here to make the description simpler).

We go back to the above image of a momentum
space where a particle has a position (px, py, pz) in
a three dimensional momentum space in addition
to a position in normal space. We can now write
this position in terms of quantum numbers as
(px, py, pz) = p0(Nx, Ny, Nz). Since only one elec-
tron can have a given momentum p0(Nx, Ny, Nz),

one could imagine the momentum space filled
with boxes of volume p0 × p0 × p0. Only one
electron fits into each box. We remember that
all electrons with momentum lower than a given
momentum p is within a sphere with radius p in
this momentum space. All electrons with a higher
momentum p are outside of this sphere. But in-
side the sphere of radius p, there is only room
for 4/3πN3 boxes of size p30 (total volume of the
momentum space sphere (4/3)πp3 = (4/3)πp30N

3

divided by volume of box p30). If all these boxes
are filled, no more electron may settle on a posi-
tion inside this sphere, it has to remain outside of
the sphere.

When you lower the temperature of an electron
gas, the electrons loose momentum and start to
occupy the lowest possible momentum states, i.e.
they all start to move towards the origin (0, 0, 0)
in momentum space. But when all start to move
towards the origin in momentum space (see again
figure 1), all the boxes around the origin are soon
occupied, so the electrons need to remain with
higher momenta at larger distances p from the
origin. But if they need to remain with larger
momenta, this means that they also have larger
energy: The same argument therefore applies to
energy. The energy states of the electrons are
quantized so not all electrons may occupy the low-
est energy state. For this reason we see that the
distribution function for electrons at low temper-
atures is a step function: All electrons try to oc-
cupy the lowest possible energy state. The lowest
energy states are filled up to the Fermi energy. If
we call pF the Fermi momentum, the momentum
corresponding to the Fermi energy we can imagine
that all electrons start to gather around the ori-
gin in momentum space out to the radius pF . All
electrons are packed together inside a sphere of ra-
dius pF in momentum space. When you add more
electrons to the gas, i.e. the density of electrons
increases, the sphere in momentum space inside
which all the electrons are packed also needs to
expand and the Fermi momentum pF increases.
Thus the Fermi momentum and the Fermi energy
are functions of the electron density ne.

Having learned that for very low temperatures,
the electrons are packed together in momentum
space in a sphere of radius pF we can find the
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total number density (per real space volume) ne
of electrons in the gas by summing up all the
boxes of size p30 inside this sphere. We know that
all these boxes are occupied by one electron and
that no electrons are outside this sphere (this is
completely true only for T = 0). First we need
to know the fermion distribution function n(~p)
in terms of momentum rather than in terms of
energy which we used above. The fermion distri-
bution function for momentum can be written in
the low temperature limit as

n(~p) =
1

e(p
2−p2F )/(2mkT ) + 1

2

h3
.

This is the number density per volume in real
space per volume in momentum space. Consider-
ing again the low temperature case, we see, using
the same arguments as before, that n(~p)→ 0 for
p > pF and n(~p) → 2/h3 for p < pF . Thus n(~p)
is a constant for p < pF and zero for p > pF . In
order to obtain the number density of electrons
per real space volume we need to integrate this
expression over the momentum space volume. So
for T → 0

ne =

∫ ∞
0

n(~p)4πp2dp =

∫ pF

0

2

h3
4πp2dp =

8π

3h3
p3F

where we integrate over the sphere in momentum
space in shells of thickness dp out to the Fermi
momentum pF where n(~p) is a constant (2/h3)
for p < pF and is zero for p > pF . Make sure you
understood this derivation! We use this result to
obtain an expression for the Fermi momentum

pF =

(
3h3ne

8π

)1/3

. (4)

Using the non-relativistic expression for energy
we can now find the Fermi energy expressed in
terms of the electron number density ne

EF =
p2F

2me

=
h2

8me

(
3ne
π

)2/3

. (5)

As we anticipated, the Fermi energy depends on
the density of electrons. The higher the density,
the larger the Fermi energy and the Fermi mo-
mentum in order to have space for all the elec-

trons within the sphere of radius pF . A gas where
all particles are packed within this sphere so that
the particles are fighting for a box in momentum
space among the lowest energy states is called a
degenerate gas. A partially degenerate gas is a gas
where there are still a few vacant boxes among
the lowest energy states such that some particles
have energies larger than the Fermi energy. We
now need to find a criterion for when a gas is
degenerate.

When the temperature of a gas is high and
the density low, the distribution function is the
Maxwell-Boltzmann distribution function. We
have previously learned that for a gas follow-
ing the Maxwell-Boltzmann distribution function,
the mean energy per particle is < E >= (3/2)kT .
The gas starts to become degenerate when most
of the particles have energies below the Fermi en-
ergy. The gas therefore starts to be degenerate
when the mean energy of the particles go below
the Fermi energy. For an electron gas we thus
have the criterion

3

2
kT < EF =

h2

8me

(
3ne
π

)2/3

,

or

T

n
2/3
e

<
h2

12mek

(
3

π

)2/3

. (6)

As discussed above, this criterion is satisfied for
very low temperatures, but we now see that it is
also satisfied for very high densities. In the lec-
tures on stellar evolution you will estimate what
kind of densities are needed in the stellar cores
for the core to be degenerate.

Now take a deep breath, close your eyes and try
to find out how much you have understood from
this section. Then if this is not the 3rd time you
read it, go back and read again with the goal of
understanding a little bit more this time.

3 The pressure of a degenerate
electron gas

When the density of electrons in the stellar core
becomes high enough, most electrons have ener-
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gies below the Fermi energy and the above crite-
rion for degeneracy is satisfied. The core is elec-
tron degenerate. Now we will study the properties
of a degenerate gas. The equation of state, the
equation for the pressure as a function of density
and temperature, is one of the most important
properties describing how a gas behaves.

In order to find the pressure, we need to evaluate
the pressure integral (see part 1A) for the degen-
erate gas. First we need the density n(p)dp of
electrons per volume with momentum p in the in-
terval [p, p + dp]. By now we have learned that
n(~p)4πp2dp = n(p)dp such that for p < pF we
have n(p)dp = (2/h3)4πp2dp and for p > pF we
have n(p) = 0.

P =
1

3

∫ ∞
0

p v n(p) dp =
1

3

∫ pF

0

p2

me

2

h3
4πp2dp

=
8π

3meh3
1

5
p5F .

Inserting the expression for the Fermi momentum
(equation 4), we find

P =

(
3

π

)2/3
h2

20me

n5/3
e (7)

We see that the pressure of a degenerate gas does
not depend on the temperature. If the tempera-
ture increases or decreases, the pressure does not
change! This is very different from a normal gas.
It means that the degenerate stellar core will not
expand or contract as the temperature changes.
The only exception being when the temperature
increases so much that the condition (6) for de-
generacy is no longer valid and the degeneracy is
broken. In this case, the electrons have gained
so much energy that they are not packed in the
sphere of the lowest momentum states in momen-
tum space. The gas is no longer degenerate and
a normal equation of state which depends on the
temperature needs to be used.

We have deduced the pressure of a degenerate gas
using the non-relativistic expressions for energy.
The temperature in the stellar cores are often so
high that the velocities of the particles are rel-
ativistic. Repeating the above deductions using
the relativistic expression, we would obtain

P =
hc

8

(
3

π

)1/3

n4/3
e . (8)

4 Summary

We have seen that if we compress a gas of
fermions sufficiently, so that the degneracy con-
dition (equation 6) is fulfilled, the fermions are
packed together inside a sphere of radius pF in
momentum space. All the lowest energy states of
the fermions are occupied up to the Fermi energy
EF . This typically happens when the tempera-
ture is very low so that the fermions fall down to
the lowest possible energy states in momentum
space. It might also happen for high tempera-
tures if the density is high enough: In this case
there are so many fermions present within a vol-
ume so all fermion states up to EF are occupied
even if the temperature is not particularly low.

A degenerate fermion gas has a degeneracy pres-
sure which is independent of the temperature of
the gas given by equation (7) for a non-relativistic
gas (the particles have non-relativistic velocities)
and by equation (8) for a relativistic gas. This
pressure originates from the resistance against be-
ing squeezed further together in real and momen-
tum space and only depends on the density of the
gas. We obtained the expression for the pressure
by inserting the distribution function for a degen-
erate gas in the pressure integral (part 1A). The
distribution function for a degenerate gas took
on a particular form: It is a step function being
constant for energies below the Fermi energy and
zero above. This was simply a consequence of the
Pauli exclusion principle, one energy state cannot
be occupied by two fermions at the same time.
When the quantum states of lowest energy are
occupied, the fermions need to occupy states of
higher energy. For a completely degenerate gas,
the Fermi energy EF gives within which energy
there is room for all fermions at a given density.

If the temperature increases sufficiently, the
fermions gain enough energy to occupy states
well outside the sphere of radius pF in momen-
tum space. Then there will be vacant low energy
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states, the condition of degeneracy is no longer
fulfilled and the gas has become non-degenerate
following a normal temperature-dependent equa-
tion of state.
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5 Exercises

Exercise 1G.1 The number density per real
space volume per momentum space volume of
particles with momentum ~p is given by n(~p) found
in the text. In order to find the number den-
sity per real space volume of particles with ab-
solute momentum p we multiplied n(~p) with an
infinitely small volume element 4πp2dp and ob-
tained n(p)dp. Go back to the text and make
sure that you understand this transition.

1. Now we will try to find the number den-
sity per real space volume of particles with
energy E using the non-relativistic formula
for energy E = p2/2m. Start with n(~p) for
fermions at temperature T = 0 (you have
to look through the text to find the correct
expression), arrive at n(p)dp and then make
the substitution to energy to show that you

arrive at equation 2 with g(E) looking like
equation 3.

2. In the exercises in part 1A, we found that
the mean kinetic energy of a particle in an
ideal gas is (3/2)kT . Now we will try to find
the mean kinetic energy in a degenerate gas.
First of all, repeat what you did in part 1A.
Now you will repeat the same procedure, but
use n(E) and E directly,

< E >=

∫ ∞
0

P (E)EdE.

You will need to find out how P (E) looks
like. The answer is

< E >=
3

5
EF .

Hint: Assume a very degenerate gas at very
high density.
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