
Solar Wind & the Heliosphere

The heliosphere is the region between the corona and the interstellar medium.
The heliosphere is filled with a wind driven by the sun, which sends out a wind
consisting mainly of protons and eletrons. The particles travel at a speed of
several hundred kilometers per second until they hit the heliopause which is the
interface between the solar wind and the interstellar medium. The heliopause
was traversed by the pioneer satellites just a few years ago at a distance from
the sun of roughly 90 AU.

The first and still used model of the solar wind was created by Eugene Parker
in the 1950’ies. Until then it was assumed that the heliosphere was static, and
with no net outflow. The model by Parker is rather simple, and follows from
only physical characteristics of the outer and inner boundary of the heliosphere.
For purely radial outflow the equation of momentum conservation looks like:
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We also need an equation of state, and in order for the calculation to be as
simple as possible we choose an equation of state corresponding to an isothermal
plasma:
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where T is constant, and µ is the molecular weight here set to be µ =1 /2 because
we assume that the solar wind consists only of fully ionized hydrogen and so
there is as many protons as electrons.
Integrating eq. 2 we get:

r2ρu = I (4)

where I is a constant of integration, and the above equation just states that for
a given solid angle the mass flux is independent of radius and equal to I.We can
now use eqs. 1,3,4 to get:
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We now assume that the temperature in the heliosphere is lower than the tem-
perature set by:

T < Tc ≡
GM�µmp

4ka
(10)

where a is the radius of the base of the corona. For typical coronal parameters
Tc ≈ 5.8 106K which is reasonable, since the corona in general is a few million K.
Looking at eq. 9 we can see that the right hand side is negative for a < r < rc,
where
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and positive for r < rc < ∞. At r = rc the right hand side of eq. 9 is zero,
implying that the left hand side is also zero. The left hand side can be zero in
two ways : Either
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Note that uc corresponds to the coronal sound speed. It can easily be seen that
if eq. 12 is satisfied then du/dr has the same sign for all r and that u(r) is then
monotonically increasing or decreasing. On the other hand if eq. 13 is satisfied
then (u−uc) has the same sign for all r and u has an extremum at r = rc. The
flow is either supersonic for all r or subsonic for all r. This then leads to four
different types of solutions:

• u(r) is subsonic throughout the domain a < r < ∞. u(r) increases with
r, attains maximum value around r = rc and then decreases with r

• a unique solution for which u(r) increases monotonically with r and u(rc) =
uc

• a unique solution for which u(r) decreases monotonically with r and
u(rc) = uc

• u(r) is supersonic throughout the domain a < r <∞. u(r) decreases with
r, attains a minimum around rc and then increases with r

Each of these four types of solution fits a certain set of boundary condition at
the corona and the inter stellar medium. Type 3 and 4 can already be ruled
out as a plausible solution since it demands that the velocity is supersonic at
the base of the corona. Type 1 and 2 are both plausible when looking at the
boundary near the solar corona, but look quite differently at the outer boundary.
Eq. 9 can be rewritten to give
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with the help of eqs. 10 and 11. Integrating the above equation we get(
u

uc

)2

− ln
(
u

uc

)2

= 4 ln r + 4
rc
r

+ C (15)

where C is a constant of integration. Looking at the type 1 solution, then in
the limit r → ∞ one can see that u/uc

is less than unity and monotonically
decreasing with as r →∞. For large r then eq. 15 can be reduced to
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From eq. 4 we can now see that this solution means that the density approaches
a finite, non-zero value ρ∞ when r →∞, and the pressure will then be

p∞ =
2ρ∞kT
mp

(18)

which is a pressure much larger than the interstellar pressure, so it is not phys-
ical, since if it was, the solar wind would be carving out a bigger and bigger
bubble in the interstellar matter, which is not observed. So we are left with
type 2 of the possible solutions. If we look at the limit r →∞ then it gives(
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so that
u ' 2uc (ln r)

1/2 (20)

From here it follows that the velocity is supersonic and increasing with r and
following the same arguments as for type 1 we see that ρ → 0 as r → ∞ and
so will the pressure. the type 2 solution is therefore physical and it predicts
that the solar corona expands radially outwards at modest subsonic speed close
to the sun, and then accelerates to supersonic velocities when it comes further
away from the sun.

Parker’s model of the solar wind was made, before satellites had measured
there was even a solar wind at all, and has later been confirmed by many
measurements.
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