AST1100 Lecture Notes

Part 3B
Stellar birth

Questions to ponder before the lecture

1. A star starts its life as a huge cold gas cloud which contracts. But not all gas clouds will contract
to form a star. Which conditions do you think are necessary for a gas cloud to form a star?

2. How large and how cold do you think a typical star forming gas cloud could be at the beginning
of the contraction process?

3. A star forming gas cloud becomes very hot and starts shining even before nuclear reactions
start? Why? Where does the energy come from?




AST1100 Lecture Notes

Part 3B
Stellar birth

1 The virial theorem

We have seen that we can solve the equation of
motion for the two-body problem analytically and
thus obtain expressions describing the future mo-
tion of these two bodies. Adding just one body to
this problem, the situation is considerably more
difficult. There is no general analytic solution to
the three-body problem. In astrophysics we are
often interested in systems of millions or billions
of bodies. For instance, a galaxy may have more
than 2 x 10! stars. To describe exactly the mo-
tion of stars in galaxies we would need to solve
the 2 x 10''-body problem. This is of course im-
possible, but we can still make some simple con-
siderations about the general properties of such
a system. We have already encountered one such
general property, the fact that the center of mass
maintains a constant velocity in the absence of
external forces. A second law governing a large
system is the wvirial theorem. The virial theorem
has a wide range of applications in astrophysics,
from the formation of stars (in which case the
bodies of the system are the atoms of the gas)
to the formation of the largest structures in the
universe, the clusters of galaxies.

The full derivation of the virial theorem is not a
part of this course, but is given below (optional)
for those who are interested. The virial theorem
is a relation between the total kinetic energy and
the total potential energy of a system in equilib-
rium. It says:

The Virial Theorem

where (K) is the mean kinetic energy of the sys-
tem and (U) is the mean potential energy of the
system. The mean value here can be taken over
all the bodies in the system. We will not go into
details about the condition for when a system is
in equilibrium. The equilibrium condition usu-
ally applies to systems which are bound. In this
course it will be clear from the context when the
virial theorem is applicable.

1.1 OPTIONAL: Deducing the virial the-
orem

Figure 1: The N-body system.

We will consider a system of N particles (or bodies) with
mass m;, position vector 7;, velocity vector ¥; and momen-
tum p; = m;¥; (see figure 1). We will take the origin of our
system to be the center of mass for reasons which we will see at
the end. For this system, the total moment of inertia is given
by (remember from your mechanics classes?)

N N
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In mechanics one usually takes the moment of intertia with
respect to a given axis, here we take the moment of intertia
with respect to the origin. The time derivative of the moment



of inertia is called the wvirial,

N

To deduce the virial theorem we need to take the time deriva-
tive of the virial
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where Newton’s second law gives
dp;/dt = F;
F, being the sum of all forces acting on particle 3.
write this as
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where the last term may be expressed in terms of the total
kinetic energy of the system K =), 1/2m;v?

We may

N
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We will now try to simplify the first term on the right hand
side. If no external forces work on the system and the only
force which acts on a given particle is the gravitational force
from all the other particles, we can write

where f;j is the gravitational force on particle ¢ from particle
7. The last sum is a sum over all particles j except particle
j = i. The double sum thus expresses a sum over all possible
combinations of two particles ¢ and j, except the combination
where ¢ = j. We may view this as an N x N matrix where
we sum over all elements 75 in the matrix, except the diagonal
elements ii. We divide this sum into two parts separated by
the diagonal (see figure 2),
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Figure 2: The matrix visualizing the summation.

We now rewrite the sum B as
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where the sums have been interchanged (you can easily con-
vince yourself that this is the same sum by looking at the ma-
trix in figure 2). We can also interchange the name of the
indices ¢ and j (this is just renaming the indices, nothing else)
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From Newton’s third law, we have ﬁ-j =

Totally, we have,
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Did you follow all steps so far? Here, the force ﬁj is nothing

else than the well known gravitational force,
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where r;; = |¥; —7;|. Note that the force points in the direction
of particle j. Inserting this into equation (2) gives
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where Uj; is the gravitational potential energy between particle
¢ and j. This sum is the total potential energy of the system
(do you see this?), the sum of the potential between all pos-
sible pairs of particles (note that one pair of particle should
be counted only once, this is why there is a j < 7 in the latter
sum). Thus, we have obtained an expressions for the two terms
in equation (1) expressing the time derivative of the virial

aQ
dt

Finally we will use the equilibrium condition. We will take the
mean value of this expression over a long period of time,

(29)
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For the term on the left hand side, we find

i L[ a1~ i Q(r) = Q(0)
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= (U) +2(K),

where

=0,

for a system in equilibrium. The last equality here is the def-
inition of the equilibrium state in which the system needs to
be for the virial theorem to hold: the mean value of the time
derivative of the virial must go to zero. In order for this to be
fulfilled, the quantities Q(7) and Q(0) need to have finite val-
ues. If, for instance, the system is bound and the particles go
in regular orbits, the virial @ will oscillate regularly between
two finite values. In this case, the last expression above will go



to zero as 7 — oco. If @ had not been limited, which could hap-
pen for a system which is not bound, then @ could attain large
values with time and it would not be clear that this expression
would approach zero as 7 — oco.

Using the above equation and the equilibrium condition we see
that a bound system in equilibrium obeys

The Virial Theorem

In order to obtain (K) and (U) we need to take the average of
the kinetic and potential energy over a long time period. In the
case of the solar system, this is easy: The orbits are periodic so
it suffices to take the average over the longest orbital period.
Please note that we have done the calculations in the center
of mass frame. If we did it from a different frame of reference,
our system of particles would move at a constant speed with
respect to us and the distance to the system would increase
indefinitely. All the distances would grow to infinity and the
time derivative of the virial would not go to zero.

Averaging a system over a long time period may be equal to
averaging the system over the ensemble. This is the ergodic
hypothesis. Mathematically it can be written as
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If a bound system has a huge number of particles (N — c0),
it is equivalent to seeing the system over a long period of time
(T — 00). Thus, we can apply the virial theorem to a galaxy
by taking the mean of the kinetic and potential energy of all
stars in the galaxy in a given instant. According to the ergodic
hypothesis, it is not necessary in this case to take the mean
of the kinetic and potential energy over a very long period of
time. Since the time scales for changes for such huge systems is
very long, it is much easier to simply take the average over all
stars. The ergodic theorem thus says that we can replace the
mean value from being a time average to be an average over
all bodies in the system.

2 Applying the virial theorem to a
collapsing cloud of gas

To show the power of the virial theorem we will
apply it to a system with very many particles and
show how properties of this complex system may
be calculated. In the exercises you will find two
more examples of applications of the virial theo-
rem to problems of a very different nature.

Before the advent of the theory of relativity, the
source of the energy that powers stars was sought.
One suggestion was that the stellar energy was

gravitational energy that is being radiated away
as the cloud of gas retracts. A star starts out as
a huge cloud of gas which starts collapsing due
to its own force of gravity. Gas falls towards the
center of the cloud and releases gravitational en-
ergy in the form of electromagnetic radiation as
it falls. As long as the cloud keeps collapsing,
energy is radiated away and could possibly ex-
plain the energy production in stars. To check
if this is a plausible explanation, we will need to
calculate the total energy, kinetic plus potential,
that the star could possibly radiate away during
its collapse and compare this with the energy out-
put from the Sun. To calculate the total energy of
such a cloud, we need to invoke the virial theorem.
A collapsing cloud of gas is a bound many-body
system and the virial theorem should apply.

We will assume that the cloud is spherically sym-
metric with radius R and mass M. We need to
calculate the total energy, kinetic plus potential,
of such a cloud. Thanks to the virial theorem,
it suffices to calculate only the potential energy.
The total energy is given by

1 1

where K is kinetic energy and U is potential en-
ergy. Using the virial theorem K = —U/2, we
replace K by U and obtain an expression for the
total energy given only in terms of the total po-
tential energy.

We see that if we are able to calculate the total po-
tential energy of the cloud, we would also obtain
the total mechanical energy (kinetic+potential).
To obtain the total potential energy, we will start
by considering the potential du of a tiny particle
of mass dm inside the cloud at a distance r from
the center. We have learned (see the lectures on
dark matter) that the gravitational forces from a
spherical shell of matter add to zero inside this
shell. Thus we need only to consider the gravita-
tional attraction on the mass dm from the sphere
of matter inside the position of the mass. This
is a sphere of radius r with mass M(r). Being a
sphere, Newton’s law of gravitation applies as if
it were a point mass located at the center with
mass M (r). Thus the potential energy between
the particle dm and the rest of the cloud (the part



inside the particle) is
M(r)dm
—

du = -G

We integrate this equation over all masses dm in
the shell of thickness dr at distance r from the
center. We assume that the mass density in the
shell is given by p(r). We then obtain the poten-
tial energy dU between the shell and the spherical
mass M (r) inside the shell.

M(r)47rr2p(r)d7"'

U = -G

To obtain the total potential energy U, we need
to integrate this expression over all radii r out to
the edge of the cloud at r = R,

U= —47TG/0 M(r)p(r)rdr.

We would generally need to know the density p(r)
in order to obtain M(r) and to integrate this
equation. The scope here is to obtain an approxi-
mate expression giving us an idea about the mass
and radius dependence of the energy and to ob-
tain an order of magnitude estimate. For this
purpose, we assume that the density is constant
with a value equal to the mean density of the

cloud,
M
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This gives M(r) = (4/3)7r®p and we can inte-
grate the equation

U= —4nG (@/3%)2 (4/3)7T/OR rdr,

From the virial theorem, the total energy is then
(check!)
1 3GM?
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This is the total energy of a cloud of gas with
mass M and radius R. The energy that the Sun
has radiated away during its lifetime can be writ-
ten as

Eradiated = E(blgR) - E(RQ)a

where 'big R’ refers to the radius of the cloud
when it started collapsing and R is the current
radius of the Sun. The total energy of the cloud
goes as < 1/R, so for the initial cloud this quan-
tity can be approximated to zero. Thus we are
left with

3GM2
radiated — 10R@ )

where M is the mass of the Sun. Inserting num-
bers for the mass and radius of the Sun we obtain
Eradinted ~ 1.1 x 10*J. Assuming that the Sun
has been radiating with the same luminosity Lg
(dE/dt) during its full lifetime, we can calculate
the age of the Sun,

At = Eradiated ~ 107years.
Lo

If gravitational collapse was indeed the source of
solar energy, the Sun couldn’t have lived longer
than about 10 millions years. Several geological
findings have shown that the Earth and there-
fore also the Sun has existed for about 500 times
as long. Thus using the virial theorem we have
shown (using some assumptions) that gravita-
tional collapse cannot satisfactory explain the
generation of energy in the Sun.



| Y)Yl Fritz Zwicky was the first to use the virial theorem to infer the
existence of unseen matter, which he referred to as "dunkle Materie” dark

our own galaxy. (Figure: J. Misti)

matter. He used the theorem in 1933 to calculate the mass of the Coma clus-
ter of galaxies (aka. Abell 1656) and found that it was much larger than the
mass expected from the luminous matter. The cluster contains more than one
thousand galaxies, most of them ellipticals. It lies in the constellation of Coma
Berenices, at a mean distance of roughly 100 Mpc. The central region is dom-
inated by two giant elliptical galaxies, which are easily spotted in the above
image. The bright blue-white source above the center is a foreground star in

3 The Jeans criterion

A star forms from a cloud of gas, a so-called
molecular cloud, undergoing gravitational col-
lapse. These molecular clouds consist mainly of
atomic and molecular hydrogen, but also contain
dust and even more complex organic molecules.
The question is whether a cloud will start col-
lapsing or not. The virial theorem tells us that
the condition for stability is 2K + U = 0. If the
kinetic energy is large compared to the potential
energy (and using the virial theorem we see that
we need to compare 2K to U), the system does
not stabilize, the gas pressure is larger than the
gravitational forces and the cloud expands. On
the other hand, if the potential energy is dom-
inating, the cloud is gravitationally bound and
undergoes collapse. For a cloud to collapse we
thus have the condition (why?),

2K < |U|.

We will now use the expression for the total po-
tential energy of a gas cloud which we deduced to
be (equation 3),

3G M?
5R
where M is the mass of the cloud and R is the

radius. From thermodynamics, we learn that the
kinetic energy of a gas is given by

K= ;NkT,

U=-—

where N is the number of particles in the gas, k
is the Boltzmann constant and 7T is the tempera-
ture. As we did in earlier lectures, we can write

N as

N=—" 4
i (4)

where m = pmpy is the mean mass per gas par-
ticle. We repeat the definition of mean molecular
weight

m

H=—

mpg
This is simply the mean mass per particle mea-
sured in units of the hydrogen mass my (check
now that expression 4 for N makes sense to you!
This is important!). So the condition 2K < |U]|

becomes simply

3MET - 3G M?
wmgg 5R

We can write this as a criterion on the mass

kT
> R

M > .
G,LLTTLH

This minimum mass is called the Jeans mass M
which we can write in terms of the mean density
of the cloud as

The Jeans mass
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where we used p = M/((4/3)7R?) assuming con-
stant density throughout the cloud. Thus, clouds
with a larger mass than the Jeans mass M > M
will have 2K < |U| and therefore start a gravita-
tional collapse. We can also write this in terms of
a criterion on the radius of the cloud. Using again
the expression for the density we have the Jeans
length (check again that you can deduce this ex-
pression from the expression above).




The Jeans length
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A cloud with a larger radius than the Jeans length
R > Rj; will undergo gravitational collapse. The
Jeans criterion for the collapse of a cloud is a good
approximation in the absence of rotation, turbu-
lence and magnetic fields. In reality however, all
these factors do contribute and far more compli-
cated considerations are needed in order to calcu-
late the exact criterion.

The collapsing cloud will initially be in free fall,
a period when the photons generated by the con-
verted potential energy are radiated away without
heating the cloud (the density of the cloud is so
low that the photons can easily escape without
colliding with the atoms/molecules in the gas).
The initial temperature of the cloud of about
T = 10 — 100 K will not increase. After about
one million years, the density of the cloud has
increased and the photons cannot easily escape.
They start heating the cloud and potential energy
is now radiated away as thermal radiation. In the
beginning of this part, we made an approximate
calculation of the time it would take the Sun to
collapse to its present size assuming a constant
luminosity. We found a collapse time of about 10
million years. Proper calculations show that this
process would take about 40 million years for a
star similar to the Sun. The contracting star is
called a protostar.

When the core of the collapsing protostar has
reached sufficiently high temperatures, thermonu-
clear fusion begins in the center. The luminosity
starts to get dominated by the energy produced
by nuclear fusion rather than converted potential
energy from the gravitational collapse. The pro-
tostar keeps contracting until hydrostatic equilib-
rium is reached and the star has entered the main
sequence.



A close-up of one of the famous ”Pillars of Creation” in the Eagle
Nebula (M16), a nearby star-forming region some 2000 pc away in the constel-
lation Serpens. This pillar of cool interstellar hydrogen gas and dust is roughly
4 light-years long and protrudes from the interior wall of a dark molecular
cloud. As it is slowly eroded away by strong ultraviolet light from nearby stars,
small globules of even denser gas buried within the pillar are uncovered. These
globules are most easily seen at the top of the pillar. They are dense enough
to collapse under their own gravity, forming young stars and possibly plane-
tary systems. This color image is constructed from three separate images taken
through filters specially designed to isolate the light from different gases. Red
shows emission from singly-ionized sulfur atoms, green shows emission from
hydrogen, and blue shows light emitted by doubly-ionized oxygen atoms. (Fig-

ure: NASA, ESA, STScl, J. Hester and P. Scowen)

4 Exercises

Exercise 3B.1

In a way we can look at the virial theorem as a
generalization of Kepler’s third law to a many-
body system. Show that for the two-body prob-
lem, the virial theorem is identical to Kepler’s
third law in the Newtonian form (as deduced in
the exercises in part 1B). Assume circular orbits.
Start with the virial theorem, insert expressions
for the energies and show Kepler’s third law. (You
won’t get more help here. .. ).

Exercise 3B.2

Fritz Zwicky was the first to note that there is
some missing matter in the universe. In 1933,
several years before the discovery of the flat ro-
tation curves in the galaxies, he used the virial
theorem to calculate the mass of galaxies in the
Coma Cluster. A cluster of galaxies is a cluster of
a few hundred galaxies orbiting a common center
of mass. The Coma Cluster is one of our neigh-
bouring clusters of galaxies. He found that the
mass of the Coma Cluster calculated using the
virial theorem was much larger than the mass ex-
pected from the visible luminous matter. In this
problem we will try to follow his example and esti-
mate the mass of galaxies in a cluster of galaxies.
We will consider a simulated cluster of about 100
galaxies. We will assume that the cluster consists
of these 100 brightest galaxies and assume that
the remaining galaxies are too small to affect our
calculations significantly.

it

4.

Looking in the telescope we see that the clus-
ter is spherical, the galaxies are evenly dis-
tributed inside a spherical volume. The dis-
tance to the cluster is 85 Mpc. You observe
the radius of the cluster to be 32’. What is
the radius of the cluster in Mpc?

. All galaxies in the cluster appear to be very

similar to the Milky Way, both in the num-
ber of stars and the type of stars. The galax-
ies look so similar to each other that we can
assume that all the galaxies have the same
mass m. We know that the Milky Way has
about 2 x 10 stars. Assuming that the
mean mass of a star equals the mass of the
Sun, what is the estimated total luminous
mass m of these galaxies?

. Use the virial theorem to show that the mass

m of a galaxy in the cluster can be written

as .
e Dby
e = :
G Zj>i 1/r;

where r;; is the distance between galaxy ¢
and galaxy j and v; is the velocity of galaxy
1 with respect to the center of mass.

You will find a file with data for each of the
galaxies here:

http://www. uio.no/studier /emner/
matnat/astro/AST1100/
undervisningsmateriale/
undervisningsmateriale2016/
verktoy—og—data—for—oppgavene
/galaxies . txt


http://www.uio.no/studier/emner/matnat/astro/AST1100/undervisningsmateriale/undervisningsmateriale2016/verktoy-og-data-for-oppgavene/galaxies.txt

The first column in the file is the observed
angular distance (in arcminutes) from the
center of the cluster along an x-axis. The
second column in the file is the observed an-
gular distance (in arcminutes) from the cen-
ter of the cluster along an y-axis. (the x-
y coordinate system is chosen with an arbi-
trary orientation on the plane of observation
(which is perpendicular to the line of sight)).
The third column is the measured distance to
the galaxy (from Earth) in Mpc. The fourth
column is the position of the spectral line at
21.2 cm for the given galaxy in units of m.

(a) Using these data, what is the radial ve-
locity of the cluster with respect to us?
Remember that the velocity of a galaxy
can be written as

v(gal) = v(cluster) + v(rel),

where v(gal) is the total velocity of the
galaxy with respect to us, v(cluster) is
the velocity of the cluster (of the cen-
ter of mass of the cluster) with respect
to us and wv(rel) is the relative velocity
of a galaxy with respect to the center of
mass of the cluster. The relative veloci-
ties with respect to the center of mass
are random, so for a large number of
galaxies the mean

iy
— Zvi(rel) —0
iy

goes to zero.

(b) Make a plot showing how this cluster ap-
pears in the telescope: draw the x-y axes
(using arcminutes as units on the axes)
and make a dot at the position for each
galaxy. Remember that in Python you
can plot for instance a circle at each data
BN By usie pliob (o ysigine

(¢) Use these data and the expression above
for the mass of a galaxy from the virial
theorem to obtain a minimum estimate
of the total mass of a galaxy in the clus-
ter. How does it compare to the esti-
mate you obtained for luminous matter
above? Hint 1: To make the double

sum in Python you can construct two
FOR-loops, one over the index ¢ and one
over the index j. Inside the two FOR-
loops, you add the expression inside the
sum for indices 7 and j to the final result.
Hint 2: To find the distance between
two galaxies ¢ and j, it is convenient to
find the z, y and z coordinates of each
galaxy in meters.

(d) Your measured velocities are based on
the Doppler effect and are therefore ra-
dial velocities. Because the inclinations
of the velocities with the line of sight is
not 90°, your estimate is a minimum es-
timate of the mass. We will now use the
fact that you have many galaxies and
that you know that the orientation is
random to get a more exact estimate.
As a first step you will need to find
the mean of sin?i (where i is inclina-
tion) taken over many galaxies with ran-
dom orientations: What is the expected
mean value taken over many galaxies of
the expression sin®i? We assume that
the inclination is random (with a uni-
form distribution). Remember that the
mean value of a function f(x) is defined
statistically by

1 leae
e

where P(x) is the statistical distribu-
tion, i.e. the probability of having a
value . The denominator here is to
ensure that the integral over the distri-
bution P(z) is 1 as it needs to be (see
part 1A). In this case, the distribution is
uniform, meaning that there is an equal
probability for getting any value of the
inclination i. We may thus set P(x) = 1.
The integration in this general expres-
sion is done over all possible values of
a0

(e) Can you use this to obtain a more accu-
rate estimate of the mass?



Exercise 3B.3

A Giant Molecular Cloud (GMC) has typically a
temperature of T'= 10 K and a density of about
p=3x10"" kg/m®. A GMC has been observed
at a distance of r = 200 pc. It’s angular exten-
sion on the sky is 3.5'. Assume the cloud to be
spherical with uniform density.

1. What is the actual radius of the cloud?
2. What is the mass of the cloud?

3. Is the mass larger than the Jeans mass? Is
the cloud about to collapse and form a pro-
tostar?

4. A supernova explodes in the vicinity of the
star emitting a pressure wave which passes
through the cloud. If an external pressure is

10

pushing the cloud together, could this pos-
sibly lead to a decrease in the minimum
mass required for collapse (give arguments in
terms of K and U)? Argue why a decrease
in minimum mass is more probable than an
increase. (Hint: does K really increase for
all particles when you compress the cloud?).

. Could the supernova thus have contributed

to the collapse of a cloud which has a mass
less than the Jeans mass?

. The galaxy has a fairly uniform distribution

of hydrogen in the galactic disc. If a pressure
wave is moving around the center of the disc
in a spiral like shape, would this explain why

we observe galaxies as spirals and not as a
disc?
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