
AST1100 Lecture Notes

Part 2B
Four vectors and relativistic dynamics

Questions to ponder before the lecture

1. A position vector is a vector pointing to a position in 3 dimensions. In relativity it could be
useful to include the position in time and make a four dimensional position vector. Would such
a vector obey the usual rules for vector aritmetics? (try to think about some simple examples,
i.e. of adding position vectors)

2. We have seen that in the special theory of relativity, also the pace of time changes when you
move. Could this be interpreted as you having a four-dimensional velocity including a time
component of your velocity vector? How could you define such a 4 dimensional velocity?

3. The velocity of an object changes when you change your frame of reference. Does this mean
that also momentum and energy are relative quantities? What happens in this case to the law
of conservation of energy?
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AST1100 Lecture Notes

Part 2B
Four vectors and relativistic dynamics

1 Worldlines

In the spacetime diagram in figure 1 we see the
path of a particle (or any object) through space-
time. We see the different positions (x, t) in space
and time that the particle has passed through.
Such a path showing the points in spacetime that
an object passed is called a worldline. We will
now study two events A and B (on the world-
line of a particle) which are separated by a small
spacetime interval ∆s. These events could be the
particle emitting two flashes of light or the parti-
cle passing through two specific points in space.
The corresponding space and time intervals be-
tween these two events in the laboratory frame
are called ∆t and ∆x. From the figure you see
that ∆t > ∆x. You can see that this also holds
for every small spacetime interval along the path.
This has to be this way: The speed of the parti-
cle at a given instant is v = ∆x/∆t. If ∆x = ∆t
then v = 1 and the particle travels at the speed
of light. That ∆t > ∆x simply means that the
particle travels at a speed v < c which it must.
The worldline of a photon would thus be a line
at 45◦ with the coordinate axes. The worldline of
any material particle will therefore always make
less than 45◦ with the time axis.

Events which are separated by spacetime dis-
tances such that ∆t > ∆x are called timelike
events. Timelike events may be causally con-
nected since a particle with velocity v < c would
have the possibility to travel from one of the
events to the other event. There is a possibil-
ity that the second event could have been caused
by the first event since it is possible for a signal to
travel between the events. Timelike events have

positive line elements,

∆s2 = ∆t2 −∆x2 > 0.

Figure 1: The worldline, the trajectory of a particle in a
spacetime diagram. Two events A and B along the path
of the particle have been marked.

Events for which ∆t = ∆x are called lightlike
events. Only a particle traveling at the speed of
light (v = ∆x/∆t = 1) could travel from the first
event to the second. Lightlike events have zero
spacetime interval,

∆s2 = ∆t2 −∆x2 = 0.

Note one consequence of this: Remember that the
proper time interval ∆τ 2 equals the spacetime in-
terval ∆s2. Thus, photons always have ∆τ = 0,
the wristwatch attached to a photon would not
change. Photons and other particles traveling at
the speed of light do not feel the effect of time.

Events for which ∆x > ∆t are called spacelike
events. For these events, the spatial component
of the distance is larger than the time compo-
nent. No worldline could ever connect two space-
like events as it would require a particle to travel
faster than light. Thus, spacelike events are not
causally connected. The first event could not have
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caused the second. The spacetime interval for
spacelike events is negative,

∆s2 = ∆t2 −∆x2 < 0.

Figure 2: Different worldlines connecting the two events
A and B.

In figure 2 we see two events A and B and three
different worldlines between these events. These
events could be a car passing position xA and po-
sition xB in the laboratory frame. In the space-
time diagram we see three worldlines each corre-
sponding to a car. The straight worldline must
correspond to a car driving with constant speed
v = ∆x/∆t = constant. The two other worldlines
must correspond to cars accelerating (changing
their speed and thereby changing the slope of the
worldline) along the way from xA to xB, but all
cars reach point xB at the same time (event B).
All cars also passed point xA at the same time
(event A). Same time here means ’same time’ for
all frames of reference: all the cars meet at event
A and B, so if they meet simultaneously in one
frame of reference they must meet simultaneously
in all other frames of reference (did you get this?
If not, read the sentences again!).

We will now ask a question which answer may
seem obvious in this case, but which might not
be so obvious in other situations. The question
is: Given a particle (or a car) going from event
A to event B. If this particle is in free float (in
special relativity this means that no forces act
on the particle), which worldline will the parti-
cle take between event A and event B? Looking
back at figure 2 we see three possible worldlines,
but in fact there is an infinite number of possible
worldlines connecting the two events. The ob-
vious answer in this case is that it will follow a
straight line in spacetime, i.e. the straight world-
line corresponding to constant velocity. This is
just a modern way of saying Newton’s first law:

A body which is not under the influence of ex-
ternal forces will continue moving with constant
velocity. But is there a deeper principle behind?
In the theory of relativity there is, and this princi-
ple is called the principle of maximal aging. This
is a fundamental principle in the special as well
as in the general theory of relativity.

The principle of maximal aging says that a par-
ticle in free float (no forces act on the particle)
will follow the worldline which corresponds to the
longest possible proper time interval between the
two events. We remember that proper time is the
wristwatch time, the time measured on the clock
attached to the particle. So let different particles
take different paths in spacetime between the two
events. Attach a wristwatch to each of the par-
ticles. At event B, you look at the time interval
between event A and B measured on the wrist-
watch of each of the particles. The particle which
measures the longest proper time, i.e. the parti-
cle with the wristwatch which made most ticks
during the trip from event A to event B, is the
particle taking the path that a particle in free-
float would take.

How do we calculate the proper time interval that
a given particle takes from event A to event B?
The clue is to remember that the proper time in-
terval ∆τ between two events equals the space-
time interval, or the total length of the path in
spacetime ∆s taken between the two events. For
the worldline of a particle with constant velocity,
we know that the distance in spacetime traveled
from event A to event B is just ∆s =

√
∆t2 −∆x2

where ∆x and ∆t are space and time intervals
measured in an arbitrary frame of reference. To
measure the total spacetime interval along the
worldline of a particle which does not move with
constant velocity, we need to break the path up
into small path lengths ds. This path length
is so small that we can assume the velocity to
be constant during the time it takes to travel
this interval in spacetime. We can thus write
ds =

√
dt2 − dx2 where dx and dt are the corre-

sponding small space and time displacement mea-
sured in the arbitrary frame of reference. To ob-
tain the total length of the path in spacetime
traveled between two events A and B, we need
to integrate all these tiny spacetime intervals ds
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giving

∆s =

∫ B

A

√
dt2 − dx2. (1)

This equals measuring the length s of a curved
path between two points A and B in the x-y plane:

∆s =

∫ B

A

√
dx2 + dy2.

Note again a huge difference here: The minus
sign in the spacetime interval. We know from
Euclidean geometry that the shortest path s be-
tween two points A and B in the plane, is the
straight line. The minus sign in the line element
for Lorentz geometry gives rise to the opposite re-
sult (which we will not derive here): The longest
path s between two events A and B in space-
time is the straight worldline. Therefore, if we
measure the length of the spacetime path for all
the three worldlines in figure 2 using the integral
in (1), we find that the longest path in space-
time is the straight worldline, i.e. the worldline of
the car driving with constant velocity. Remember
again that the length of the spacetime interval ∆s
equals the total proper time ∆τ measured on the
wristwatch of the particle. So the longest proper
time interval between two events is measured on
the particle taking the straight line in spacetime,
i.e. the particle which has constant velocity. We
have just deduced Newton’s first law from the
principle of maximal aging. When we come to
the general theory of relativity, we will see that
the spacetime geometry and hence the form of
the line elements ∆s is different in a gravitational
field. We will need the principle of maximal ag-
ing to tell us how a free float particle is moving
in this case.

2 Four-vectors

We are used to vectors in three-dimensional space
giving the position of a point in space,

~x = (x1, x2, x3),

where (x1, x2, x3) are used instead of (x, y, z) for
the components in the three spatial dimensions.
A 4-vector is similarly defined to give the position
of an event in four dimensional spacetime,

x = (x0, x1, x2, x3),

or if you wish (t, x, y, z). For components of a
normal three dimensional vector, we use Latin let-
ters, typically i and j, for the indices: The com-
ponents of ~x are xi where i goes from 1 to 3. For
the components of a 4-vector, we use Greek in-
dices, typically µ and ν. The components of a
four-vector x are xµ where µ run from 0 to 3, 0
being the time component. If we wish to separate
the time and space part of a four-vector we might
also write it as x = (t, xi) where xi refers to all
three spatial components.

The four-vector xµ points to an event in spacetime
for a given frame of reference. We have already
learned that in order to transform spacetime co-
ordinates from one frame of reference to another,
we need the Lorentz transformations. Thus, we
may write the transformation of a four-vector xµ
in one frame of reference to x′µ in another frame
of reference by a matrix multiplication,

t′

x′

y′

z′

 =


γ −vγ 0 0
−vγ γ 0 0

0 0 1 0
0 0 0 1



t
x
y
z


Compare with the expression for the Lorentz
transformation in the previous lecture notes.
Check that the matrix multiplication gives you
the correct equations. (Compare this equation
with matrices which are used to rotate between
coordinate systems in two spatial dimensions, do
you see a similarity? Remember the analogy used
in the previous lecture notes between a coordinate
change in the (x, y) plane and the (x, t) diagram).

We can write this matrix equation as

x′µ =
3∑

ν=0

cµνxν ,

where cµν is the matrix above. This is the equa-
tion which transforms any four-vector from one
frame of reference to another. We will now write
this equation using the so-called Einstein conven-
tions. This is just a rule which will save you from
a lot of writing. Instead of writing the sum sym-
bol, we simply say that when two factors in a term
contain the same index, there is an implicit sum
over this index. If the index is Latin, then there
is a sum over the three spatial dimensions, if the
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Fact sheet: An example of a light cone, the three-dimensional
surface of all possible light rays arriving at and departing from a
point in spacetime. Here it is depicted with one spatial dimen-
sion suppressed. In general, there are three types of curves in
spacetime: 1) Time-like curves, with a speed less than the speed
of light. These curves must fall within a cone defined by light-
like curves. 2) Light-like curves, having at each point the speed
of light. They form a cone in spacetime, dividing it into two
parts. 3) Space-like curves, falling outside the light cone. (Fig-
ure: Wikipedia)

index is Greek, there is a sum over the three spa-
tial dimensions plus time. Using this convention
we can write the previous equation simply as

x′µ = cµνxν (2)

It can be shown that four-vectors follow the nor-
mal rules for summations and subtractions (see
exercises). We will now look at the scalar prod-
uct. For three dimensional vectors, the usual
scalar product can be written as,

~x · ~y =
3∑
i=1

xiyi = xiyi,

where the Einstein convention was used in the last
expression. We can also define a scalar product
for four-vectors. Instead of writing a dot between
the vectors, one usually writes the scalar product
with one upper index and one lower index,

xµyµ = x0y0 − xiyi.

One index µ is written high and the other low
to show that this is the scalar product and not
a normal sum. Note that the scalar product is
defined with a minus sign in front of the spatial
part. If we had written both indices low, this
would mean,

xµyµ = x0y0 + xiyi,

using the Einstein summation convention. This
is different from the scalar product. It should
be clear where the minus sign comes from, con-
sider a spacetime interval ∆xµ (a spacetime in-
terval is an interval between two points x1µ and

x2µ in time and space such that ∆xµ = x1µ − x2µ =
(∆t,∆x,∆y,∆z)). The scalar product of a space-
time interval with itself gives,

∆xµ∆xµ = ∆t2 −∆x2 = ∆s2

(assuming ∆y = ∆z = 0). The result is the
scalar ∆s2. A scalar is a quantity which is in-
variant, which has the same value in all frames
of reference. We already knew that the space-
time interval ∆s2 is a scalar (where did we learn
this?). For infinitesimal distances between events,
we may write this as,

ds2 = dxµdxµ.

We learned above that a four vector is a vec-
tor which transforms according to the Lorentz
transformation (equation 2) when changing from
one frame of reference to another frame of refer-
ence having velocity v with respect to the first.
This has an important consequence: You cannot
choose 4 numbers on random, put them together
and call it a 4-vector! The numbers entering in a
four-vector need to be physical quantities which
are such that the 4-vector transforms accoring to
equation 2. We thus need to take care when per-
forming mathematical operations with 4-vectors:
The result may not necessarily be a 4-vector.

As an example we will now investigate what hap-
pens with a 4-vector when multiplying it with
some number. Say that you for some reason
need to multiply a spacetime distance ∆xµ =
(∆t,∆x,∆y,∆z) with the corresponding time in-
terval ∆t forming

∆yµ = ∆t∆xµ.
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Is ∆yµ a 4-vector? We can easily check this by
checking whether it transforms according to equa-
tion 2 when changing frame of reference. We
therefore need to find ∆y′µ as

∆y′µ = ∆t′∆x′µ

and test if equation 2 is satisfied.

We know that ∆xµ follows this transformation.
We also now that ∆t′ = (1/γ)∆t when changing
frame of reference. We thus have for ∆y′µ in a
new frame of reference

∆y′µ = ∆t′∆x′µ = (1/γ)∆tcµν∆xν = (1/γ)cµν∆yν .

Because of the factor 1/γ we see that ∆yµ does
not transform according to equation 2 and ∆yµ is
therefore NOT a 4-vector. We thus cannot mul-
tiply a 4-vector with a time interval and obtain a
4-vector.

A four-vector which is multiplied by a scalar how-
ever, is itself a four-vector. If instead of multiply-
ing ∆xµ with ∆t, we multiply it with the corre-
sponding spacetime interval ∆s we get

∆yµ = ∆s∆xµ.

Transforming to a different frame of reference we
have again ∆x′µ = cµν∆xν since ∆xµ is a four-
vector and ∆s′ = ∆s since ∆s is a scalar. We
thus have

∆y′µ = ∆s′∆x′µ = ∆scµν∆xν = cµν∆yν

which does follow equation 2. In this case ∆yµ is
a four-vector. We thus have generally that when
Aµ is a four vector and f is a scalar, the product

Bµ = fAµ,

is a 4-vector. In the exercises you will show that
the results of summing or subtracting 4-vectors
are 4-vectors.

3 Four-velocity

Can we define a four dimensional velocity Vµ, that
is, a four dimensional vector showing the direction
of motion in spacetime of a particle with coordi-
nates xµ? By analogy to normal three dimen-
sional velocity, the four-velocity Vµ should be the

the rate of change of the position vector xµ. A
natural choice would be dxµ/dt, but this is not
a four-vector: As we discussed above, ∆t or dt
is not a scalar, it has different values in different
frames of reference. Thus dxµ/dt does not trans-
form as a 4-vector, i.e. you cannot use the Lorentz
transformation to transform it from one frame of
reference to another. But in order to have veloc-
ity, we need the rate of change with respect to
some time interval ∆t. Which measure of time
can we use?

Remember that proper time τ is a scalar, it is
defined as the time observed on the wristwatch
of an observer. All observers will measure the
same time interval ∆τ between two events (how
do they measure ∆τ?). Consider the example
with the train and observer P who is jumping
up and down. Measured on the wrist watch of
observer P, one jump takes one second, thus one
second of proper time for the frame of reference
of the train. According to observer O’s wrist-
watch, the jump takes 1.7 seconds, but this is
not the proper time for the train (remember the
definition of proper time!). But observer O can
take his binoculars and read of the time between
each jump on observer P’s wristwatch. He will
then find, in agreement with observer P, that in
proper time units for the train, each jump takes
one second.

Note that proper time needs to be defined with
respect to some frame of reference (in this case the
train), but once this is defined, everybody agrees
on the proper time interval between two events
taking place at the same spot in that frame. In
the case of four-velocity, there is no doubt about
which proper time we are speaking about: Four-
velocity is the velocity of a particle or an object
(for instance a train) and the proper time ∆τ
which we use to define four velocity is the time
measured in the rest frame of this object. So four-
velocity can be defined as

Vµ =
dxµ
dτ

.

Let us find the length (absolute value) of the four-
velocity (the square root of the scalar product of
the vector with itself). The square of the length
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is (as for normal vectors) given by

VµV
µ =

dxµ
dτ

dxµ

dτ
=
dxµdx

µ

dτ 2
=
ds2

dτ 2
=
dτ 2

dτ 2
= 1.

(did you understand every step here?) Taking the
square root of this we still get 1. The length of the
four-velocity is thus always one. Remember that
a velocity of one means the velocity of light. All
particles move with the velocity of light in space-
time! For each proper time interval ∆τ a particle
moves an equal interval ∆s in spacetime.

Figure 3: The observer on the ground measuring a veloc-
ity vx for the airplane, wondering which velocity v′x the
driver of the car measures for the same airplane.

We can write the four-velocity in terms of normal
3-velocity as

Vµ = (
dt

dτ
,
dxi
dτ

)

= (
dt

dτ
,
dt

dτ

dxi
dt

) =
dt

dτ
(1, ~v) = γ(1, ~v)

where we have used that ∆t/∆τ = dt/dτ = γ
from the previous lecture notes (go back and
check how you derived this, it is important!). Now
we are ready to answer a question that has both-
ered us all the time since we learned about the
Lorentz transformations: We know how to trans-
form between coordinates (x, t) and (x′, t′) in two
different frames of reference. But how do you
transform a velocity vx from one frame to the
other? Say that you stand on the ground and
look at a passing airplane. You measure the ve-
locity of the airplane along the x-axis to be vx.
A car is passing you on the street with velocity
vrel along the same x-axis and you note that the
driver is also watching the airplane. You start to
wonder which velocity v′x that the driver is mea-
suring for the airplane. The situation is depicted
in figure 3. In normal non-relativistic physics you

know that the answer should read v′x = vx − vrel,
but we have learned that this does not work for
velocities close to the velocities of light (for in-
stance, look back at the Michelson-Morley exper-
iment). Assuming that there are no motions in
the y and z direction, we can now write the four
velocity of the airplane from our laboratory frame
as Vµ = γ(1, vx) and from the car as V ′µ = γ′(1, v′x)

where γ = 1/
√

1− v2x and γ′ = 1/
√

1− (v′x)
2.

We know that four-velocity is a four-vector and
that four-vectors by definition transform from one
frame of reference to the other under the Lorentz
transformation,

V ′µ = cµνVν ,

or written in terms of matrices as


γ′

γ′v′x
γ′v′y
γ′v′z

 =


γrel −vrelγrel 0 0

−vrelγrel γrel 0 0
0 0 1 0
0 0 0 1




γ
γvx
γvy
γvz


where γrel = 1/

√
1− v2rel.

From this matrix equation, we obtain two equa-
tions for the velocity vx and v′x,

γ′ = (γrel − vrelγrelvx)γ
γ′v′x = (−vrelγrel + γrelvx)γ.

Dividing the second equation by the first, we ob-
tain

v′x =
vx − vrel
1− vrelvx

, (3)

which is the Lorentz transformation for veloci-
ties. Note that when the speed of the airplane
approaches the speed of light, vx → 1 then v′x → 1
showing that the laboratory observer and the ob-
server in the car will both measure the speed of
light for the airplane. This solves the weird result
obtained by Michelson and Moreley: The speed
of light is the same from all frames of reference.

4 Relativistic momentum and en-
ergy

What about momentum and energy? We have
learned that the velocity v of an object as mea-
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sured from two different frames of reference trans-
form according to the Lorentz transformation
(equation 3). This must necessarily have conse-
quences for how we measure momentum p = mv
and energy E = 1/2mv2 from two different frames
of reference. There must be some corresponding
Lorentz transformations for momentum and en-
ergy. We have learned a simple and easy recipe for
finding the transformation equations between dif-
ferent frames: Construct a four-vector and use the
transformation properties for four-vectors. This
worked for velocity so let’s try with momentum
and energy.

We start with momentum. In order to construct
a four-vector Pµ for momentum, let’s try a form
which is as similar as possible to the Newtonian
form ~p = m~v. Rest mass (the mass measured in
the rest frame of the object) is a scalar quantity,
so

Pµ = mVµ

is a four-vector. Using that Vµ = γ(1, ~v), we can
write momentum as

Pµ = mγ(1, ~v) = γ(m, ~p),

where ~p is the Newtonian momentum. Taking the
spatial part of this equation we see that relativis-
tic momentum can be written in three dimensions
simply as

~prelativistic = γm~v, (4)

where ~v is the normal 3-velocity of an object.
What is the meaning of the time component
P0 = γm of the momentum 4-vector? In order to
investigate this let us write it in the Newtonian
limit. For v << 1 (velocity much lower than the
velocity of light) we can make a Taylor expansion
in v,

P0(v) = P0(v = 0)+
dP0

dv
(v = 0)v+

1

2

d2P0

dv2
(v = 0)v2,

where the derivatives taken at v = 0 are (check
it!) P0(v = 0) = m, dP0/dv(v = 0) = 0 and
d2P0/dv

2(v = 0) = m. We get

P0 = m+
1

2
mv2.

The last term is just the expression for Newtonian
kinetic energy. The first term is the rest energy

of a particle, converted to normal units it can be
written as the more well known E = mc2. The
rest energy is the energy of a particle at rest, it is
the energy in the mass of the particle. Thus, the
time component of the momentum four-vector is
relativistic energy,

Erelativistic = mγ, (5)

which in the Newtonian limit reduces to the New-
tonian kinetic energy plus an energy term which
did not exist in Newtonian physics, the energy of
the mass of the particle. So the 4-vector Pµ is not
just a momentum 4-vector, it is the momentum-
energy 4-vector which time component is energy
and space component is momentum. It means
that energy and momentum are related in the
same way as space and time are. In the same
manner as we talk about spacetime, indicating
that space and time are basically two aspects of
the same thing, we can call energy and momen-
tum collectively as momenergy. The four-vector
Pµ is simply the momenergy four-vector.

What is the length of the momenergy four-vector?
Using that Pµ = mVµ we have for the square of
the length

PµP
µ = m2VµV

µ = m2.

The length is the square root of m2 which is m.
The length of the momenergy four-vector is an
invariant and it is thus simply the mass. We have
seen that we can write Pµ = γ(m, ~p) giving (using
equations 4 and 5)

Pµ = (Erelativistic, ~prelativistic).

From now on we will drop the subscript ’relativis-
tic’ and always refer to the relativistic energy and
relativistic momentum using E and p. But how
can we be so sure? How can we know that this
is the correct expression for energy and momen-
tum? What is the criterion for a quantity to be
energy or momentum? We know that energy and
momentum are conserved quantities. The total
energy and momentum of particles after a colli-
sion should always be the same as the total en-
ergy and momentum before the collision. So this
is easy to check: Measure the total energy and
momentum of particles before and after a colli-
sion, if they are the same we have found the cor-
rect expressions for momenergy. This has been
tested thousands of times in particle accelerators
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with particles moving close to the speed of light.
It turns out that the Newtonian energy and mo-
mentum are not conserved in these collisions. The
relativistic energy and momentum defined as we
have done above however, are conserved.

By now we have got used to measure time and
space in the same units and therefore we have also
got used to add these quantities ∆x+∆t without
hesitating. We see that the result of measuring
time and space in the same units is that momen-
tum and energy are also measured in the same
units, the units of mass. We remember that since
space and time are measured in the same units,
the speed v is a dimensionless number. The factor
γ is clearly also dimensionless, so the momentum
p = mγv can be measured in the units of mass
(kg). The same goes for energy E = mγ, which
also has dimension mass. So both energy and mo-
mentum are measured in kg and these quantities
can therefore be added, just as we can add inter-
vals in time and distances in space. The momen-
ergy four-vector is Pµ = (E, ~p), taking the scalar
product we have (remembering the result above
that the length of Pµ is just m),

PµP
µ = E2 − p2 = m2,

we can thus write energy in terms of momentum
as

E =
√
m2 + p2.

A photon is massless, so for photons this relation
is just

E = p,

or by using normal units E = pc which is a more
known form of this expression.

We return to the above example with the airplane
and the passing car. You measure the relativistic
energy and momentum of the airplane from the
laboratory frame (the ground) and you wonder
what energy and momentum the driver of the car
measures for the same airplane. The momenergy
four-vector is a four-vector which means that it
can be transformed from one frame of reference
to the other by the Lorentz transformation,

P ′µ = cµνPν ,

or in matrix form (remember that there were no
movements in the y and z direction)


E ′

p′x
p′y
p′z




γrel −vrelγrel 0 0
−vrelγrel γrel 0 0

0 0 1 0
0 0 0 1



E
px
py
pz


Giving the following transformation equations for
momentum and energy

E ′ = γrelE − vrelγrelpx
p′x = γrelpx − vrelγrelE

where vrel is the relative velocity between the two
frames of reference, the observer on the ground
and the car (see figure 4).

Figure 4: The observer on the ground measuring a veloc-
ity vx for the airplane, wondering which velocity v′x the
driver of the car measures for the same airplane.

We will now use these equations to answer the
following question: What energy and momentum
(E ′, p′x) does a person passing you in his car with
a velocity v (relative to you) measure that you
have? From your frame of reference in which you
are at rest, your momentum is by definition zero
p = 0 and you energy equals your mass E = m.
We will now transform these quantities to the
driver of the car measuring your energy and mo-
mentum to be E ′ and p′. The relative velocity
of the car with respect to you is simply vrel = v.
Then the energy and momentum that the driver
in the car measures that you have is simply (using
the equations above, check that you get the same
result),

E ′ = γE p′x = −vγE

Note that γ > 1 so the driver in the car mea-
sures, not only a larger absolute momentum, but
also larger energy.

9



From the point of view of Newtonian mechanics
this was to be expected: with respect to the driver
you have a non-zero velocity and kinetic energy,
thus both your momentum and energy are clearly
larger with respect to him than with respect to
your rest frame. But from the point of view of ge-
ometry it might seem strange: In your rest frame
the four-vector Pµ only has a time component and
no space component. In the frame of the driver,
both the time and space component of the vec-
tor are larger than in your frame. But the length
of the momenergy vector Pµ is always the same,
equal to m. Going back to normal 3D geome-
try this would not be possible. Imagine a vector

~a = (f, g, 0) and another vector ~b = (2f, h, 0). If
the length of these vectors are the same, then we
have that h < g. We see that from normal geome-
try you would expect that if the length of a vector
is constant, then if you increase one component
of the vector the other should decrease. The rea-
son for this discrepancy with normal geometry is
that spacetime has Lorentz geometry whereas 3D
space has Euclidean geometry. Lorentz geometry
has a minus sign in the definition of the scalar
product (which also defines the length of the vec-
tor) making such an effect possible.

Now you know the basics of the special theory of
relativity and you have got the necessary prepa-
rations to start studying the general theory of rel-
ativity. In the general theory of relativity we will
study how masses curve spacetime, making the
expression for the line element ∆s different close
to a large mass. This change in the line element
changes the dynamics and gives rise to what we
in Newtonian terms call the force of gravity.

5 List of expressions you should
know by now

Worldline → page 2
Timelike → page 2
Lightlike → page 2
Spacelike → page 2
Principle of maximal aging → page 3
Wristwatch time → page 3
Scalar → page 5
Four vector → page 5
Four velocity → page 6
Momenergy → page 8
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6 Exercises

Exercise 2B.1

You need to read section 1 before embarking on
this exercise. You are in the laboratory frame
watching two cars passing from position x = 0
at t = 0 (event 1) and arriving simultaneously at
position x = L some time t = TL (event 2) later
(all coordinates taken in the laboratory frame).
Car A moves with constant velocity vA = c/2
whereas car B accelerates from v = 0 at x = 0
and accelerates such that it reaches x = L simul-
taneously with car A. In the following you will
draw some spacetime diagrams. We are not in-
terested in exact numbers in this exercise, only
roughly correct relative distances and slopes on
the worldlines showing that you have understood
the basic principles.

1. Make a spacetime diagram in the laboratory
frame showing the worldlines of yourself and
the two cars.

2. Make a spacetime diagram in the reference
frame of car A showing the three same world-
lines.

3. Make a spacetime diagram in the reference
frame of car B showing the three same world-
lines.

4. Return to the first spacetime diagram, the
diagram for the laboratory frame. The wrist-
watch of the driver of car A makes exactly 10
ticks from event 1 to event 2. The first tick
happens at event 1 and the last tick happens
at event 2. Draw a dot on the worldline of
car A at roughly the position of each of the
ticks. The important point here is to have
correct relative spacings between each tick.

5. The driver of car B has an identical wrist-
watch making ticks with exactly the same
frequency in the rest frame of the watch.
Use the principle of maximal aging to judge
whether driver B will experience more or less
ticks on his watch from event 1 to event 2.

6. Again, draw a dot on the worldline of car B
at the positions where the wristwatch of the
driver makes a tick. Again, the exact posi-
tion is not important, but the relative dis-

tances between the dots should be correct.
Hint: For each dot you draw, look at the
slope of the worldline.

Exercise 2B.2

You should read section 2 before doing this ex-
ercise. A four vector is defined to be a vector
in spacetime which transforms from one frame of
reference to another (from xµ to x′µ) using the
Lorentz transformation

x′µ = cµνxν .

To check if a four dimensional vector is a four-
vector, you need to check whether this relation is
true or not. We will now test if four-vectors fol-
low the normal rules of addition, that the sum of
two four-vectors is really a four-vector. Assume
you have two four-vectors Aµ and Bµ. You sum
the two to make a vector Dµ,

Dµ = Aµ +Bµ.

You now need to show that the result, Dµ, is also
a 4-vector. Use the transformation properties of
Aµ and Bµ to obtain these vectors in a differ-
ent frame A′µ and B′µ. Find an expression for the
sum of the two vectors, D′µ, in the other frame ex-
pressed by Dµ in the laboratory frame and show
that Dµ is indeed a four vector.

Exercise 2B.3

It is necessary to read all of the main text of this
part to be able to do this exercise. A free neutron
has a mean life time of about 12 minutes after
which it disintegrates into a proton, an electron
and a neutrino. We will ignore the neutrino here,
assuming that the only products of disintegration
are a proton and an electron. A neutron moves
along the positive x axis in the laboratory frame
with a velocity v = 0.99. It disintegrates spon-
taneously and a proton and an electron is seen
to continue in the same direction as the neutron.
Use tables to find the mass of the electron, proton
and neutron. We will try to calculate the speed
of the proton and the electron in the lab-frame.
The easiest way to do this is in the rest frame of
the neutron where the neutron has a very simple
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expression for energy and momentum. In the lab
frame this would have been a lot more work since
all three particles have velocities.

1. In the rest frame of the original neutron
(which has now disintegrated), what was
the total energy and momentum of the neu-
tron before disintegration? Write the an-
swer in terms of a momenergy four-vector
P ′µ(neutron).

2. In the rest frame of the original neutron,
write the momenergy four-vector P ′µ(proton)
of the proton expressed in terms of the pro-
ton mass mp and the unknown proton veloc-
ity v′p in the neutron rest frame.

3. Still in the neutron frame, write the ex-
pression for the momenergy four-vector
P ′µ(electron) in terms of the electron massme

and the unknown electron velocity v′e mea-
sured in the neutron frame.

4. Use conservation of momenergy

P ′µ(neutron) = P ′µ(proton) + P ′µ(electron),

to find the velocity of the proton and the
electron in the rest frame of the original neu-
tron. (insert numbers). Hint: This can be
ugly if you don’t do it right: Write the mo-
mentum part of the equation in terms of γ-
factors only, then substitute for one of the γ
from the energy part of the eqaution. Then
you will avoid second order equations. Note
that there are two possible solutions here:
see if you understand why. Choose one of
the solutions and continue with that in the
rest of this exercise.

5. Use the transformation properties for four-
vectors

P ′µ(electron) = cµνPν(electron),

to find the energy and momentum of the
electron and proton in the laboratory frame.
(insert numbers:what units do your results
have if you keep c = 1).

6. Use the numbers you have obtained for en-
ergy or momentum to obtain the speed of the
electron and proton in the laboratory frame.

7. As an independent check (and to see an al-
ternative way of doing it), use the relativis-
tic formula for addition of velocities to ob-
tain the speed of the proton and electron in
the lab frame, using only the speed you have
obtained for the proton in the neutron frame
as well as the speed of the neutron seen from
the lab frame.

8. For those who like long and ugly calculations
only: Do everything from the beginning, but
use only the lab-frame to obtain the same
results. Do you see the advantage of using
4-vectors and change of frames?

Exercise 2B.4

It is necessary to read all of the main text of this
part to be able to do this exercise. An electron
and a positron (the anti particle of the electron
having the same mass) are approaching each other
with the same velocity v = 0.995 in opposite di-
rections in the laboratory frame. In the collision,
both particles are annihilated and two photons
are produced. One photon travels in the positive
x direction, the other in the negative x direction.
Use tables to find the mass of an electron.

1. What is the velocity of the positron in the
rest frame of the electron?

2. Write down the momenergy four-vectors
Pµ(electron) and Pµ(positron) of the
positron and the electron in the laboratory
frame (use numbers).

3. Use the transformation properties of four-
vectors to write down the momenergy four-
vectors P ′µ(electron) and P ′µ(positron) of the
positron and the electron in the rest frame
of the electron (again use numbers).

4. Show that the momenergy four-vector of a
photon traveling in the positive x-direction
can be written

P γ
µ = (E,E, 0, 0),

where E is the energy of the photon.

5. Use conservation of momenergy in the labo-
ratory frame to argue that the two photons
must have the same energy seen from the
laboratory frame.
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6. What is the energy of the photons and
thereby the wavelength in the laboratory
frame?

7. Use transformation properties for four-
vectors to show that the energy E ′ of a pho-
ton in a frame moving with velocity v with
respect to the laboratory frame (where the
photon has energy E) is

E ′ = Eγ(1− v)

8. What is the energy of each of the two pho-
tons in the rest frame of the electron?

9. Use the expression for E ′ in terms of E to
derive the relativistic Doppler formula

∆λ

λ
=

(√
1 + v

1− v
− 1

)

10. Show that the relativistic Doppler formula
is consistent with the normal Doppler for-
mula for low velocities. Hint: Make a Tay-
lor expansion of f(v) =

√
(1 + v)/(1− v) for

small v.
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