
AST1100 Lecture Notes

Part 2E
General Relativity:

Gravitational lensing

Questions to ponder before the lecture

1. Newton’s law of gravitation shows the dependence of the gravitational force on the mass. In
general relativity also light is affected by gravitation. But the photon is massless. Which
property of the photon do you think decides the gravitational effect?

2. General relativity says that light is affected by a gravitational field, but would a ray of light
also set up a gravitational field attracting nearby masses?

3. A solar eclipse in 1919 has become famous since the observation of stars close to the boundary
of the eclipsed Sun was used to show the validity of the general theory of relativity. In which
way do you think that the observation of these stars could be important for testing general
relativity? And why during a solar eclipse?
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AST1100 Lecture Notes

Part 2E
General Relativity:

Gravitational lensing

1 Motion of light in Schwarzschild
spacetime

There is one huge difference between Newton’s
and Einstein’s theory of gravity. In the Einstein
equation

Gµν = 8πTµν ,

energy (not only mass but total energy) enters in
the energy momentum tensor on the right hand
side. This means that not only mass but also pure
energy (for instance in the form of light or other
kinds of radiation) give rise to curvature of space-
time as described by the left side of the equation.
This means that light gives rise to a gravitational
field. In the same manner, light is also affected by
a gravitational field. We know that light follows a
spacetime path such that ds = 0. If the geometry
of spacetime is the Schwarzschild geometry, this
line will necessarily be different than if the geome-
try is Lorentz geometry. Hence the general theory
of relativity predicts light rays to be deflected in
a gravitational field.

In this part we will mostly use expressions that
we deduced in part 2D and apply these to light
instead of to matter. In a way, this part mostly in-
volves practicing what you have already learned
on examples involving light. For this reason, a
large part of the calculations are found in the ex-
ercises while the main text will be used for inter-
preting the results.

We will now look at the step-by-step motion of
a ray of light through Schwarzschild spacetime in
the same way as we did for a particle in the previ-

ous lecture. There is however one difference: We
cannot use the proper time τ as the time param-
eter as ∆τ = 0 always for light. We will instead
use steps dt measured on the far away clock.

In exercise 2E.1 you will show that the equations
for step-by-step motion of light in Schwarzschild
spacetime is given by

∆r =

±
(

1− 2M

r

)√
1−

(
1− 2M

r

)
(L/E)2

r2
∆t

(1)

r∆φ = ±L/E
r

(
1− 2M

r

)
∆t. (2)

These equations can again be used to describe
the trajectory (r, φ) of light as the far-away time
t advances.

We will use these equations to look at the speed of
light in various cases. First we will emit a beam
of light radially towards the center of the black
hole. This is purely radial motion so ∆φ = 0 and
the angular momentum is zero L = 0. Equation
1 then gives

vr =
dr

dt
= −

(
1− 2M

r

)
.

We see that the speed of light is not one as we
are used to. Surprise, surprise! Special relativity
was constructed based on the fact that the speed
of light is one for all observers. In general rel-
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ativity this is no longer true: We see here that
the speed of light as measured in Schwarzschild
coordinates (r, t), the coordinates of the far-away
observer, is different from one. And moreover as
r → 2M the speed of light goes to zero. Light
slows down to zero close to the horizon (for the
far-away observer), just as material particles do.

Now, this was measurements made by the far-
away observer who makes measurements based
on observations made by different local observers.
What speed of light does a shell observer on a
shell close to the horizon measure? Does he also
see that light slows down and eventually stops?
This was not the case for material particles, we
will now make the same calculations for light.

The shell observer measures the speed of the light
beam as it passes his shell. He makes the mea-
surement in a short time interval such that he can
be considered to be in a local inertial frame. Then
his geometry is Lorentz geometry

dτ 2 = dt2shell − dr2
shell

(you can show this last expression simply by in-
serting the expressions relating dr and drshell as
well as dt and dtshell into the Schwarzschild line
element) and he will necessarily measure

drshell

dtshell

= −1

We can thus change the principle of invariant
speed of light to: A local observer, an observer
who measures the speed of light directly, will al-
ways measure the speed of light to be one. The
far-away observer who bases his measurement on
the collection of observations from several differ-
ent local observers will see a different speed of
light.

In exercise 2E.2 you will calculate the speed of a
beam of light which moves tangentially.

2 Impact parameter

Figure 1: Defining the impact parameter.

To study the motion of light in a gravitational
field we need to define the impact parameter b.
The impact parameter is used in many fields of
physics and astrophysics, for instance to study
colliding particles. In figure 1 we see a large
central mass M (for instance a black hole) and
a small particle far away from the central mass
moving in any given direction. Draw a line pass-
ing through the particle going in the direction of
motion of the particle. Then draw another line
which is parallel to the first line but which passes
through the center of the black hole. The distance
between these two lines is called the impact pa-
rameter. It is important to note that the first line
is drawn on the basis of the movement of the par-
ticle when the particle is so far away that it has
not yet been influenced by the gravitational field.
We will soon see that this impact parameter will
decide the future motion of the photon.

Figure 2: The impact parameter expressed in terms of
angular momentum.

We can calculate the angular momentum of the
photon when it is still far away as

L = |~r × ~p| = rp sin θ = pb.

The angle θ is the angle between ~r pointing at the
particle from the center of the black hole and ~p
the momentum vector of the particle. The geom-
etry is shown in figure 2 explaining why we can
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write b = r sin θ. Thus, the impact parameter of
a particle can be written as the ratio between an-
gular and linear momentum

b =
L

p
.

For a photon, we have that p = E so that

b =
L

E
.

(valid for photons only). Using this, we can
rewrite equation (1) and (2) using the impact pa-
rameter as (check!)

dr

dt
= ±

(
1− 2M

r

)√
1−

(
1− 2M

r

)
b2

r2
(3)

rdφ

dt
= ± b

r

(
1− 2M

r

)
. (4)

In the exercises you will show that the equations
of motion for a photon can be written as

A = Bv2
r,shell + Veff(r)2,

where A = B = 1/b2 and

Veff(r) =
1

r

√(
1− 2M

r

)
.

We see again that we have an equation on the
same form as equation (4) in the previous lecture.
We know that we need to compare the value of
the constant A (which usually contains the en-
ergy E/m, but which this time contains only the
impact parameter) with the shape of the effec-
tive potential. For a material body we showed
in the previous lecture that it was the energy
E/m which appeared in the constant A and there-
fore it was the value of this energy which decided
whether the particle would move in an orbit, es-
cape to infinity or be swallowed by the black hole.
For the photon, we see that it is the impact pa-
rameter alone and not the energy which decides
its destiny.

Figure 3: The effective potential for light.

In figure 3 we see the effective potential for light.
The first thing which strikes us in this figure is
that the potential does not exhibit a minimum as
all the other potentials we have discussed so far.
The consequence is that light cannot go in a sta-
ble orbit. If 1/b2 is lower than the peak in the
figure, the light will approach the black hole, be
deflected in some direction and escape to infinity
(do you see why?). If 1/b2 is larger than the value
at the peak in the figure, light will be captured by
the black hole. In the exercises you will show that
the peak in the potential is located at r = 3M for
which 1/b2 = 1/(27M2).

Light which approaches the black hole with 1/b2

equal to the value of the potential at the peak
1/(27M2) will go in an unstable orbit at r = 3M .
For this reason r = 3M is called the light sphere.
All the stars around a black hole radiate light
in all possible directions with a huge range of
impact parameters. There will always be light
approaching the black hole with an impact pa-
rameter equal to the critical impact parameter
1/b2

crit = 1/(27M2) such that the light will orbit
the black hole at the light sphere. A shell ob-
server at the light sphere will see a ring around
the black hole with several copies of images of the
stars in the sky. The light will not stay in the light
sphere for very long: Staying at the peak of the
potential means being in an unstable orbit. Tiny
fluctuations in the impact parameter will make
the light either plunge into the black hole or es-
cape. Coincidences will decide. This is exactly
what we saw for material bodies approaching the
black hole with an energy such that it balanced
on the peak of the potential for a few revolutions
and then either plunged or escaped.
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3 Deflection of light

In figure 4 we see light approaching a star at
a large distance with an impact parameter such
that the light will pass the star, be deflected and
then escape to infinity. The question is with how
large an angle ∆φ the light is deflected. If the
light is significantly deflected by a star it would
mean that we cannot trust the position of objects
that we observe on the sky: If the light from dis-
tant galaxies is deflected by all the stars it passes
on the way to Earth, the original direction of the
light and hence of the galaxy would be lost. We
need to calculate how large the deflection is to
find out whether this could be a problem for as-
tronomical observations or not.

Figure 4: Deflection of light by a star. The dotted line is
the direction light would have taken if no deflection had
taken place.

Figure 5: Deflection of light by a star. Symmetry makes
the situation equal on either side of the point where the
distance between the light beam and the star is minimal
r = R and the radial velocity of the beam is zero.

In figure 5 we show the situation in detail: Light
with impact parameter b is approaching a star of
mass M . We have defined the φ coordinate such
that φ = 0 when the light is infinitely far away. If
light had not been deflected by the gravitational
field, it would continue in a straight line to infinity

at φ = π. But we know that the light is deflected
an angle ∆φ such that the light goes to infinity at
φ = π + ∆φ. We will now study light which has
an impact parameter b such that it passes the star
with radial shell velocity vr,shell equal to zero at a
distance R from the star (see figure 5). In order
to calculate the deflection ∆φ for this beam of
light we will use the equations of motion for light
in Schwarzschild geometry given by equations (1)
and (2). Dividing the two equations by each other
we find

dφ =
dr

r2

√
1
b2
− 1

r2

(
1− 2M

r

) .
We need to integrate this equation to obtain the
deflection ∆φ from the particle arrives at r =
∞, φ = 0 to r =∞, φ = π+ ∆φ. Because of sym-
metry, it is sufficient to find the deflection ∆φ/2
occurring during the trip from (r = ∞, φ = 0)
to (r = R, φ = π/2 + ∆φ/2) (see again figure
5). The symmetry of the problem tells us that
this deflection equals the deflection occurring dur-
ing the trip from (r = R, φ = π/2 + ∆φ/2) to
(r =∞, φ = π+ ∆φ). The geometry of the prob-
lem is detailed in figure 5. We therefore need to
perform the following integration (integrating the
previous equation)∫ π/2+∆φ/2

0

dφ =

∫ R

∞

dr

r2

√
1
b2
− 1

r2

(
1− 2M

r

) . (5)

You will perform this integral in exercise 2E.5.
Note that solving this integral is not just a test
of mathematical knowledge, it also needs a thor-
ough understanding of the general relativity we
have learned so far. The result you will show is

∆φ =
4M

R
. (6)

In exercise 2E.6 you will see how close to a star
light needs to pass for the deflection to be im-
portant. You will also show that light from stars
which pass close to the surface of the Sun will
be deflected significantly. Stars which we observe
in a direction close to the surface of the Sun will
thus be observed in the wrong position on the
sky. The stars will be shifted due to the deflec-
tion of light. This is a good test of the theory of
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Fact sheet: This illustration shows how gravitational lensing works. The
gravity of a large galaxy cluster is so strong that it bends, brightens and dis-
torts the light of a distant galaxy behind it. In this case observers on Earth see
two images of the same object. Note that in reality, the distant galaxy is much
farther away than it appears here. Gravitational lensing is an impressive astro-
nomical tool; it can be used to detect exoplanets, learn about distant galaxies
and galaxy clusters, and measure dark matter, dark energy and the age of the
universe. Astronomer Fritz Zwicky postulated in 1937 that gravitational light
bending could allow galaxy clusters to act as gravitational lenses. It was not
until 1979 that this exotic phenomenon was confirmed observationally with the
discovery of the ”Double Quasar” QSO 0957+561. The Norwegian astronomer
Sjur Refsdal made pioneering work on gravitational lensing and microlensing
in the 1960s, 70s and 80s. (Figure: NASA, ESA & L. Calcada)

general relativity: We now have a formula to pre-
dict exactly by how large angle the position of a
star on the sky will change when viewed close to
the surface of the Sun. The problem is that the
light from the Sun is so strong that we cannot
see stars which have a position on the sky close
to the Sun. The only possibility to observe these
stars is during a total solar eclipse. During a so-
lar eclipse in 1919, this effect was measured for
the first time: Stars which were seen close to the
surface of the Sun were measured to have shifted
their position with exactly the angle predicted by
general relativity. This was the discovery which
made Einstein famous.

4 Gravitational lensing

Figure 6: The source on the left (a quasar), the lens in
the middle (a cluster of galaxies) and the Earth on the
right receiving the radiation from the quasar from several
angles.

The gravitational deflection of light is used today
to study the most remote objects in the visible
universe. In figure 6 we show a typical situation.
A quasar (a black hole with gas falling into it pro-
ducing strong radiation at several wavelengths,

quasars are one of the most powerful radiation
sources in the universe) is located at a distance
dS and a cluster of galaxies with mass M is lo-
cated at distance dL. The indices S and L refer
to ’source’ and ’lens’. The quasar is the source of
light and the cluster of galaxies deflects this light
similar to an optical lens. For this reason we call
the cluster of galaxies for the ’lens’ and the effect
of light deflection is called gravitational lensing.

The limiting angle θem (see figure 6) is the an-
gle that the light emitted from the quasar needs
to have in order to reach Earth. Light emitted
with a smaller angle will be deflected too much,
light emitted with a larger angle will be deflected
too little. Only light with angle θem will be de-
flected in such a way that the light will reach us
and we will see the quasar. The figure shows only
a two dimensional plane, taking into account the
three dimensional geometry of the problem, light
emitted with an angle θem will reach us from all
direction the result being that we see the quasar
as a ring of light around the cluster (see figure 7).
We call this ring an Einstein ring. The angle θE
is the observed angular radius of the Einstein ring
(you find the angle both in figure 6 and 7 check
that you understand the relation between the two
figures). In the exercises, you will show that this
angle can be written as

θE =

√
4M(dS − dL)

dLdS
, (7)

which is called the lensing formula.
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Figure 7: The cluster of galaxies in the middle and the
Einstein ring being the lensed image of the quasar behind.
The angular radius of the ring is θE .

Figure 8: Detailed geometry of the situation in figure 6.

From spectroscopic measurements, the distances
dS and dL of the quasar and the cluster are nor-
mally known. The angular radius of the Einstein
ring can be measured by observations. Combining
these numbers, the lensing formula can be used
to find the mass of a cluster of galaxies. We re-
member from previous lectures that we can use
the virial theorem to find the mass of clusters of
galaxies. The mass estimates of clusters obtained
using the lensing formula is based on assumptions
very different from those used in the virial theo-
rem approach. Thus we have two independent
measurements of the mass of the cluster. These
two ways of measuring mass are in good agree-
ment taking into account the uncertainties in the
two methods. Both methods tell us that there
is far more dark than luminous matter in clusters
of galaxies being another confirmation of the exis-
tence of dark matter. To obtain an Einstein ring,
the quasar needs to be exactly behind the center
of the cluster of galaxy. Furthermore the cluster
needs to have a spherical mass distribution. This
is basically never the case, a complete Einstein
ring is very rarely observed. What we rather see
are small arcs around the cluster. By studying
these arcs combined with more advanced theory
of gravitational lensing, one can even infer the

distribution of mass in the cluster of galaxies.

Finally I will mention another important use of
gravitational lensing based on microlensing. The
idea of microlensing is based on the following ob-
servation: The lens deflects light from the source
towards Earth, light which otherwise would not
have reached us. The lensing effect increases the
total amount of photons from the quasar arriving
to the Earth. Gravitational lensing does not only
happen at the scale of clusters of galaxies. Even
if an object passes in front of a star, gravitational
lensing occurs. In this case, the Einstein ring is
so small that it cannot be resolved on the sky.
Only one effect of the lensing is directly observ-
able: The fact that more light is directed towards
us. The flux we receive from the star increases
when the object is in front of the star. This is
called microlensing.

Microlensing has been used to look for ’lumps’ of
dark matter in the Milky Way, so-called MAssive
Compact Halo Objects (MACHO). If these MA-
CHOs, lumps of dark matter orbiting the center of
the Milky way, exist they should cause microlens-
ing of stars in the LMC and SMC (Large and
Small Magellanic Clouds). The LMC and SMC
are dwarf galaxies orbiting the center of the Milky
Way. The MACHOs are expected to have orbits
between us and the Magellanic clouds. When the
MACHOs pass in front of stars in the Magellanic
clouds microlensing will increase the flux from
these stars for a few days or weeks. An exten-
sive search program is running looking for these
microlensing events in the Magellanic clouds in
order to get closer to the solution of the dark mat-
ter mystery.
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Fact sheet: Believe it or not, this is a real picture of the sky, taken with the
Hubble Space Telescope. The gravity of an unusually massive galaxy (the fuzzy
yellow object in the middle) has gravitationally distorted the light from a much
more distant blue galaxy. More typically, such light bending results in two dis-
cernible images of the distant galaxy, but here the lens alignment is so precise
that the background galaxy is distorted into nearly a complete Einstein ring!
The blue galaxy’s redshift is approximately 2.4. This means we see it as it was
only about 3 billion years after the Big Bang.(Figure: ESA/Hubble & NASA)

5 Exercises

Exercise 2E.1 The goal of this exercise is to
show equations 1 and 2 for the step-by-step mo-
tion of a ray of light. It is necessary to read all
of section 1 before doing this exercise. You get
three hints:

1. You can start from equations (2) and (3) in
part 2D.

2. You can use the general relativistic expres-
sion for energy to substitute dτ with dt.

3. When you have obtained expressions with
dt instead of dτ , there is one last question:
what is the mass of a photon?

Now check that you arrived exactly at equations
1 and 2.

Exercise 2E.2

It is necessary to read all of section 1 before doing
this exercise. In this exercise you will show that
the speed of a light beam (measured from the far-
away obsever) which moves tangentially (∆r = 0)
is given by

vφ =

√(
1− 2M

r

)
.

In the following you will need equations 1 and 2:

1. Remembering the lecture on celestial me-
chanics, write the equation for tangential
speed vθ expressed by the distance r, a tiny
movement ∆φ and a tiny time step dt.

2. Find an expression for L
E

for an object which
moves tangentially (with no radial speed
component)

3. Combine these two results and prove the
equation above for vφ.

4. Does light move faster when it moves radially
or tangetially? (measured from the far-away
obsever)

5. What velocity will a shell observer situated
at the same shell as the light beam measure?

Exercise 2E.3

You need to read section 2 before embarking on
this exercise. Use the equations of motion for a
photon (equation 3) to show that the radial light
speed drshell/dtshell observed by the shell observer
can be written as

1

b2

(
drshell

dtshell

)2

=
1

b2
−
(
1− 2M

r

)
r2

. (8)

Look at equation (4) and (7) from part 2D and
show that we can define an effective potential for
light (based on the shell velocity rather than the
velocity dr/dt) as

V (r) =

√(
1− 2M

r

)
r2

.

Exercise 2E.4

You need to read section 2 before embarking on
this exercise.

1. By taking the derivatives of the effective po-
tential for light, show that the potential has
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only one extremal point which is a maxi-
mum. Explain why this means that there
are no stable orbits for light.

2. Show that this maximum occurs at r = 3M
and explain why we call this radius the light
sphere.

3. Show that the criterion deciding whether
light will escape a black hole or plunge into
it is given by the critical impact parameter
as

bcrit = 3
√

3M ≈ 5.2M

Exercise 2E.5

It is necessary to read section 3 before doing this
exercise. Here we will solve the integral in equa-
tion 5 to obtain equation 6 for the deflection of a
light beam from a gravitational field.

1. To make the integration easier we will make
the substitution u = R/r. Show that you
get:∫ π/2+∆φ/2

0

dφ =
1

R

∫ 0

1

du√
1
b2
− u2

R2

(
1− 2M

R
u
) .

2. Before integrating there is one more informa-
tion which we have not used: The fact that
we know the impact parameter b. What is
the radial shell velocity at r = R?

3. In problem 2E.3 you found an expression for
the radial shell velocity of light (equation 8)
as a function of distance and impact param-
eter. Setting the radial velocity to the value
you found in the previous question should
give you:

1

b2
=

1

R2

(
1− 2M

R

)
, (9)

4. Use this result to show that

π

2
+

∆φ

2
=

∫ 1

0

du√(
1− 2M

R

)
− u2

(
1− 2M

R
u
) .

5. Argue why R � 2M for a star (check that
this must be so for the Sun: find the radius
of the Sun expressed in Solar masses. Also

argue why R must be larger than the radius
of the star.

6. We now define x = M/R. You just argued
why x� 1 and we can therefore try to Tay-
lor expand the integrand in the small value
x. Show that the integrand now can be writ-
ten as

f(x) = (1−2x−u2(1−2xu))−1/2 ≈ f(0)+f ′(0)x

7. Show that we get

π

2
+

∆φ

2

=

∫ 0

1

du√
1− u2

+

+
M

R

∫ 0

1

[
1

(1− u2)3/2
− u3

(1− u2)3/2

]
du.

8. Look up the solution to these in-
tegrals in tables (or use http://

www.wolframalpha.com/calculators/

integral-calculator/)

9. Show that we get

∆φ

2
=

2M

R
,

and thereby the expression in equation 6.

Exercise 2E.6

It is necessary to read section 3 before doing this
exercise. In 1919 a solar eclipse gave one of the
first opportunities to check the validity of Ein-
stein’s theory. Stars which appear very close to
the Sun can normally not be seen due to the much
stronger light from the Sun. Only light from the
stars which appear very close to the Sun on the
sky would be significantly affected by the gravi-
tational field of the Sun. The only possibility we
have to see these stars is during a solar eclipse.
The light from the Sun is blocked and the stars
can be seen. If the light from these stars pass close
to the surface of the Sun they will be deflected by
the solar gravitational field. This deflection will
shift the position of the star on the sky.

1. Draw the situation showing why the appar-
ent position of such a star is shifted and
whether it will be shifted towards the Sun
or away from the Sun. Then show that
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the angular shift on the sky is given by
∆φ = 4M/R (you can assume that you al-
ready know that light will be deflected by
this angle, but it is not obvious that this
equals the apparent angular shift on the sky,
this is what you need to show by the fig-
ure/geometry). You will need a good draw-
ing and some geometrical consideration to
arrive at the answer.

2. Calculate the angular shift in position in arc
seconds assuming that the light passes very
close to the solar surface.

3. Repeat the previous calculation for the
Moon. Is the same effect measurable for
stars close to the Moon? (Here you need
the mass of the Moon)

Exercise 2E.7

It is necessary to read section 4 before doing this
exercise. In this exercise, we will deduce the lens-
ing formula (equation 7). Go back and read what
the different symbols in the lensing formula mean.
Also go and check that you understand figures 6
and 7 well.

1. First use the fact that R�M to show that
light with impact parameter b will pass the
cluster at a distance R ≈ b from the center of
the cluster at the closest point. (Hint: equa-
tion 9). This is the reason why the closest
distance of the light beam to the cluster is
given by b in figure 6.

2. Show that the deflection angle ∆φ is given
by

∆φ ≈ 4M

b
.

3. Only light emitted with an angle θem will
reach Earth. We just found out that this
light will be deflected an angle 4M/b and
will reach Earth in an angle θE. In figure 8
we show the geometry tin more detail. Make
sure that you understand the figure and why
all the different angels can be written the
way they are written in this figure. Use the
figure to show that

θem + θE =
4M

b
.

4. We will assume that the distances dL and
dS as well as dL − dS are much larger than
the distance between the center of the clus-
ter and the light beam at the closest given
by b. If this is the case (as it always is in
this situation), then the angles θE and θem

are so small that we can use the small angle
formula. Show that

θem ≈
b

dS − dL
, θE ≈

b

dL
.

5. Now you have enough information to show
the lensing formula

θE =

√
4M(dS − dL)

dLdS
,

6. An Einstein ring is observed around a clus-
ter of galaxies. The radius of the Einstein
ring is 3′. The distance to the cluster has
been estimated to be 109 light years. Using
spectroscopy on the light from the Einstein
ring it is recognized as a quasar and the dis-
tance to the quasar is estimated to be 1010

light years. What is the mass of the cluster
of galaxies expressed in solar masses?
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