
AST1100 Lecture Notes

Part 2A
The special theory of relativity: Basic principles

Questions to ponder before the lecture

1. You have already used the Lorentz transformations. Do you know where they come from? Which
basic principles/formulas would you use if you wanted to deduce the Lorentz transformation?

2. You may have heard about the twin paradox: one of the twins is launched into space, travels
with a speed close to the speed of light and returns to the Earth. After returning, which of the
twins are older?

3. You have already learned how time goes slower when travelling close to the speed of light. So in
principle, it is not a paradox that the two twins have different ages after the space trip. What
is then the paradox of the twin paradox?
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AST1100 Lecture Notes

Part 2A
The special theory of relativity: Basic principles

1 Simultaneity

We all know that ’velocity’ is a relative term.
When you specify velocity you need to specify
velocity with respect to something. If you sit in
your car which is not moving (with respect to the
ground) you say that your velocity is zero with re-
spect to the ground. But with respect to the Sun
you are moving at a speed of 30 km/s. From the
point of view of an observer passing you in his car
with a velocity of 100 km/h with respect to the
ground, your speed is −100 km/h (see figure 1).
Even though you are not moving with respect to
the ground, you are moving backwards at a speed
of 100 km/h with respect to the passing car.

In the following we will use the expression ’frame
of reference’ to denote a system of observers hav-
ing a common velocity. All observers in the same
frame of reference have zero velocity with respect
to each other. An observer always has velocity
zero with respect to his own frame of reference.

An observer on the ground measures the velocity
of the passing car to be 100 km/h with respect
to his frame of reference. On the other hand,
the driver of the car measures the velocity of the
ground to be moving at −100 km/h with respect
to his frame of reference. We will also use the
term ’rest frame’ to denote the frame of refer-
ence in which a given object has zero velocity. In
our example we might say: In the rest frame of
the passing car, the ground is moving backwards
with 100 km/h.

Figure 1: Velocities are relative.

You are observing a truck coming towards you
with a speed of vgroundtruck = −50 km/h with re-
spect to the ground (see figure 2, velocities are
defined to be positive to the right in the figure).
From your frame of reference, which is the same
frame of reference as the ground, the speed of
the truck is |vgroundtruck | = 50 km/h towards you.
Now you start driving your car in the direction
of the truck with a speed of vgroundcar = +50 km/h
with respect to the ground (see again figure 2).
From your frame of reference you observe the
ground to be moving backwards with a velocity of
vcarground = −50 km/h. Again, from your frame of
reference you now observe the velocity of the ap-
proaching truck to be vcartruck = vgroundtruck − vgroundcar =
(−50 km/h)−(50 km/h) = −100 km/h (whereas
from the frame of reference of an observer on the
ground, the truck still has vgroundtruck = −50 km/h).
Now you make a turn so that you drive in the op-
posite direction: Now your velocity is −50 km/h
with respect to the ground, but now you are driv-
ing in the same direction as the truck. You are
now moving in the same direction as the truck
with exactly the same speed with respect to the
ground. From your frame of reference (which is
now the same frame of reference as the truck) the
truck is not moving.

So far, so good. This was just stating some ob-
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vious facts from everyday life in a difficult way.
Now, replace the truck with a beam of light (a
photon) and the car with the Earth. The sit-
uation is depicted in figure 3. You observe the
speed of light from a distant star at two instants:
One at the 1st of January, another at the 1st of
July. In January you are moving away from the
photons approaching you from the distant star.
In July you are moving towards the photons ar-
riving from the star. If the speed of light with
respect to the distant star is c, then in January
you expect to measure the speed of the light beam
from the star to be c − v where v = 30 km/h is
the speed of the Earth with respect to the same
star (we assume that the star does not move with
respect to the Sun, so this is also the orbital speed
of the Earth). In July you expect to measure the
speed of light from the star to be c + v, just as
for the truck in the example above: The speed of
the light beam seen from your frame of reference
is supposed to be different depending on whether
you move towards it or away from it.

Figure 2: The velocity of the truck seen from the car de-
pends on the velocity of the car.

In 1887 Michelson and Morley performed ex-
actly this experiment which is now famous as the

’Michelson-Morley experiment’. The result how-
ever, was highly surprising: They measured ex-
actly the same speed of light in both cases. The
speed of light seemed to be the same indepen-
dently of the frame of reference in which it is
measured. This has some quite absurd conse-
quences: Imagine that you see the truck driving
at the speed of light (or very close to the speed
of light, no material particle can ever travel at
the speed of light). You are accelerating your
car, trying to pass the truck. But no matter at
which speed you drive, you see the truck mov-
ing with the speed of light with respect to your
frame. Even when you reach half the speed of
light, you still see the truck moving with velocity
c. But how is this possible? An observer at rest
with respect to the ground measures the truck
moving with the speed of light as well, not with
the velocity c + c/2 = 3c/2 as you would expect
given that it moves with velocity c with respect
to something moving with velocity c/2.

Figure 3: The velocity of the starlight is measured when
the Earth has velocity 30 km/s towards and away from
the light beam.
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Figure 4: Event A: Lightning strikes the front part of the
train. Event B: Lightning strikes the rear part of the
train. These two events are observed by observer O on
the ground and observer P in the train. The train has
length L.

This was one of the first signs showing that some-
thing was wrong with classical physics. The fact
that the speed of light seemed to be constant in
all frames of reference led to several contradic-
tions. We have already seen one example of such
a contradiction. We will now look at another one
which might shed some light on the underlying
reason for these contradictions.

In figure 4 we show the situation. Observer O is
standing on the ground (at rest with respect to
the ground), observer P is standing in the mid-
dle of a train of length L moving with velocity v
with respect to the ground. Observer O sees two
lightnings striking the front and the rear of the
train simultaneously. We call the two events A
and B (An event is a point in space and time, a
point with a space and time coordinate): Event
A is the lightning striking the front, event B is
the lightning striking the rear. Events A and B
are simultaneous.

The light from these two lightnings start trav-
eling from the front and back end of the train
towards observer P. The beam approaching ob-
server P from the front is called beam 1 and the
beam approaching from the rear is called beam 2.

Both observers had synchronized their clocks to
t = 0 at the instant when the lightnings strike the
train. Both observers have also defined their own
coordinate systems x (observer on the ground)
and x′ (observer in the train) which is such that
the position of observer P is at x = x′ = 0 in
both coordinate systems at the instant t = 0
when the lightenings strike. Thus the lightnings

hit the train at the points x = x′ = L/2 and
x = x′ = −L/2 as seen from both observers. We
will now look how each of these observers experi-
ence these events:

From the point of view of observer O stand-
ing on the ground:

The frame of reference of observer O on the
ground is often referred to as the laboratory frame
. It is the frame of reference which we consider to
be at rest. At what time t = tC does observer P
see beam 1 (we call this event C)? To answer this
question, we need to have an expression for the
x-coordinate of observer P and the x-coordinate
of beam 1 at a given time t. Observer P moves
with constant velocity v so his position at time
t is xP = vt. Beam 1 moves in the negative x-
direction with the speed of light c starting from
x1 = L/2 at t = 0. The expression thus becomes
x1 = L/2 − ct. Observer P sees beam 1 when
x1 = xP at time tC . Equating these two expres-
sions, we find

tC =
L/2

c+ v
. (1)

At what time t = tD does observer P see beam
2 (we call this event D)? Following exactly the
same line of thought as above, we find

tD =
L/2

c− v
. (2)

So according to observer O in the laboratory
frame, tC < tD and observer P should see the
light beam from the lightning in front before the
light from the back. This sounds reasonable: Ob-
server P is moving towards beam 1 and away from
beam 2 and should therefore see beam 1 first.

From the point of view of observer P stand-
ing in the train:

At what time t = tC does observer P see beam 1?
We have just agreed on the fact that the speed of
light is independent of the frame of reference. The
result is that the speed of light is c also for the
observer in the train. Seen from the frame of ref-
erence of observer P, observer P himself is at rest
and the ground is moving backwards with speed
v. Thus from this frame of reference, observer P
is always standing at the origin x′P = 0 (the co-
ordinate system x′ moves with observer P). The
expression for x′1 is the same as seen from observer
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O:x′1 = L/2−ct (convince yourself that this is the
case!). Again we need to set x′1 = x′P giving

tC =
L/2

c

At what time t = tD does observer P see beam 2?
Again we follow the same procedure and obtain

tD =
L/2

c

As calculated from the frame of reference of ob-
server P, the two beams hit observer P at exactly
the same time.

So not only are the exact times tC and tD differ-
ent as calculated from the two frames of reference,
but there is also an even stronger contradiction:
Observer P should be hit by the two beams si-
multaneously as calculated from the frame of ref-
erence of observer P himself, but as calculated
from the laboratory frame, beam 1 hits observer
P before beam 2. What does really happen? Do
the beams hit observer P simultaneously or not?
Well, let’s ask observer P himself:

So observer P, two lightnings struck your train si-
multaneously at the front and rear end. Did you see
these two lightnings simultaneously or did you see
one flash before the other?
Observer P: Sorry? I think you are not well informed.
The two lightnings did not happen simultaneously.
There was one lightning which struck the front part
and then shortly afterwards there was another one
striking the rear. So clearly I saw the flash in the
front first.
Observer O: No, no, listen, the lightnings did strike
the train simultaneously, there was no doubt about
that. But you were moving in the direction of beam
1 and therefore it appeared to you that the front
was hit by the lightning first.
Observer P: So you didn’t watch very carefully I
see. It is impossible that the two lightnings struck
at the same time. Look, I was standing exactly in
the middle of the train. The speed of light is al-
ways the same, no matter from which direction it
arrives. Beam 1 and beam 2 had to travel exactly
the same distance L/2 with exactly the same speed
c. If the beams were emitted simultaneously I MUST
have seen the two flashes at the same time. But I
didn’t....beam 1 arrived before beam2, and so event
A must have happened before event B

So beam 1 did indeed hit observer P before beam
2. And indeed, observer P has got a point: From
observer P the two lightnings could not have oc-
curred at the same time. Asking observer O one
more time he says that he is absolutely certain
that the two lightnings struck simultaneously.
Who is right?

We have arrived at one of the main conclusions
that Einstein reached when he was discovering
the theory of relativity: simultaneity is relative.
If two events happen at the same time or not de-
pends on who you ask. It depends on your frame
of reference. In the example above, the two light-
nings were simultaneous for the observer at rest
on the ground, but not for the observer moving
with velocity v. This has nothing to do with the
movement of the light beams, it is simply time
itself which is different as seen from two differ-
ent frames of reference. Simultaneity is a rela-
tive term in exactly the same way as velocity is:
When you say that two events are simultaneous
you need to specify that they are simultaneous
with respect to some frame of reference.

In order to arrive at the conclusion of the relativ-
ity of simultaneity, Einstein excluded an alterna-
tive: Couldn’t it be that the laws of physics are
different in different frames of reference? If the
laws of physics in the train were different from
those in the laboratory frame, then simultaneity
could still be absolute. The problem then is that
we need to ask the question ’Physics is different
in frames which move with respect to which frame
of reference?’. In order to ask this question, ve-
locity would need to be absolute. If velocity is
relative, then we can just exchange the roles: The
observer in the train is at rest and the observer
on the ground is moving. Then we would need to
change the laws of physics for the observer on the
ground. This would lead to contradictions. In or-
der to arrive at the theory of relativity, Einstein
postulated the Principle of Relativity . The prin-
ciple of relativity states that all laws of physics,
both the mathematical form of these laws as well
as the physical constants, are the same in all free
float frames. In the lectures on general relativ-
ity we will come back to a more precise definition
of the free float frame. For the moment we will
take a free float frame to be a frame which is not
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accelerated, i.e. a frame in which we do not ex-
perience fictive forces. You can deduce the laws
of physics in one free float frame and apply these
in any other free float frame. Imagine two space
ships, one is moving with the velocity v = 1/2c
with respect to the other. If you close all windows
in these spaceship there is no way, by performing
experiments inside these spaceships, that you can
tell which is which. All free float frames are equiv-
alent, there is no way to tell which one is at rest
and which one is moving. Each observer in a free
float frame can define himself to be at rest.

2 Invariance of the spacetime in-
terval

We have seen that two events which are simulta-
neous in one frame of reference are not simultane-
ous in another frame. We may conclude that time
itself is relative. In the same way as we needed
two coordinate systems x and x′ to specify the po-
sition in space relative to two different frames, we
need two time coordinates t and t′ to specify the
time of an event as seen from two different frames.
We are used to think of time as a quantity which
has the same value for all observers but we now
realize that each frame of reference has its own
measure of time. Clocks are not running at the
same pace in all frames of reference. Observers
which are moving with respect to each other will
measure different time intervals between the same
events. Time is not absolute and for this reason
simultaneity is not absolute.

Figure 5: The position of two points A and B measured in
two different coordinate systems rotated with respect to
each other.

Look at figure 5. It shows two points A and B
and two coordinate systems (x, y) and (x′, y′) ro-
tated with respect to each other. The two points
A and B are situated at a distance ∆xAB = L and
at the same y-coordinate ∆yAB = 0 in the (x, y)
system. In the rotated (x′, y′) system however,
there is a non-zero difference in the y-coordinate,
∆yAB 6= 0. Now, replace y with t. Do you see the
analogy with the example of the train above?

If we replace y with t and y′ with t′, then the two
points A and B are the events A and B in space-
time. Our diagram is now a spacetime diagram
showing the position of events in space x and time
t, rather than a coordinate system showing the
position of a point in space (x, y). Consider the
two coordinate systems (x, t) and (x′, t′) as mea-
surements in two different frames of reference, the
lab frame and the frame of observer P. We see that
in the (x, t) system, the two events are simultane-
ous ∆tAB = 0 whereas in the (x′, t′) system, the
events take place at two different points in time.

We are now entering deep into the heart of the
special theory of relativity: We need to consider
time as the fourth dimension. And moreover,
we need to treat this fourth dimension similar
(but not identical) to the three spatial dimen-
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sions. That is, we need to talk about distances
in space and distances in time. But, you might
object, we measure distances in space in meters
and time intervals in seconds. Can they really be
similar? Yes they can, and you will soon get rid of
the bad habit of measuring space and time in dif-
ferent units. From now on you will either measure
both space and time in meters, or both time and
space in seconds. By the time you have finished
this course you will, without thinking about it,
ask the lecturer how many meters the exam lasts
or complain to your friends about how small your
room in the dormitory is, giving them the size in
square seconds.

How do you convert from meters to seconds and
vice versa? The conversion factor is given by the
universal factor c, the speed of light. If you have
a time interval measured in seconds, multiply it
by c and you have the time interval in meters.
If you have a distance in space measured in me-
ters, divide it by c and you obtain the distance
measured in seconds:

x = ct, t = x/c.

From now on we will drop the factor c and sup-
pose that distances in space and time are mea-
sured in the same units. When you put numbers
in your equations you need to take care that you
always add quantities with the same units, if you
need to add two quantities with different units,
the conversion factor is always a power of c.

Measuring time in meters might seem strange,
but physically you can think about it this way:
Since the conversion factor is the speed of light,
a time interval measured in meters is simply the
distance that light travels in the given time inter-
val. If the time interval between two events is 2
meters, it means that the time interval between
these events equals the time it takes for light to
travel 2 meters. We might say that the time inter-
val between these events is 2 meters of light travel
time. Similarly for measuring distances in sec-
onds: If the spatial distance between two events is
10 seconds, it means that the distance equals the
distance that light travels in 10 seconds. The dis-
tance is 10 light seconds. Actually you are already
accustomed to measure distances in time units:
You say that a star is 4 light years away, meaning

that the distance equals the distance that light
travels in four years. Note also one more effect of
measuring space and time in the same units: Ve-
locities will be dimensionless. Velocity is simply
distance divided by time, if both are measured in
meters, velocity becomes dimensionless. We can
write this as vdimensionless = dx/(cdt) = v/c (to
convert dt to units of length we need to multiply
it by c, thus cdt). If the velocity v = dx/dt = c
is just the speed of light, we get vdimensionless = 1.
From now on we will just write v for vdimensionless.
Note that some books use β to denote dimen-
sionless velocity, here we will use v since we will
always use dimensionless velocities when working
with the theory of relativity. The absolute value
of velocity v is now a factor in the range v = [0, 1]
being the velocity relative to the velocity of light.

This was the first step in order to understand the
foundations of special relativity. Here comes the
second: Let us, for a moment, return to the spa-
tial coordinate systems (x, y) and (x′, y′) in figure
5. Clearly the coordinates of the points A and B
are different in the two coordinate systems. But
there is one thing which is identical in all coor-
dinate systems: The distance between points A
and B. If we call this distance ∆sAB we can write
this distance in the two coordinate systems as

(∆sAB)2 = (∆xAB)2 + (∆yAB)2

(∆s′AB)2 = (∆x′AB)2 + (∆y′AB)2

(check that you understand why!). The distance
between A and B has to be equal in the two co-
ordinate systems, so

(∆sAB)2 = (∆s′AB)2.

Is this also the case in spacetime? Can we mea-
sure intervals between events in spacetime? This
is now, at least in theory, possible since we mea-
sure space and time separations in the same units.
In a spatial (x, y, z) system we know the geomet-
rical relation,

(∆s)2 = (∆x)2 + (∆y)2 + (∆z)2,

from Euclidean geometry: The square of the dis-
tance between two points (called the line element)
is simply the sum of the squares of the coordinate
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distances between these two points. But do the
rules of Euclidean geometry apply to spacetime?
No, not entirely. The geometry of spacetime is
called Lorentz geometry. The distance between
two events (line element) in Lorentz spacetime
∆s2, is given by

The spacetime interval

(∆s)2 = (∆t)2 − (∆x2 + ∆y2 + ∆z2).

Note the minus sign. This minus sign is the
only thing which distinguishes space from time.
The square of the spacetime distance between two
events equals the square of the time separation
between these events minus the square of the spa-
tial separations between the events. And in the
same way as the distance between two points in
space is the same in all coordinate systems, the
distance in spacetime, the spacetime interval is
the same in all frames of reference. We say that
the spacetime interval is invariant. A quantity
is invariant if it has the same value in all frames
of reference. We already know another invariant
quantity: the speed of light.

So, that was it. We’re done. Now you know what
the special theory of relativity is all about. Con-
gratulations! You now see that we may write the
special theory of relativity in two sentences: Mea-
suring space and time intervals in the same units,
you can calculate the spacetime interval between
two events using the formula for the line element
in Lorentz geometry. This spacetime interval be-
tween two events is invariant, it has the same
value as measured from all frames of reference.
We will now see what this means in practice. But
before you continue, take a walk, go for a coffee
or simply take half an hour in fresh air. Your
brain will need time to get accustomed to this
new concept.

3 An example

A train is moving along the x-axis of the labora-
tory frame. The coordinate system of the labora-
tory frame is (x, y) and of the train, (x′, y′). In
the train a light signal is emitted directly upwards
along the y-axis (event A). Three meters above,

it is reflected in a mirror (event B) and finally
returns to the point where it was emitted (event
C). In the train frame it takes the light beam 3
meters of time to reach the mirror and 3 meters of
time to return to the point where it was emitted.
The total up-down trip (event A to event C) took
6 meters of time in the frame of the train (light
travels with a speed of v = 1, one meter per meter
of light travel time). From event A to event C,
the train had moved 8 meters along the x-axis in
the laboratory frame. Because of the movement
of the train, the light beam moved in a pattern
as shown in figure 6 seen from the lab frame.

Figure 6: The light emitted (event A) upwards in the train
is reflected (event B) and received (event C) at the same
place (in the train frame) as it was emitted.

1. Use the figure to find the total distance d
traveled by the light beam in the laboratory
frame. Dividing the triangle into two smaller
triangles (see the figure), we find from one
triangle that the distance traveled from the
emission of the light beam to the mirror is
d/2 =

√
(4 m)2 + (3 m)2 = 5 m and simi-

larly for the return path. Thus, the total dis-
tance traveled by the light beam from event
A to event C is d = 10 m.

2. What was the total time it took for the light
beam from event A to event C in the labora-
tory frame? We have just seen that in the
laboratory frame, the light beam traveled 10
meters from event A to event C. Since light
travels at the speed of one meter per meter
of time, it took 10 meters of time from event
A to event C. In the frame of the train, it
took only 6 meters of time.

3. What is the speed of the train? The train
moved 8 meters in 10 meters of time, so the
speed is v = 8/10 = 4/5, 4/5 the speed of
light.

4. What is the spacetime interval ∆s′ between
event A and event C with respect to the train
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frame? In the train frame, event A and event
C happened at the same point, so ∆x′ = 0.
It took 6 meters of time from event A to
event C, so ∆t′ = 6 m. The spacetime in-
terval is thus ∆s′ =

√
(6 m)2 − 0 = 6 m.

(check that you also got this result!)

5. What is the spacetime interval ∆s between
event A and event C with respect to the lab-
oratory frame? In the laboratory frame,
the distance between the events were ∆x =
8 m and the time interval was ∆t =
10 m. The spacetime interval is thus ∆s =√

(10 m)2 − (8 m)2 = 6 m (check that you
also got this result!), exactly the same as ∆s′

in the train frame.

6. Was there an easier way to answer the previ-
ous question? Oh. . . uhm, yes, you’re right,
the spacetime interval is the same in all
frames of reference so I should immediately
had answered ∆s = ∆s′ = 6 m without any
calculation. . . much easier!

Indeed much easier. . . remember that this will be
very useful when calculating distances and inter-
vals with respect to frames moving close to the
speed of light.

4 Observer O and P revisited

Armed with the knowledge of the invariance of the
spacetime interval we now return to observer O
and P in order to sort out exactly what happened
for each of the observers. We know that with re-
spect to the laboratory frame, the two lightnings
struck simultaneously (events A and B were si-
multaneous) at points x = ±L/2 at the time
t = 0 when observer P was at the origin xP = 0.
But at what time did the two lightnings strike
with respect to observer P in the train? We have
learned that with respect to the frame of refer-
ence following the train, the events A and B were
not simultaneous. But in the reference frame of
observer P, at what time t′A and t′B did the two
lightnings strike? The two observers exchange a
signal at t = 0 such that their clocks are both
synchronized to t = t′ = 0 at the instant when
observer P is at the origin in both coordinate sys-
tems xP = x′P = 0. Did event A and B happen

before or after t′ = 0 on observer P’s wristwatch?
(It is common to talk about wristwatches when
referring to the time measured in the rest frame
of a moving object, i.e. the time measured by ob-
servers moving with the object. This wristwatch
time is also called proper time).

We know that an event is characterized by a po-
sition x and a time t in each of the frames of
reference. Let’s collect what we know about the
position and time of event A, B and the event
when observer P passes x = x′ = 0 which we call
event P:

Event P:

x = 0 t = 0

x′ = 0 t′ = 0

Event A:

x = L/2 t = 0

x′ = L0/2 t′ = t′A

Event B:

x = −L/2 t = 0

x′ = −L0/2 t′ = t′B

Note that the length of the train is L0 for ob-
server P and L for observer O. We have already
seen that observers in different frames of reference
only agree on the length of the spacetime interval,
not on lengths in space or intervals in time sepa-
rately. For this reason, we do expect L and L0 to
be different. Look also at figure 5, the distance
∆xAB between the points A and B differ between
the two coordinate systems, in the system (x, y)
it is ∆xAB = L, but in the system (x′, y′) it is
∆x′AB = x′B−x′A ≡ L′. The length of the train in
the rest frame of the train, L0, is called the proper
length. We will later come back to why it is given
a particular name.

We want to find at which time t′A and t′B observed
from the wristwatch of observer P, did events A
and B happen? Did they happen before or after
event P? For observer O all these events were si-
multaneous at t = 0, the moment in which the
two observers exchanged a signal to synchronize
their clocks. For observer P, could these events
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Fact sheet: Near the beginning of his career, Albert Einstein
(18791955) thought that Newtonian mechanics was no longer
enough to reconcile the laws of classical mechanics with the laws
of the electromagnetic field. This led to the development of his
special theory of relativity (1905). It generalizes Galileo’s princi-
ple of relativity that all uniform motion is relative, and that there
is no absolute and well-defined state of rest from mechanics to
all the laws of physics. Special relativity incorporates the prin-
ciple that the speed of light is the same for all inertial observers
regardless of the state of motion of the source. This theory has a
wide range of consequences that have been experimentally veri-
fied, including length contraction, time dilation and relativity of
simultaneity, contradicting the classical notion that the duration
of the time interval between two events is equal for all observers.
On the other hand, it introduces the spacetime interval, which is
invariant.

possibly had happened before they happened for
observer O? Or did they happen later than for
observer O?

In order to solve such problems, we need to take
advantage of the fact that we know that the space-
time interval between events is invariant. Let’s
start with the spacetime interval between events
A and B.

Spacetime interval AB: From each of the
frames of reference it can be written as

∆s2AB = ∆t2AB −∆x2AB,

∆(s′AB)2 = (∆t′AB)2 − (∆x′AB)2.

(note that the y and z coordinates are always 0,
so ∆y = ∆y′ = 0 and ∆z = ∆z′ = 0). In order
to calculate the spacetime interval, we need the
space and time intervals ∆x2AB, ∆t2AB, (∆x′AB)2

and (∆t′AB)2 separately. In both frames, the spa-
tial distance between the two events equals the
length of the train in the given frame of refer-
ence. So ∆xAB = L and ∆x′AB = L0. For ob-
server O the events were simultaneous ∆tAB = 0,
whereas for observer P the events happened with
a time difference ∆t′AB = t′A − t′B. Setting the
two expressions for the spacetime interval equal
we obtain,

L2 = L2
0 − (t′A − t′B)2. (3)

(check that you obtain this as well!). We have
arrived at one equation connecting observables in
one frame with observables in the other. We need
more equations to solve for t′A and t′B. Let’s study
the spacetime interval between events A and P.

Spacetime interval AP: From each of the
frames of reference it can be written as

∆s2AP = ∆t2AP −∆x2AP

∆(s′AP )2 = (∆t′AP )2 − (∆x′AP )2

In order to calculate the spacetime interval, we
need the space and time intervals ∆x2AP , ∆t2AP ,
(∆x′AP )2 and (∆t′AP )2 separately. In both frames,
the spatial distance between the two events equals
half the length of the train in the given frame of
reference. So ∆xAP = L/2 and ∆x′AP = L0/2.
For observer O the events were simultaneous
∆tAP = 0, whereas for observer P the events hap-
pened with a time difference ∆t′AP = t′A−0 = t′A.
Setting the two expressions for the spacetime in-
terval equal we obtain,

(L/2)2 = (L0/2)2 − (t′A)2. (4)

Note that we have three unknowns, t′A, t′B and
L. We need one more equation and therefore one
more spacetime interval. The spacetime interval
between B and P does not give any additional in-
formation, so we need to find one more event in
order to find one more spacetime interval. We will
use event C, the event that beam 1 hits observer
P.

Spacetime interval CP: Again, we need

∆s2CP = ∆t2CP −∆x2CP ,

∆(s′CP )2 = (∆t′CP )2 − (∆x′CP )2.

In the first section we calculated the time tC when
beam 1 hit observer P in the frame of observer O.
The results obtained in the laboratory frame were
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correct since the events A and B really were si-
multaneous in this frame. As we have seen, the
results we got for observer P were wrong since
we assumed that events A and B were simulta-
neous in the frame of observer P as well. Now
we know that this was not the case. We have
∆tCP = tC−0 = tC = L/2/(v+1) (from equation
1, note that since we measure time and space in
the same units c = 1). As event C happens at the
position of observer P, we can find the position of
event C by taking the position of observer P at
time tC giving ∆xCP = v∆tCP = vL/2/(v+1). In
the frame of observer P, event C clearly happened
at the same point as event P so ∆x′CP = 0. The
time of event C was just the time t′A of event A
plus the time L/2 it took for the light to travel the
distance L/2 giving ∆t′CP = t′A +L0/2. Equating
the line elements we have

L2/4

(v + 1)2
(v2 − 1) = −(t′A + L0/2)2 (5)

Now we have three equations for the three un-
knowns. We eliminate L from equation (5) using
equation (4). This gives a second order equa-
tion in t′A with two solutions, t′A = −L0/2 or
t′A = −vL0/2.

The first solution is unphysical: The time for
event C is in this case t′C = t′A + L0/2 = 0 so
observer P sees the lightning at t′ = 0. Remem-
ber that at t = t′ = 0 observer O and observer P
are synchronizing their clocks, so at this moment,
and only this moment, their watch show the same
time. This means that observer P sees flash A at
the same moment as the lightening strikes for ob-
server O. Thus at t = t′ = 0, the lightning hits the
front of the train for observer O, but at the same
time he would see the light from the lightening hit
observer P. The light from event A would there-
fore have moved instantaneously from the front
of the train to the middle of the train.

Disregarding the unphysical solution we are left
with

t′A = −vL0

2
.

Thus event A happened for observers in the train
before it happened for observers on the ground.
Now we can insert this solution for t′A in equation
4 and obtain L,

L = L0

√
1− v2 ≡ L0/γ, (6)

with γ ≡ 1/
√

1− v2. So the length of the train
is smaller in the frame of observer O than in the
rest frame of the train. We will discuss this result
in detail later, first let’s find t′B. Substituting for
t′A and L in equation (3) we find

t′B = v
L0

2
= −t′A.

So event B happened later for observers in the
train than for observers on the ground. To sum-
marize: Event A and B happened simultaneously
at t = t′ = 0 for observers on the ground. For
observers in the train event A had already hap-
pened when they synchronize the clocks at t = 0,
but event B happens later for the observers in the
train. Note also that the time t′A and t′B are sym-
metric about t′ = 0. If you look back at figure 5
we see that the analogy with two coordinate sys-
tems rotated with respect to each other is quite
good: If we replace y by t we see that for the
events which were simultaneous ∆yAB = 0 in the
(x, y) frame, event A happens before y = 0 and
event B happens after y = 0 in the rotated system
(x′, y′). But we need to be careful not taking the
analogy too far: The geometry of the two cases
are different. The spatial (x, y) diagram has Eu-
clidean geometry whereas the spacetime diagram
(x, t) has Lorentz geometry. We have seen that
this simply means that distances are measured
differently in the two cases (one has a plus sign
the other has a minus sign in the line element).

We have seen that for observer P event A hap-
pens before event P when they synchronize their
clocks. But does he also see the lightning before
event P? As discussed above, this would be un-
physical, so this is a good consistency check:

t′C = t′A +
L0

2
= −vL0

2
+ L0/2 = L0/2(1− v),

which is always positive for v < 1. Thus ob-
server P sees the flash after event P. When does
observer P see the second flash (event D) mea-
sured on the wristwatch of observer P? Again we
have t′D = t′B + L0/2 giving

t′D = L0/2(1 + v),

so the time interval between event C and D mea-
sured on the wristwatch of a passenger on the
train is

∆t′ = t′D − t′C = vL0

11



How long is this time interval as measured on the
wristwatch of observer O? We already have tC and
tD from equations (1) and (2). Using these we get
the time interval measured from the ground,

∆t = vL0/
√

1− v2

So we can relate a time interval in the rest frame
of the train with a time interval on the ground as

∆t =
∆t′√
1− v2

= γ∆t′. (7)

Note that index CD has been skipped here since
this result is much more general: It applies to any
two events taking place at the position of observer
P. This is easy to see. Look at figure 7. We define
an observer O which is at rest in the laboratory
frame using coordinates (x, t) and an observer P
moving with velocity v with respect to observer
O. In the frame of reference of observer P we use
coordinates (x′, t′).

We now look at two ticks on the wristwatch of
observer P. Observer P himself measures (on his
wrist watch) the time between two ticks to be ∆t′

whereas observer O measures the time intervals
between these two ticks on P’s watch to be ∆t
(measured on observer O’s wrist watch). In the
coordinate system of observer P, the wristwatch
does not move, hence the space interval between
the two events (the two ticks) is ∆x′ = 0. For ob-
server O, observer P and hence his wristwatch is
moving with velocity v. So observer O measures
a space interval of ∆x = v∆t between the two
events. The spacetime interval in these two cases
becomes

(∆s)2 = ∆t2 −∆x2 = ∆t2 − (v∆t)2

= (∆t)2(1− v2)
(∆s′)2 = (∆t′)2.

Spacetime intervals between events are always
equal from all frames of reference so we can equate
these two intervals and we obtain equation (7).

Figure 7: Two reference frames: (x, y) coordinates are
used for the system defined to be at rest and (x′, y′) co-
ordinates are used for the system defined to be moving.
In the upper figure, observer O is in the laboratory frame
with observer P in the frame moving with velocity v. In
the lower figure, the two systems have exchanged roles and
v → −v. All equations derived in the above system will
be valid for the system below by exchanging v → −v.

Going back to the example with the train: If the
train moves at the speed v = 4c/5 then we have
∆t = 5/3∆t′ ≈ 1.7∆t′. When observer O on the
ground watches the wristwatch of observer P, he
notes that it takes 1.7 hours on his own wrist-
watch before one hours has passed on the wrist-
watch of observer P. If observer P in the train is
jumping up and down every second on his own
wristwatch, it takes 1.7 seconds for each jump
as seen from the ground. For observers on the
ground it looks like everything is in slow-motion
inside the train.

How does it look for the observers in the train?
Remember that velocity is relative. Being inside
the train, we define ourselves as being at rest.
From this frame of reference it is the ground which
is moving at the speed −v. Everything has been
exchanged: Since we now define the train to be
at rest, the coordinate system (x, t) is now for the
train whereas the coordinate system (x′, t′) is for
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the ground which is moving at velocity −v (see
figure 7). Note the minus sign: The motion of the
ground with respect to the train is in the oppo-
site direction than the motion of the train with
respect to the ground.

We can now follow exactly the same calculations
as above for two events happening at the posi-
tion of observer O instead of observer P. For in-
stance we watch two ticks on the clock of observer
O. Then we find again formula (7) but with the
meaning of ∆t and ∆t′ interchanges. Assuming
again a speed of v = −4c/5 (note again the minus
sign), observer P sees that it takes 1.7 hours on
his wristwatch for one hour to pass on the wrist-
watch of observer O. It is the opposite result with
respect to the above situation. While observers
on the ground observe everything in the train
in ’slow-motion’, the observers on the train ob-
serve everything on the ground in ’slow-motion’.
This is a consequence of the principle of relativ-
ity: There is no way to tell whether it is the train
which is moving or the ground which is moving.
We can define who is it rest and who is moving,
the equations of motion that we obtain will then
refer to one observer at rest and one observer in
motion. When we change the definition, the roles
of the observers in the equation will necessarily
also change. Thus, if we define the ground to be
at rest and the train to be moving and we de-
duce that observers on the ground will see the
persons in the train in ’slow-motion’, the oppo-
site must also be true: If we define the train to
be at rest and the ground to be moving, then the
observers on the train will observe the observers
on the ground in ’slow-motion’. Confused? Wel-
come to special relativity!

Consider two observers, both with their own
wristwatch, one at rest in the laboratory frame
(observer O) another moving with velocity v with
respect to the laboratory frame (observer P). Go-
ing back to equation (7) we now know that if ∆t′

is the interval between two ticks on the wristwatch
of observer P, then ∆t is the time interval between
the same two ticks of observer P’s watch measured
on observer O’s wristwatch. Using equation 7 we
see that the shortest time interval between two
ticks is always the time measured directly in the
rest frame of the wristwatch producing the ticks.

Any other observer moving with respect to ob-
server P will measure a longer time interval for
the ticks on observer P’s wristwatch. This is of
course also valid for observer O: The shortest time
interval between two ticks on observer O’s wrist-
watch is the time that observer O himself mea-
sures. The wristwatch time is called the proper
time and is denoted τ . It is the shortest interval
between these two events that can be measured.

Note that the proper time between two events
(two ticks on a wristwatch) also equals the space-
time interval between these events. This is easy
to see: consider again the ticks on observer P’s
wristwatch. In the rest frame of observer P, the
wristwatch is not moving and hence the spatial
distance between the two events (ticks) is ∆x = 0.
The time interval between these two events is just
the proper time ∆τ . Consequently we have for
the spacetime interval ∆s2 = (∆t′)2 − (∆x′)2 =
∆τ 2 − 0 = ∆τ 2.

Proper time

∆s2 = ∆τ 2

in the rest frame.

Now, let’s return to another result, the length of
the train L as measured by observer O on the
ground. Again, the result in equation 6 can be
shown in a similar manner to be more general.
The length L0 can be the length of any object in
the rest frame of this object. We see from equa-
tion 6 that any observer which is not at rest with
respect to the object will observe the length L
which is always smaller than the length L0. The
length of an object measured in the rest frame of
the object is called the proper length of the ob-
ject. An observer in any other reference frame
will measure a smaller length of the object. The
proper length L0 is the longest possible length of
the object. This also means that an observer in
the moving train will measure the shorter length
L for another identical train being at rest with
respect to the ground (being measured to have
length L0 by observers on the ground).
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5 The Lorentz transformations

Given the spacetime position (x, t) for an event in
the laboratory frame, what are the correspond-
ing coordinates (x′, t′) in a frame moving with
velocity v along the x-axis with respect to the
laboratory frame? So far we have found expres-
sions to convert time intervals and distances from
one frame to the other, but not coordinates. The
transformation of spacetime coordinates from one
frame to the other is called the Lorentz transfor-
mation. In the exercises you will deduce the ex-
pressions for the Lorentz transformations. Here
we state the results. We start by the equations
converting coordinates (x′, y′, z′, t′) in the frame
moving along the x-axis to coordinates (x, y, z, t)
in the laboratory frame,

The Lorentz transformations

t = vγx′ + γt′,

x = γx′ + vγt′,

y = y′,

z = z′.

To find the inverse transformation, we have seen
that we can exchange the roles of the observer at
rest and the observer in motion by exchanging the
coordinates and let v → −v (see figure 7),

The Lorentz transformations (cont.)

t′ = −vγx+ γt,

x′ = γx− vγt,
y′ = y,

z′ = z.

Here

γ =
1√

1− v2
.

6 List of expressions you should
know by now

Laboratory frame → page 4
Principle of relativity → page 5
Free float frame → page 5
Space time diagram → page 6
Line element → page 7
Lorentz geometry → page 8
Spacetime interval → page 8
Invariance → page 8
Proper time → page 9
Proper length → page 9
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7 Exercises

Exercise 2A.1

We have seen the effect of Lorentz contraction,
namely that a stick of proper length L0 (mea-
sured in the rest frame of the stick) moving at a
speed v along the x-axis in the laboratory frame,
is measured to have a shorter length L = L0/γ in
the laboratory frame. But what happens to the
size of the stick in y and z directions measured
from the laboratory frame? Do we correspond-
ingly measure the stick to become thinner? We
will now investigate this:

Figure 8: Does a moving cylinder become thinner as well
as contracted seen from the laboratory frame? In problem
1 we study this more closely.

To check this possibility, imagine two identical
cylinders A and B which are hollow such that
if one cylinder becomes smaller (smaller radius)
than the other, it might pass inside the larger
cylinder (see figure 8). The axis of both cylinders
are aligned with the x-axis at y = z = 0. Thus,
the axis of both cylinders are exactly along the
x-axis. Cylinder A is at rest in the laboratory
frame, cylinder B is moving with velocity v along
the x-axis, approaching cylinder A.

1. We know that the length of cylinder B as
measured from the laboratory frame shrinks.
Assume that the same effect takes place in
the y and z directions such that the radius
of cylinder B gets smaller measured in the
laboratory frame. What happens when the
two cylinders meet?

2. Now, look at exactly the same situation but
from the point of view of an observer sitting
on cylinder B. What happens when the two
cylinders meet?

3. Can you give a good arguments to explain
why y = y′ and z = z′ in the Lorentz trans-
formations? (Note: this transformation is
for movements along the x-axis. If there are
movements along the y and z axes as well,
the Lorentz transformation will look differ-
ent and much more complicated. This is out-
side the scope of this course.)

Exercise 2A.2

You need to have read sections 1 - 4 to be able
to do this exercise. When high energy cosmic
ray protons collide with atoms in the upper at-
mosphere, so-called muon particles are produced.
These muon particles have a mean life time of
about 2 µs (2 × 10−6 s) after which they decay
into other types of particles. They are typically
produced about 15 km above the surface of the
Earth. We will now study a cosmic ray muon ap-
proaching the surface with the velocity of 0.999c.

1. How long time does it take for a muon to ar-
rive at the surface of the Earth as measured
from the Earth frame?

2. Ignore relativistic effects: Do you expect
many muons to survive to the surface of the
Earth before decaying? (compare with the
mean life time)

3. From relativity, we know that from the rest
frame of the muon, the time it takes to reach
the surface of the Earth is different. We will
now use invariance of the spacetime interval
to find the time it takes in the frame of the
muon to reach the surface of the Earth.

(a) Find the space and time distances ∆x
and ∆t in the Earth frame and use
these to obtain the spacetime interval
∆s. Give all the answers in seconds.

(b) What is ∆x′, the spatial distance trav-
eled by the muon in the muon rest
frame?

(c) Use invariance of the line element to ob-
tain the travel time ∆t′ in the muon rest
frame. Will we detect muons at the sur-
face of the Earth?

4. The diameter of the galaxy is about 100 000
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light years, thus even with the speed of light
it would take 100 000 years to pass the
galaxy. How long time does it take to trans-
verse the galaxy in the reference frame of
a cosmic ray particle traveling at the speed
of v = 0.999999999999c? (Use again invari-
ance of the spacetime interval). Does this
give some hope for future long distance space
travel?

Exercise 2A.3

You need to have read sections 1 - 4 to be able to
do this exercise. You have devised a clock which
works the following way: It consists of two mirrors
a distance L0 apart. A light ray is emitted along
the positive x-axis at one of the ends and then
reflected back and forth between the two mirrors.
Each time it hits one of the mirrors it gives a
’tick’. See figure 9.

Figure 9: The situation in problem 2A.3: A light beam is
emitted when x = x′ = 0 and t = t′ = 0 (event A). Then
the beam is reflected in the right mirror (event B) and
reflected again in the left mirror (event D). This picture
is taken from the laboratory frame at event B t = tB (the
position of event A and D are just marked, they are not
happening at this moment). Event C happens at the same
time as event B in the laboratory frame. The position of
event C in the laboratory frame is the position x = xC of
the origin of the train frame.

1. How long does it take between each tick in
the reference frame of the clock?

2. Now we observe the clock from a passing
train. The clock is at rest in the labora-
tory frame with coordinates (x, t) and we
observe it from the train moving with ve-
locity v along the positive x-axis of the labo-
ratory frame. We use coordinates (x′, t′) for
the train frame (see figure 9). Event A is the
emission of light at the left mirror. This is
the reference event occurring at x = x′ = 0

and t = t′ = 0. Event B is when the light
ray hits the opposite mirror. We also intro-
duce event C which takes place at the posi-
tion of the middle point of the train (where
x′ = 0) at the same time as event B seen
from the laboratory frame. We want to find
out how long time ∆t′AB it took for the light
beam to reach the right mirror in the train
frame. Write a list of events A, B and C
and write the position (x, t) and (x′, t′) in the
two frames for all three events. The only un-
knowns here are x′B, t′B and t′C . All the other
coordinates should be expressed in terms of
the known quantities, L0 and v.

3. Write the spacetime intervals ∆sAB and
∆s′AB between events A and B in the two
frames. Show that invariance of the interval
gives x′B = t′B. Could you have guessed this
using physical arguments without any calcu-
lations?

4. Write the spacetime intervals ∆sAC and
∆s′AC between events A and C in the two
frames. Show that invariance of the interval
gives t′C = L0/γ.

5. Write the spacetime intervals ∆sBC and
∆s′BC between events B and C in the two
frames. Show that invariance of the interval
gives t′B = L0γ(1− v).

6. Now define event D which is when the light
ray returns to the first mirror at x = 0.
Use invariance of the spacetime interval for
appropriate events to find at what time t′D
event D happened in the train frame.

7. In the frame of the train, how long time did
it take from the light was emitted to the first
’tick’? And how long time did it take from
the first tick to the second tick? Compare
this to the results in the lab frame. Is this a
useful clock in the frame of reference of the
train?

Exercise 2A.4

You need to have read sections 1 - 4 to be able to
do this exercise. Quasars are one of the most pow-
erful sources of energy in the universe. They are
smaller than galaxies, but emit about 100 times
as much energy as a normal galaxy. The engine
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in a quasar is believed to be a black hole. Jets of
plasma are ejected into space from areas close to
the black hole.

Figure 10: The quasar ejecting matter at an angle θ with
the line of sight. The speed of the ejected matter is v.
We define two events A and B which are the emission of
photons from the ejected matter at the points A and B. At
event A, the ejected matter passes point A and emits pho-
tons towards Earth. Three years later, the ejected matter
passes point B and again emits photons.

1. In a Quasar called 3C273 at a distance of
2.6 × 109 light years from Earth, such a jet
was observed during a period of three years.
During this period it was found to have
moved an angular distance of 2 × 10−3 arc
seconds transversally on the sky. Show that
the physical speed of the jet was v = 8.4c,
more than eight times the speed of light.

2. We will now look at the physics of this pro-
cess in order to understand what is going
on. In figure 10 you can see the jet and
two events A and B which are the events
that photons were emitted as the jet moved
through space. The photons emitted in event
B were observed three years later than the
photons emitted in point A. Here v is the
real physical speed of the jet and θ is the
angle between the direction of the jet and
the line of sight. Show that the time interval
∆tobserved between the reception of photons
(observations) from these two events is

∆tobserved = ∆t(1− v cos θ),

where ∆t is the real time interval (in the
Earth frame) between these two events.

Hint: No theory of relativity is needed in
this calculation, all quantities you need are
taken in the same frame of reference.

3. Show that the apparent transversal speed of
the jet can be written as

vobserved =
v sin θ

1− v cos θ
.

4. Assume that θ = 45◦. For which range of
real speeds v do we observe an apparent
speed vobserved which is larger than the speed
of light?

5. The theory of relativity says that no signal
can travel faster than the speed of light. Is
this principle violated?

The effect we have seen here, an apparent speed
of an object which exceeds the speed of light, is
called superluminal motion.

Exercise 2A.5

You need to have read sections 1 - 4 to be able to
do this exercise. In this exercise we will deduce
the Lorentz transformations. We start by noting
that the transformation equations must be linear
in x and t. This is because the inverse transforma-
tion needs to have the same form as the original
transformation by the principle of relativity: We
can exchange the definition of who is at rest and
who is moving only if the transformation is linear
such that if x ∝ x′ then x′ ∝ x. For instance
if we had a coordinate transformation x ∝ (x′)2,
the inverse transformation would read x′ ∝

√
x.

These two equations would be completely differ-
ent and the principle of relativity would be vio-
lated: The two observers would have completely
different equations for transforming from one sys-
tem to the other. Thus we can write the Lorentz
transformations on the form

t = f(v)x′ + g(v)t′, (8)

x = h(v)x′ + k(v)t′, (9)

y = y′,

z = z′,

where f(v), g(v), h(v) and k(v) are unknown
functions of v. Note that the motion is along
the x-axis, so no transformation is needed for
the other two spatial dimensions. And again, by
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the principle of relativity, the inverse transforma-
tion must be obtained by exchanging the roles of
the observers (x, y) ↔ (x′, y′) and the velocity
v → −v (see again figure 7),

t′ = f(−v)x+ g(−v)t, (10)

x′ = h(−v)x+ k(−v)t, (11)

y′ = y,

z′ = z.

We need to solve for our unknown functions of v,
namely f(v), g(v), h(v) and k(v).

1. Consider two events A and B. Event A hap-
pens at x = x′ = 0 at t = t′ = 0. Event
B happens at (x, t) in the laboratory frame
and at the origin x′ = 0 at time t′ in the
moving frame (which moves with velocity v
with respect to the laboratory frame). Write
the time intervals ∆tAB and ∆t′AB in terms of
the coordinates x, t, x′, t′. Then use equation
(7) to find a relation between t and t′. You
see that this relation already resembles one
of equations (8)–(11) with one term missing.
Look at at your coordinates and compare
with the equations (8)–(11) and you will re-
alize that the missing term vanishes. Show
that

g(v) = γ.

2. We will still study the same two events. At
what position x in the laboratory frame does
event B happen? Express the answer in
terms of t and v. Then use the previous re-
sult to elimintate t and write this in terms of
t′ and v. This gives you a relation between
x and t′. You would need either an x′ or t to
obtain one of the relations above (equations
8–11), but show that one of these vanishes.
Then show that

k(v) = vγ.

3. We will now study two different events A
and B. Event A is again x = x′ = 0 and
t = t′ = 0. But event B now happens at the
position x′ = L0 in the moving frame and
x = L in the laboratory frame. In the labo-
ratory frame, the two events happen at the
same time. Use equation 6 to obtain a re-
lation between x and x′. Look again at the

Lorentz transformation equations (equations
8–11): Your expression needs either a t or a
t′ but one of these vanishes. You can thus
conclude that

h(−v) = γ = h(v)

4. Now we are only missing f(v) in order to
have deduced the full Lorentz transforma-
tions. Consider two other events A and
B: Event A is again for x = x′ = 0 at
t = t′ = 0 and event B is at position (x, t) in
the laboratory frame and (x′, t′) in the mov-
ing frame. Use equations (8)–(9) to show
that the spacetime interval between A and
B for the two frames can be written

∆s2 = (f(v)x′ + γt′)2 − (γx′ + vγt′)2

(∆s′)2 = (t′)2 − (x′)2

Show that invariance of the spacetime inter-
val gives

f(v) = γv.

The Lorentz transformations have been deduced.

Exercise 2A.6

You need to read section 5 before doing this exer-
cise. We will now return to the clock in exercise
2A.3 and solve this using the Lorentz transforma-
tions instead of the spacetime interval. We want
to find at what time t′B does the light hit the right
mirror and at what time t′D it has returned to the
left mirror. Using the Lorentz transformations we
will only need events A, B and D.

1. Again, write up the coordinates (x, t) and
(x′, t′) for these three events. The following
are unknown: x′B, t′B, x′D and t′D.

2. Use the Lorentz transformations to find t′B
and t′D. You do not need to find x′B and x′D.

3. Use the Lorentz transformations to find the
time (in the train frame) of the next two
ticks of the clock. Are the intervals consis-
tent with the first two ticks?

Exercise 2A.7

We will finish this lecture by studying the twin
paradox in detail. This long and detailed exercise
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is very important to gain some basic understand-
ing for the underlying physics of many of the so-
called paradoxes in the theory of relativity. You
need to have read sections 1 - 5 to be able to do
this exercise.

You are an astronaut traveling to the star Rigel,
800 light years from Earth. You start at x =
x′ = 0 and t = t′ = 0 where (x, t) are Earth
frame coordinates and (x′, t′) are spaceship coor-
dinates. You travel in your spaceship at a velocity
of v = 0.99995. We assume that Earth and Rigel
do not move with respect to each other and that
they therefore are in the same frame of reference.

1. Event A is you departing from Earth. Event
B is you arriving at Rigel. In the Earth frame
it took 800/0.99995 ≈ 800.04 years to arrive
at Rigel. We know that for you it took a
factor γ = 1/

√
1− v2 less (∆t = γ∆t′, ∆t

is measured in Earth frame, ∆t′ is measured
in spaceship frame). How long time did it
take for you (on your wristwatch) to arrive
at Rigel?

2. After arriving at Rigel, you make the nec-
essary scientific measurements (which takes
very little time and can therefore be ignored)
and start the return flight. You fly with ex-
actly the same speed v = 0.99995 towards
Earth. Event C is when you arrive back on
Earth. Use the same arguments (or symme-
try arguments) to find the time ∆t and ∆t′

it took from Rigel and back to Earth in the
two frames of reference.

3. If you have done your calculations correct,
here is a summary of the situation: In the
Earth frame, it took you 1600.08 years to go
to Rigel and return. On your wristwatch it
took you 16 years to go to Rigel and back.
So while hundreds of generations have passed
on Earth, you return only 16 years older.

4. We will now make the same calculations
again, but just switch the frames: The lab-
oratory frame (x, t) is now the frame of the
spaceship and the moving frame (x′, t′) is the
Earth frame. Because of the principle of rel-
ativity we are allowed to switch the roles and
we should arrive at exactly the same result
using the same laws of physics. From this

point of view, this is what is happening: You
sit in you spaceship which is now the lab-
oratory frame defined to be at rest and at
x = x′ = 0 at t = t′ = 0 (event A), the Earth
starts moving away from you with velocity
v = 0.99995 and Rigel starts approaching
you with the same velocity. After a time
∆t Rigel arrives at your position (event B).
We know from previous calculations that the
trip took 8 years in your frame of reference
which is now the laboratory frame. Using
again that ∆t = γ∆t′ (and make sure not
to confuse ∆t and ∆t′) show that the clocks
on Earth at the moment when Rigel arrives
at your position show 0.08 years. Only 0.08
years had passed on Earth during the 8 year
(on your watch) trip to Rigel.

5. Now, this might look like a paradox, but we
will show further down that it is not. No
matter how strange this might sound, it is
consistent. The paradox is still to come. Af-
ter making your investigations of Rigel, Rigel
departs and Earth approaches you again at
the speed of v = 0.99995. Making the same
calculations again you will find that it takes
the Earth 8 years to return to you. Let’s
again check carefully how long it takes on
the Earth clocks for Earth to return at your
position: At the moment you have finished
your investigations, the Earth clocks show
t′ = 0.08 years and your clock shows t = 8
years. It takes Earth again ∆t = 8 years to
arrive at your position. We have as always
that ∆t = γ∆t′. How long did it take for
Earth to return to your position measured
on Earth clocks?

6. If you made the last calculation correct, this
is now the situation: It took you 16 years
from Earth departed to Earth returned.
However, on Earth clocks it took 0.16 years.
So while you are 16 years older, only two
months have passed on Earth. Above we
found that 1600 years had passed on Earth.
Now, this is a paradox!

7. Clearly we made an error somewhere in the
calculations. Or maybe we simply forgot
some basic principles from special relativ-
ity? It appears at first sight that the two
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roles are equal,that we can choose whether
we consider the Earth frame as the labora-
tory frame or the spaceship frame as the lab-
oratory frame. But are the two roles really
identical? What is the difference between
the two observers, the Earth observer and
the spaceship observer?

8. Don’t read on until you have found an an-
swer to the previous question. Here comes
the solution: The difference is that whereas
the Earth observer always stays in the same
frame of reference, the spaceship observer
changes frames of reference: The space-
ship needs to accelerate at Rigel in order to
change direction and return to Earth. The
Earth does not undergo such an accelera-
tion. The expression ∆t = γ∆t′ was de-
rived for constant velocity (look back at its
derivation). It is not valid when the veloc-
ity is changing. In order to solve this prob-
lem properly one needs to either use general
relativity which deals with accelerations or
we can view the acceleration as an infinite
number of different free float frames, frames
with constant velocity, and apply special rel-
ativity to each of these frames. We will
not do the exact calculation here, but we
will do some considerations giving you some
more understanding of what is happening.
We will now consider three frames of ref-
erence. The Earth frame (x, t), the outgo-
ing spaceship frame (x′, t′) and the returning
spaceship frame (x′′, t′′). Instead of space-
ships we will look at it as elevators going
between Earth and Rigel. There are boxes
going in both directions. At x = x′ = 0 and
t = t′ = 0 you jump into one of these boxes
leaving for Rigel. There are other observers
in other boxes before you and after you. The
situation is depicted in figure 11. In the fol-
lowing use the Lorentz transformations to
transform between the coordinate systems.
We write the distance between Earth and
Rigel in the Earth frame as L0. Event A
happens at xA = x′A = 0 and tA = t′A = 0.
Event B is again the moment when you ar-
rive at Rigel. At what time tB in the Earth
frame do you arrive at Rigel? (express the
answer in terms of L0 and v)

Figure 11: The elevator between Earth and Rigel.

9. Use the Lorentz transformations to find t′B,
the time on your wristwatch when you arrive
at Rigel. Insert numbers and check that you
still find that the trip takes 8 years for you.

10. We now define event B’. At the same time
as you arrive at Rigel (in your frame of ref-
erence which is now the frame of the out-
going elevator),another observer in another
box in your elevator (thus another observer
in your frame of reference using clocks syn-
chronized with yours) passes the Earth at
position xB′ = 0. Event B’ is the event that
he looks out and checks what time it is on
Earth. So event B’ takes place at the posi-
tion of the Earth, but at the same time as
you arrive at Rigel (same time in the out-
going reference frame). Show that the time
tB′ he reads on the Earth clocks can be writ-
ten as tB′ = L0/v − vL0. Insert numbers.
Hint: You first need to find the position x′B′

of event B’ in the outgoing elevator frame.

11. Insert numbers in your previous result. Ex-
plain the result which we found earlier when
using the spaceship as the laboratory frame:
Namely that when Rigel arrived at the
spaceship, we calculated that on the Earth
clocks only 0.08 years had passed. Why
is this not a surprise? Those who were
surprised earlier, do you know understand
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which error you made when you got sur-
prised? Which basic principle of relativity
had you forgotten?

12. We learned in the previous question that
even if the Earth clocks were observed at the
same moment as the spaceship/elevator ar-
rived at Rigel (in the outgoing frame), these
two events (the observation of the Earth
clocks and the arrival at Rigel) were not si-
multaneous in the Earth frame. For you,
sitting in the outgoing elevator, only 0.08
years have passed on Earth when you arrive
at Rigel. For observers on the Earth on the
other hand, you arrived at Rigel when 800
years had passed. At Rigel you meet a box
in the returning elevator. You jump over to
the box in the returning elevator at event
B where you meet person P who has been
traveling in the elevator from far away. Ac-
tually, at the same time (in the Earth frame)
as you started your journey from Earth, per-
son P started his journey from the other side
of Rigel. We call the event when person
P started his journey for event D. Event A
and event D are simultaneous in the Earth
frame. In order for you and person P to
meet at event B, person P must have started
on a planet a distance 2L0 from Earth (a
distance L0 from Rigel) as measured in the
Earth frame. In that way you both cover a
distance L0 with the same speed v and there-
fore you can both meet at Rigel at time L0/v
as measured on Earth clocks. We call the
coordinate system of the returning elevator
(x′′, t′′). The clocks in the system of the re-
turning elevator are set to zero at the mo-
ment when person P starts his journey. In
the following, we will use spacetime intervals
instead of the Lorentz transformation: The
reason for this is that the returning elevator
is not synchronized with the Earth frame at
x = 0, t = 0. This was assumed when we
deduced the form of the Lorentz transfor-
mation which we use in this course. There-
fore, we will now again use invariance of the
spacetime interval to obtain our answers. We
will first check what the wristwatch of per-
son P shows when he meets you at event B.
In analogy to your own travel, it should in-

tuitively show the same as your wristwatch:
Both of you started at t = 0 on Earth clocks
as well as on your own wristwatch. Both
of you travel a distance L0 (as measured in
the Earth frame) at velocity v. But we have
learned not to trust our intuition when work-
ing with relativity, so let’s check. We will
now consider the spacetime interval ∆sBD

in order to find t′′B, the time on the wrist-
watch of person P at event B. Write down
the space and time intervals ∆xBD, ∆tBD,
∆x′′BD and ∆t′′BD. Show that invariance of
the spacetime interval gives

L2
0

v2
− L2

0 = (t′′B)2,

which gives t′′B = L0/(vγ), exactly as we
thought. Your wristwatches agree at event
B. Reassuring to see that our intiution still
gives som reasonable results every now and
then.

13. We will now try to find out what the time
is on Earth for persons in the returning ele-
vator. In the frame of the outgoing elevator,
we used a person who was situated in an el-
evator box at the same position of the Earth
and looked out at the clocks on Earth ex-
actly at the same time as event B happened
(in the frame of the outgoing elevator). We
called this event B’ (looking at the clocks on
Earth). We found that only 0.08 years had
passed on Earth when you arrived at Rigel.
We will now make the same check from the
returning elevator. A person in an elevator
box of the returning elevator being at the po-
sition of the Earth exactly at the same time
as event B happens (now from the frame of
the returning elevator) looks at the clocks on
Earth. We call this event B” (the person in
the box at the position of the Earth look-
ing at the Earth clocks). We will now try
to find out what he saw, i.e. which time tB′′

he observed on the Earth clocks. For this
we will use spacetime interval ∆sDB′′ . Show
that the space and time intervals from each
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frame are the following:

∆xDB′′ = 2L0

∆tDB′′ = tB′′

∆x′′DB′′ = L0/γ

∆t′′DB′′ = L0/(γv)

You might be a bit surprised by one of these
results, but if you have doubts, do the follow-
ing: Make one drawing for event D and one
for event B”. Show the position of the zero-
point (the position of person P is the zero
point of the x′′ axis) of each of the x-axes
in both plots and find the distances between
events. Did it make it clearer?

14. Use invariance of the spacetime interval to
show that

tB′′ =
L0

v
+ L0v

Setting in for numbers this gives you t′′B′′ =
1600.00 years. Surprised? What has hap-
pened? You are still at event B, you made a
very fast jump so almost no time has passed
since you were in the outgoing elevator. But
just before the jump, only 0.08 years had
passed on Earth since you started your jour-
ney. Now, less than the fraction of a sec-
ond later, 1600 years have passed on Earth.
So in the short time that your jump lasted,
1599.92 years passed on Earth! This is were
the solution to the twin paradox is hidden:
When you jump, you change reference frame:
You are accelerated. Special relativity is
not valid for accelerated frames (actually one
could solve this looking at the acceleration as
an infinite sum of reference frames with dif-
ferent constant velocities). When you are ac-
celerated, you experience fictive forces. This
does not happen at Earth, the Earth does
not experience the same acceleration. This
is the reason for the asymmetry: If you speed
had been constant, you and Earth could ex-
change roles and you would get consistent
results. But since you are accelerated in the

jump while the Earth is not, there is no sym-
metry here, you and the Earth cannot switch
roles.

15. Let’s summerize the situation: In your
frame, you started your journey at t = t′ = 0
and arrived at Rigel at t′ = 8 years. In the
Earth frame you arrived at Rigel after 800.04
years of travel. In your frame, the clocks on
Earth show 0.08 years when you arrive at
Rigel. Only 0.08 years have passed on Earth
at the time you arrive at Rigel, seen from
your frame. Then you jump to the returning
elevator. Your watch still shows t′ = t′′ = 8
years. But now you have switched frame
of reference. Now suddenly 1600 years have
passed on Earth, clocks on Earth went from
0.08 years to 1600 years during the jump, as
seen from your frame. As seen from Earth,
the clock showed 800.04 years during your
jump.

16. Seen from the Earth, you need 800.04 years
to return, so the total time of your travel
measured in the frame of reference of the
Earth is t = 1600.08 years. In your own
frame, the return trip took 8 years (by sym-
metry to the outgoing trip), so the total
travel time for yourself is 16 years. But ac-
cording to your frame of reference, the Earth
clocks again aged 0.08 years during your re-
turn trip (by symmetry to the outgoing trip).
When you were at Rigel, the observer in
your frame of reference saw that the Earth
clocks showed 1600 years. In your frame,
0.08 years passed on Earth during your re-
turn trip. So consistenly you find the Earth
clocks to show 1600.08 years when you set
your feet on the Earth again. This is also
what we find making the calculation in the
Earth frame 800.04× 2 = 1600.08. But hun-
dreds of generations have passed, and you
have only aged 16 years. But after all these
strange findings I’m sure you find this pretty
normal by now. Everything clear? Read
through one more time.

22


	Simultaneity
	Invariance of the spacetime interval
	An example
	Observer O and P revisited
	The Lorentz transformations
	List of expressions you should know by now
	Exercises

