
Satellite project, AST 1100

5 Part 5: Launching the satellite mission

Having now written software making it possible for the satellite to orient it-
self, we will launch the satellite. You have (hopefully) simulated the planned
trajectory and prepared in detail for every eventuality. Now your task is to en-
sure the actual satellite mission goes according to the plan. Before proceeding,
you should now have calculated the total fuel consume expected to reach your
destination and reported this number to your group teacher.

5.1 Launching the actual satellite

You now have a satisfactory simulated satellite trajectory. Launching the satel-
lite “for real” is done using the AST1100SolarSystem.sendSatellite function,
which takes as input a text file containing instructions.

Due to various factors (such as imprecise knowledge of planet positions,
masses and even unknown objects in the solar system) and since the earlier
simulation was done using the Euler-Cromer method, the actual trajectory will
always deviate from your calculation. However, since we have fitted cameras to
the satellite, we can use these mid-mission to orient it and compute its position
relative to the planets in the system. The approach you should use, which is
illustrated in Fig. 1, is the following:

(i) Launch the satellite with the same initial conditions as in your simulation.

(iii) Just before your first planned boost, orient the satellite using the software
you developed in part 3 (the first time you use it, you will need the in-
structions given in section 5.2 at the end here). In this way you obtain the
actual position and velocity of the satellite before the boost is performed.

(iv) You will see that there is a (hopefully) small deviation from your calculated
satellite position and velocity at this point. You therefore need to go back
to your calculations of the satellite trajectory and change the position and
velocity just before the boost with the actual position and velocity. Rerun
your calculation from this point on. Determine based on this whether
changes are needed in the upcoming boost in order to achieve the planned
close encounter with the target planet.

(v) Repeat steps (ii) to (iv) until you, hopefully, have a satellite–planet ren-
dezvous.

Along the trajectory you should take pictures in the direction of the target
planet at approporiate intervals. For the launch, note that the position you

1



Figure 1: Simulated (dotted) and actual trajectory of the satellite. At the points
in the real trajectory marked by black squares, pictures are taken and analyzed
in an effort to orientate the satellite in space. Since this gives us the exact
position of the satellite, we may next perform a simulation from this point on
to the next time we perform the orientation operation. Please note that your
trajectory and resulting orbit may look (a lot) more complicated.

specify as the launch position needs to be a point at the surface of your home
planet. If you have made a mistake in calculating the position of the surface of
the planet and try to launch away from the surface, the program will terminate
and tell you that you are too far away, aswell as the maximum allowed distance.

Exercise 5.1.1: We denote the resolution of the satellite camera by P pixels × P pixels,
and its field of view by F ◦×F ◦. We let R denote the radius of the target
planet. Show that the distance from the planet, L, must be

L .
RP

F

in order for it to show up as more than a single pixel in the image. For
our satellite camera, P ≈ 2000, while F = 70◦. (Hint: Compute first
the angular size of a single pixel in the image, then use the small-angle
approximation for tan θ to express θ in terms of R and L.)

Hints :

• The sendSatellite function takes as input the file name of a text-file
containing instructions. The possible instructions in the text file are

(i) launch takes the following arguments: (1) A time (often this will be
t0 = 0, but any time is accepted); (2, 3) initial x-, and y-coordinates
of the satellite; (4, 5) initial launch vx [AU/Yr] and vy [AU/Yr] rel-
ative to your home planet ; (6) the total amount of fuel you have
calculated [kg] for the whole trip; (7) the constant dp

dt [kg ∗m/s2] of
one box of your rocket engine, that you calculated in part 1; (8) the
number of boxes used in your rocket engine; and (9) the number of
particles pr. sec that leaves 1 box.

2



(ii) boost takes the following arguments: (1) The time for the boost; (2,
3) change of velocity vector, ∆vx [AU/Yr] and ∆vy [AU/Yr].

(iii) picture : A time (1) and direction is needed. The direction is given
in terms of a θ (2) and φ (3) (spherical polar coordinates) and an
up-direction (4, 5, 6). The up-direction is given as a 3D vector.1

(iv) video : There are 2 ways of creating a video. You can either (A) make
the camera focus on a planet of your choice (it’s important to choose
the right planet since a planet very far away will not be visible). For
this option 2 lines are needed. First [video time1 planetToWatch]
and on another line [video time2 planetToWatch] Or you can (B)
choose starting angles and end angles and make the camera turn as
you please. The command for this option is [video time1 θ1 φ1] and
then on another line [video time2 θ1 φ2]. Only one video can be
created for one command file. The video will be output as an xml
file to be uploaded by MCAst.

The commands in the input file must be ordered chronologically. Further-
more, at most two events can be at the exact same time (but of course you
can separate two events by e.g. 10−7 years). An example input file might
look like this (please note that this is an example and you will most likely
have to use more precision (more significant digits) in an actual command
file):

1 launch 0 .0 2 .6 0 .1 0 .2 0 . 9 4000
2 5 .37 e−09 1 e13 1 .98 e+14 #( one l i n e ! )
3 o r i e n t 0 .6
4 boost 0 . 7 0 .5 0 .3
5 p i c t u r e 2 .5 3 .14 1 .57 0 .0 0 .0 1 . 0
6 video 3 .0 1
7 video 3 .1 1
8 boost 3 . 3 −0.1 −0.1

where

1 launch 0 .0 2 .6 0 .1 0 .2 0 . 9 4000
2 5 .37 e−09 1 e13 1 .98 e+14

means launch at t0 = 0 Yr, at initial position r0 = (2.6, 0.1) AU, with
initial velocity v0 = (0.2, 10.9) AU/Yr, Total fuel = 4000kg, dp

dt = 5.37 ·
10−9, number of boxes = 1013, and number of particles pr sec = 1.98·1014.
The next line,

2 o r i e n t 0 .6

means we are performing an orientation at t = 0.6 Yr. The orientation is
either a manual one, or an automatic orientation depending on whether or
not you have already tested and verified your manual orientation software.
The next line,

1Using the analogy of an airplane in flight, you can think of θ and φ as determining
the pitch and yaw angles, while the roll angle is determined by the up-direction. See e.g.
https://en.wikipedia.org/wiki/Aircraft_principal_axes. Often, the up direction of [0,
0, 1] - along the z axis - will be okay.

3



3 boost 0 . 7 0 .5 0 .3

means at t = 0.7 yr, change the velocity by ∆v = (0.5, 0.3) AU/Yr. Using
the same engine as defined in the launch. The next line after this,

4 p i c t u r e 2 .5 3 .14 1 .57 0 .0 0 .0 1 . 0

means at t = 2.5 yr take a picture in direction given by θ = 3.14 and
φ = 1.57, with the up-direction rup = (0.0, 0.0, 1.0) AU.

4 video 3 .0 1
5 video 3 .1 1

is the first video option where your camera i focused on planet 1. The
video commands for starting and ending the video do not need to be
consecutive.

6 v ideo 2 .6 3 .14 1 .57
7 video 2 .7 2 .14 1 .57

is the second video option where the camera rotates between θ1 = 3.14 →
θ2 = 2.14 and from φ1 = 1.57 → φ2 = 1.57. This might not work
while not in orbit.

5.2 Testing the orientation software

The first time you use the orient command you have to manually do the ori-
entation in order to make sure that your code and methods work. Once this
manual orientation has been done once, subsequent orientation commands will
make the satellite automatically return the position and velocity in a file (e.g
”orient1.npy” for the first orientation command etc.).

Following the first orientation command, the manual testing procedure goes
as follows:

• You will recieve a .png file, whick is a picture taken in the forward direction
of the satellite’s orientation. You will then be prompted to input the
corresponding angle. Use your orientation software to find this angle.

• If you successfully found the angle, you will receive the measured ∆λ of the
two reference stars. Use this data to estimate the velocity of the satellite.
Provide these velocities when you are prompted.

• If you have found correct velocities you will be given a file with the dis-
tances to all the planets. Use this information to compute the position of
the satellite and provide this when prompted.

• If all of these steps are completed successfully you have proved that your
orientation software works, thus you can safely just ask the satellite for
the position and velocity when you need it for simulation.

4



5.3 Goals of this part

Your first task is to launch the rocket successfully. Feel free to make a take-
off video (direct the camera towards planet 0) starting at the launch time and
ending some hours later.

Your main goal is to create a command file which takes your satellite all the
way to the last boost which is the orbital injection maneuver at your destination
planet. Compare the position found from orientating the satellite with the
calculated position of your target planet at the time of the last boost. Does the
distance seem reasonable?

5


